xref: /openbmc/u-boot/arch/x86/cpu/i386/cpu.c (revision 382bee57f19b4454e2015bc19a010bc2d0ab9337)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <malloc.h>
24 #include <asm/control_regs.h>
25 #include <asm/cpu.h>
26 #include <asm/mp.h>
27 #include <asm/msr.h>
28 #include <asm/mtrr.h>
29 #include <asm/processor-flags.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 /*
34  * Constructor for a conventional segment GDT (or LDT) entry
35  * This is a macro so it can be used in initialisers
36  */
37 #define GDT_ENTRY(flags, base, limit)			\
38 	((((base)  & 0xff000000ULL) << (56-24)) |	\
39 	 (((flags) & 0x0000f0ffULL) << 40) |		\
40 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
41 	 (((base)  & 0x00ffffffULL) << 16) |		\
42 	 (((limit) & 0x0000ffffULL)))
43 
44 struct gdt_ptr {
45 	u16 len;
46 	u32 ptr;
47 } __packed;
48 
49 struct cpu_device_id {
50 	unsigned vendor;
51 	unsigned device;
52 };
53 
54 struct cpuinfo_x86 {
55 	uint8_t x86;            /* CPU family */
56 	uint8_t x86_vendor;     /* CPU vendor */
57 	uint8_t x86_model;
58 	uint8_t x86_mask;
59 };
60 
61 /*
62  * List of cpu vendor strings along with their normalized
63  * id values.
64  */
65 static const struct {
66 	int vendor;
67 	const char *name;
68 } x86_vendors[] = {
69 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
70 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
71 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
72 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
73 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
74 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
75 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
76 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
77 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
78 	{ X86_VENDOR_NSC,       "Geode by NSC", },
79 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
80 };
81 
82 static void load_ds(u32 segment)
83 {
84 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
85 }
86 
87 static void load_es(u32 segment)
88 {
89 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
90 }
91 
92 static void load_fs(u32 segment)
93 {
94 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
95 }
96 
97 static void load_gs(u32 segment)
98 {
99 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
100 }
101 
102 static void load_ss(u32 segment)
103 {
104 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
105 }
106 
107 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
108 {
109 	struct gdt_ptr gdt;
110 
111 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
112 	gdt.ptr = (ulong)boot_gdt;
113 
114 	asm volatile("lgdtl %0\n" : : "m" (gdt));
115 }
116 
117 void arch_setup_gd(gd_t *new_gd)
118 {
119 	u64 *gdt_addr;
120 
121 	gdt_addr = new_gd->arch.gdt;
122 
123 	/*
124 	 * CS: code, read/execute, 4 GB, base 0
125 	 *
126 	 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
127 	 */
128 	gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
129 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
130 
131 	/* DS: data, read/write, 4 GB, base 0 */
132 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
133 
134 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
135 	new_gd->arch.gd_addr = new_gd;
136 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
137 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
138 
139 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
140 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
141 
142 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
143 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
144 
145 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
146 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
147 
148 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
149 	load_ds(X86_GDT_ENTRY_32BIT_DS);
150 	load_es(X86_GDT_ENTRY_32BIT_DS);
151 	load_gs(X86_GDT_ENTRY_32BIT_DS);
152 	load_ss(X86_GDT_ENTRY_32BIT_DS);
153 	load_fs(X86_GDT_ENTRY_32BIT_FS);
154 }
155 
156 #ifdef CONFIG_HAVE_FSP
157 /*
158  * Setup FSP execution environment GDT
159  *
160  * Per Intel FSP external architecture specification, before calling any FSP
161  * APIs, we need make sure the system is in flat 32-bit mode and both the code
162  * and data selectors should have full 4GB access range. Here we reuse the one
163  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
164  */
165 void setup_fsp_gdt(void)
166 {
167 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
168 	load_ds(X86_GDT_ENTRY_32BIT_DS);
169 	load_ss(X86_GDT_ENTRY_32BIT_DS);
170 	load_es(X86_GDT_ENTRY_32BIT_DS);
171 	load_fs(X86_GDT_ENTRY_32BIT_DS);
172 	load_gs(X86_GDT_ENTRY_32BIT_DS);
173 }
174 #endif
175 
176 /*
177  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
178  * by the fact that they preserve the flags across the division of 5/2.
179  * PII and PPro exhibit this behavior too, but they have cpuid available.
180  */
181 
182 /*
183  * Perform the Cyrix 5/2 test. A Cyrix won't change
184  * the flags, while other 486 chips will.
185  */
186 static inline int test_cyrix_52div(void)
187 {
188 	unsigned int test;
189 
190 	__asm__ __volatile__(
191 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
192 	     "div %b2\n\t"	/* divide 5 by 2 */
193 	     "lahf"		/* store flags into %ah */
194 	     : "=a" (test)
195 	     : "0" (5), "q" (2)
196 	     : "cc");
197 
198 	/* AH is 0x02 on Cyrix after the divide.. */
199 	return (unsigned char) (test >> 8) == 0x02;
200 }
201 
202 /*
203  *	Detect a NexGen CPU running without BIOS hypercode new enough
204  *	to have CPUID. (Thanks to Herbert Oppmann)
205  */
206 static int deep_magic_nexgen_probe(void)
207 {
208 	int ret;
209 
210 	__asm__ __volatile__ (
211 		"	movw	$0x5555, %%ax\n"
212 		"	xorw	%%dx,%%dx\n"
213 		"	movw	$2, %%cx\n"
214 		"	divw	%%cx\n"
215 		"	movl	$0, %%eax\n"
216 		"	jnz	1f\n"
217 		"	movl	$1, %%eax\n"
218 		"1:\n"
219 		: "=a" (ret) : : "cx", "dx");
220 	return  ret;
221 }
222 
223 static bool has_cpuid(void)
224 {
225 	return flag_is_changeable_p(X86_EFLAGS_ID);
226 }
227 
228 static bool has_mtrr(void)
229 {
230 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
231 }
232 
233 static int build_vendor_name(char *vendor_name)
234 {
235 	struct cpuid_result result;
236 	result = cpuid(0x00000000);
237 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
238 
239 	name_as_ints[0] = result.ebx;
240 	name_as_ints[1] = result.edx;
241 	name_as_ints[2] = result.ecx;
242 
243 	return result.eax;
244 }
245 
246 static void identify_cpu(struct cpu_device_id *cpu)
247 {
248 	char vendor_name[16];
249 	int i;
250 
251 	vendor_name[0] = '\0'; /* Unset */
252 	cpu->device = 0; /* fix gcc 4.4.4 warning */
253 
254 	/* Find the id and vendor_name */
255 	if (!has_cpuid()) {
256 		/* Its a 486 if we can modify the AC flag */
257 		if (flag_is_changeable_p(X86_EFLAGS_AC))
258 			cpu->device = 0x00000400; /* 486 */
259 		else
260 			cpu->device = 0x00000300; /* 386 */
261 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
262 			memcpy(vendor_name, "CyrixInstead", 13);
263 			/* If we ever care we can enable cpuid here */
264 		}
265 		/* Detect NexGen with old hypercode */
266 		else if (deep_magic_nexgen_probe())
267 			memcpy(vendor_name, "NexGenDriven", 13);
268 	}
269 	if (has_cpuid()) {
270 		int  cpuid_level;
271 
272 		cpuid_level = build_vendor_name(vendor_name);
273 		vendor_name[12] = '\0';
274 
275 		/* Intel-defined flags: level 0x00000001 */
276 		if (cpuid_level >= 0x00000001) {
277 			cpu->device = cpuid_eax(0x00000001);
278 		} else {
279 			/* Have CPUID level 0 only unheard of */
280 			cpu->device = 0x00000400;
281 		}
282 	}
283 	cpu->vendor = X86_VENDOR_UNKNOWN;
284 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
285 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
286 			cpu->vendor = x86_vendors[i].vendor;
287 			break;
288 		}
289 	}
290 }
291 
292 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
293 {
294 	c->x86 = (tfms >> 8) & 0xf;
295 	c->x86_model = (tfms >> 4) & 0xf;
296 	c->x86_mask = tfms & 0xf;
297 	if (c->x86 == 0xf)
298 		c->x86 += (tfms >> 20) & 0xff;
299 	if (c->x86 >= 0x6)
300 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
301 }
302 
303 u32 cpu_get_family_model(void)
304 {
305 	return gd->arch.x86_device & 0x0fff0ff0;
306 }
307 
308 u32 cpu_get_stepping(void)
309 {
310 	return gd->arch.x86_mask;
311 }
312 
313 int x86_cpu_init_f(void)
314 {
315 	const u32 em_rst = ~X86_CR0_EM;
316 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
317 
318 	if (ll_boot_init()) {
319 		/* initialize FPU, reset EM, set MP and NE */
320 		asm ("fninit\n" \
321 		"movl %%cr0, %%eax\n" \
322 		"andl %0, %%eax\n" \
323 		"orl  %1, %%eax\n" \
324 		"movl %%eax, %%cr0\n" \
325 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
326 	}
327 
328 	/* identify CPU via cpuid and store the decoded info into gd->arch */
329 	if (has_cpuid()) {
330 		struct cpu_device_id cpu;
331 		struct cpuinfo_x86 c;
332 
333 		identify_cpu(&cpu);
334 		get_fms(&c, cpu.device);
335 		gd->arch.x86 = c.x86;
336 		gd->arch.x86_vendor = cpu.vendor;
337 		gd->arch.x86_model = c.x86_model;
338 		gd->arch.x86_mask = c.x86_mask;
339 		gd->arch.x86_device = cpu.device;
340 
341 		gd->arch.has_mtrr = has_mtrr();
342 	}
343 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
344 	gd->pci_ram_top = 0x80000000U;
345 
346 	/* Configure fixed range MTRRs for some legacy regions */
347 	if (gd->arch.has_mtrr) {
348 		u64 mtrr_cap;
349 
350 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
351 		if (mtrr_cap & MTRR_CAP_FIX) {
352 			/* Mark the VGA RAM area as uncacheable */
353 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
354 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
355 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
356 
357 			/*
358 			 * Mark the PCI ROM area as cacheable to improve ROM
359 			 * execution performance.
360 			 */
361 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
362 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
363 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
364 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
365 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
366 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
367 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
368 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
369 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
370 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
371 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
372 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
373 
374 			/* Enable the fixed range MTRRs */
375 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
376 		}
377 	}
378 
379 #ifdef CONFIG_I8254_TIMER
380 	/* Set up the i8254 timer if required */
381 	i8254_init();
382 #endif
383 
384 	return 0;
385 }
386 
387 void x86_enable_caches(void)
388 {
389 	unsigned long cr0;
390 
391 	cr0 = read_cr0();
392 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
393 	write_cr0(cr0);
394 	wbinvd();
395 }
396 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
397 
398 void x86_disable_caches(void)
399 {
400 	unsigned long cr0;
401 
402 	cr0 = read_cr0();
403 	cr0 |= X86_CR0_NW | X86_CR0_CD;
404 	wbinvd();
405 	write_cr0(cr0);
406 	wbinvd();
407 }
408 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
409 
410 int dcache_status(void)
411 {
412 	return !(read_cr0() & X86_CR0_CD);
413 }
414 
415 void cpu_enable_paging_pae(ulong cr3)
416 {
417 	__asm__ __volatile__(
418 		/* Load the page table address */
419 		"movl	%0, %%cr3\n"
420 		/* Enable pae */
421 		"movl	%%cr4, %%eax\n"
422 		"orl	$0x00000020, %%eax\n"
423 		"movl	%%eax, %%cr4\n"
424 		/* Enable paging */
425 		"movl	%%cr0, %%eax\n"
426 		"orl	$0x80000000, %%eax\n"
427 		"movl	%%eax, %%cr0\n"
428 		:
429 		: "r" (cr3)
430 		: "eax");
431 }
432 
433 void cpu_disable_paging_pae(void)
434 {
435 	/* Turn off paging */
436 	__asm__ __volatile__ (
437 		/* Disable paging */
438 		"movl	%%cr0, %%eax\n"
439 		"andl	$0x7fffffff, %%eax\n"
440 		"movl	%%eax, %%cr0\n"
441 		/* Disable pae */
442 		"movl	%%cr4, %%eax\n"
443 		"andl	$0xffffffdf, %%eax\n"
444 		"movl	%%eax, %%cr4\n"
445 		:
446 		:
447 		: "eax");
448 }
449 
450 static bool can_detect_long_mode(void)
451 {
452 	return cpuid_eax(0x80000000) > 0x80000000UL;
453 }
454 
455 static bool has_long_mode(void)
456 {
457 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
458 }
459 
460 int cpu_has_64bit(void)
461 {
462 	return has_cpuid() && can_detect_long_mode() &&
463 		has_long_mode();
464 }
465 
466 #define PAGETABLE_SIZE		(6 * 4096)
467 
468 /**
469  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
470  *
471  * @pgtable: Pointer to a 24iKB block of memory
472  */
473 static void build_pagetable(uint32_t *pgtable)
474 {
475 	uint i;
476 
477 	memset(pgtable, '\0', PAGETABLE_SIZE);
478 
479 	/* Level 4 needs a single entry */
480 	pgtable[0] = (ulong)&pgtable[1024] + 7;
481 
482 	/* Level 3 has one 64-bit entry for each GiB of memory */
483 	for (i = 0; i < 4; i++)
484 		pgtable[1024 + i * 2] = (ulong)&pgtable[2048] + 0x1000 * i + 7;
485 
486 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
487 	for (i = 0; i < 2048; i++)
488 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
489 }
490 
491 int cpu_jump_to_64bit(ulong setup_base, ulong target)
492 {
493 	uint32_t *pgtable;
494 
495 	pgtable = memalign(4096, PAGETABLE_SIZE);
496 	if (!pgtable)
497 		return -ENOMEM;
498 
499 	build_pagetable(pgtable);
500 	cpu_call64((ulong)pgtable, setup_base, target);
501 	free(pgtable);
502 
503 	return -EFAULT;
504 }
505 
506 /*
507  * Jump from SPL to U-Boot
508  *
509  * This function is work-in-progress with many issues to resolve.
510  *
511  * It works by setting up several regions:
512  *   ptr      - a place to put the code that jumps into 64-bit mode
513  *   gdt      - a place to put the global descriptor table
514  *   pgtable  - a place to put the page tables
515  *
516  * The cpu_call64() code is copied from ROM and then manually patched so that
517  * it has the correct GDT address in RAM. U-Boot is copied from ROM into
518  * its pre-relocation address. Then we jump to the cpu_call64() code in RAM,
519  * which changes to 64-bit mode and starts U-Boot.
520  */
521 int cpu_jump_to_64bit_uboot(ulong target)
522 {
523 	typedef void (*func_t)(ulong pgtable, ulong setup_base, ulong target);
524 	uint32_t *pgtable;
525 	func_t func;
526 
527 	/* TODO(sjg@chromium.org): Find a better place for this */
528 	pgtable = (uint32_t *)0x1000000;
529 	if (!pgtable)
530 		return -ENOMEM;
531 
532 	build_pagetable(pgtable);
533 
534 	/* TODO(sjg@chromium.org): Find a better place for this */
535 	char *ptr = (char *)0x3000000;
536 	char *gdt = (char *)0x3100000;
537 
538 	extern char gdt64[];
539 
540 	memcpy(ptr, cpu_call64, 0x1000);
541 	memcpy(gdt, gdt64, 0x100);
542 
543 	/*
544 	 * TODO(sjg@chromium.org): This manually inserts the pointers into
545 	 * the code. Tidy this up to avoid this.
546 	 */
547 	func = (func_t)ptr;
548 	ulong ofs = (ulong)cpu_call64 - (ulong)ptr;
549 	*(ulong *)(ptr + 7) = (ulong)gdt;
550 	*(ulong *)(ptr + 0xc) = (ulong)gdt + 2;
551 	*(ulong *)(ptr + 0x13) = (ulong)gdt;
552 	*(ulong *)(ptr + 0x117 - 0xd4) -= ofs;
553 
554 	/*
555 	 * Copy U-Boot from ROM
556 	 * TODO(sjg@chromium.org): Figure out a way to get the text base
557 	 * correctly here, and in the device-tree binman definition.
558 	 *
559 	 * Also consider using FIT so we get the correct image length and
560 	 * parameters.
561 	 */
562 	memcpy((char *)target, (char *)0xfff00000, 0x100000);
563 
564 	/* Jump to U-Boot */
565 	func((ulong)pgtable, 0, (ulong)target);
566 
567 	return -EFAULT;
568 }
569 
570 #ifdef CONFIG_SMP
571 static int enable_smis(struct udevice *cpu, void *unused)
572 {
573 	return 0;
574 }
575 
576 static struct mp_flight_record mp_steps[] = {
577 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
578 	/* Wait for APs to finish initialization before proceeding */
579 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
580 };
581 
582 int x86_mp_init(void)
583 {
584 	struct mp_params mp_params;
585 
586 	mp_params.parallel_microcode_load = 0,
587 	mp_params.flight_plan = &mp_steps[0];
588 	mp_params.num_records = ARRAY_SIZE(mp_steps);
589 	mp_params.microcode_pointer = 0;
590 
591 	if (mp_init(&mp_params)) {
592 		printf("Warning: MP init failure\n");
593 		return -EIO;
594 	}
595 
596 	return 0;
597 }
598 #endif
599