1 /* 2 * (C) Copyright 2008-2011 3 * Graeme Russ, <graeme.russ@gmail.com> 4 * 5 * (C) Copyright 2002 6 * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se> 7 * 8 * (C) Copyright 2002 9 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> 10 * Marius Groeger <mgroeger@sysgo.de> 11 * 12 * (C) Copyright 2002 13 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> 14 * Alex Zuepke <azu@sysgo.de> 15 * 16 * Part of this file is adapted from coreboot 17 * src/arch/x86/lib/cpu.c 18 * 19 * SPDX-License-Identifier: GPL-2.0+ 20 */ 21 22 #include <common.h> 23 #include <command.h> 24 #include <dm.h> 25 #include <errno.h> 26 #include <malloc.h> 27 #include <asm/control_regs.h> 28 #include <asm/cpu.h> 29 #include <asm/lapic.h> 30 #include <asm/mp.h> 31 #include <asm/msr.h> 32 #include <asm/mtrr.h> 33 #include <asm/post.h> 34 #include <asm/processor.h> 35 #include <asm/processor-flags.h> 36 #include <asm/interrupt.h> 37 #include <asm/tables.h> 38 #include <linux/compiler.h> 39 40 DECLARE_GLOBAL_DATA_PTR; 41 42 /* 43 * Constructor for a conventional segment GDT (or LDT) entry 44 * This is a macro so it can be used in initialisers 45 */ 46 #define GDT_ENTRY(flags, base, limit) \ 47 ((((base) & 0xff000000ULL) << (56-24)) | \ 48 (((flags) & 0x0000f0ffULL) << 40) | \ 49 (((limit) & 0x000f0000ULL) << (48-16)) | \ 50 (((base) & 0x00ffffffULL) << 16) | \ 51 (((limit) & 0x0000ffffULL))) 52 53 struct gdt_ptr { 54 u16 len; 55 u32 ptr; 56 } __packed; 57 58 struct cpu_device_id { 59 unsigned vendor; 60 unsigned device; 61 }; 62 63 struct cpuinfo_x86 { 64 uint8_t x86; /* CPU family */ 65 uint8_t x86_vendor; /* CPU vendor */ 66 uint8_t x86_model; 67 uint8_t x86_mask; 68 }; 69 70 /* 71 * List of cpu vendor strings along with their normalized 72 * id values. 73 */ 74 static struct { 75 int vendor; 76 const char *name; 77 } x86_vendors[] = { 78 { X86_VENDOR_INTEL, "GenuineIntel", }, 79 { X86_VENDOR_CYRIX, "CyrixInstead", }, 80 { X86_VENDOR_AMD, "AuthenticAMD", }, 81 { X86_VENDOR_UMC, "UMC UMC UMC ", }, 82 { X86_VENDOR_NEXGEN, "NexGenDriven", }, 83 { X86_VENDOR_CENTAUR, "CentaurHauls", }, 84 { X86_VENDOR_RISE, "RiseRiseRise", }, 85 { X86_VENDOR_TRANSMETA, "GenuineTMx86", }, 86 { X86_VENDOR_TRANSMETA, "TransmetaCPU", }, 87 { X86_VENDOR_NSC, "Geode by NSC", }, 88 { X86_VENDOR_SIS, "SiS SiS SiS ", }, 89 }; 90 91 static const char *const x86_vendor_name[] = { 92 [X86_VENDOR_INTEL] = "Intel", 93 [X86_VENDOR_CYRIX] = "Cyrix", 94 [X86_VENDOR_AMD] = "AMD", 95 [X86_VENDOR_UMC] = "UMC", 96 [X86_VENDOR_NEXGEN] = "NexGen", 97 [X86_VENDOR_CENTAUR] = "Centaur", 98 [X86_VENDOR_RISE] = "Rise", 99 [X86_VENDOR_TRANSMETA] = "Transmeta", 100 [X86_VENDOR_NSC] = "NSC", 101 [X86_VENDOR_SIS] = "SiS", 102 }; 103 104 static void load_ds(u32 segment) 105 { 106 asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 107 } 108 109 static void load_es(u32 segment) 110 { 111 asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 112 } 113 114 static void load_fs(u32 segment) 115 { 116 asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 117 } 118 119 static void load_gs(u32 segment) 120 { 121 asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 122 } 123 124 static void load_ss(u32 segment) 125 { 126 asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 127 } 128 129 static void load_gdt(const u64 *boot_gdt, u16 num_entries) 130 { 131 struct gdt_ptr gdt; 132 133 gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1; 134 gdt.ptr = (u32)boot_gdt; 135 136 asm volatile("lgdtl %0\n" : : "m" (gdt)); 137 } 138 139 void arch_setup_gd(gd_t *new_gd) 140 { 141 u64 *gdt_addr; 142 143 gdt_addr = new_gd->arch.gdt; 144 145 /* 146 * CS: code, read/execute, 4 GB, base 0 147 * 148 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS 149 */ 150 gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff); 151 gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff); 152 153 /* DS: data, read/write, 4 GB, base 0 */ 154 gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff); 155 156 /* FS: data, read/write, 4 GB, base (Global Data Pointer) */ 157 new_gd->arch.gd_addr = new_gd; 158 gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093, 159 (ulong)&new_gd->arch.gd_addr, 0xfffff); 160 161 /* 16-bit CS: code, read/execute, 64 kB, base 0 */ 162 gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff); 163 164 /* 16-bit DS: data, read/write, 64 kB, base 0 */ 165 gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff); 166 167 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff); 168 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff); 169 170 load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES); 171 load_ds(X86_GDT_ENTRY_32BIT_DS); 172 load_es(X86_GDT_ENTRY_32BIT_DS); 173 load_gs(X86_GDT_ENTRY_32BIT_DS); 174 load_ss(X86_GDT_ENTRY_32BIT_DS); 175 load_fs(X86_GDT_ENTRY_32BIT_FS); 176 } 177 178 #ifdef CONFIG_HAVE_FSP 179 /* 180 * Setup FSP execution environment GDT 181 * 182 * Per Intel FSP external architecture specification, before calling any FSP 183 * APIs, we need make sure the system is in flat 32-bit mode and both the code 184 * and data selectors should have full 4GB access range. Here we reuse the one 185 * we used in arch/x86/cpu/start16.S, and reload the segement registers. 186 */ 187 void setup_fsp_gdt(void) 188 { 189 load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4); 190 load_ds(X86_GDT_ENTRY_32BIT_DS); 191 load_ss(X86_GDT_ENTRY_32BIT_DS); 192 load_es(X86_GDT_ENTRY_32BIT_DS); 193 load_fs(X86_GDT_ENTRY_32BIT_DS); 194 load_gs(X86_GDT_ENTRY_32BIT_DS); 195 } 196 #endif 197 198 int __weak x86_cleanup_before_linux(void) 199 { 200 #ifdef CONFIG_BOOTSTAGE_STASH 201 bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR, 202 CONFIG_BOOTSTAGE_STASH_SIZE); 203 #endif 204 205 return 0; 206 } 207 208 /* 209 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected 210 * by the fact that they preserve the flags across the division of 5/2. 211 * PII and PPro exhibit this behavior too, but they have cpuid available. 212 */ 213 214 /* 215 * Perform the Cyrix 5/2 test. A Cyrix won't change 216 * the flags, while other 486 chips will. 217 */ 218 static inline int test_cyrix_52div(void) 219 { 220 unsigned int test; 221 222 __asm__ __volatile__( 223 "sahf\n\t" /* clear flags (%eax = 0x0005) */ 224 "div %b2\n\t" /* divide 5 by 2 */ 225 "lahf" /* store flags into %ah */ 226 : "=a" (test) 227 : "0" (5), "q" (2) 228 : "cc"); 229 230 /* AH is 0x02 on Cyrix after the divide.. */ 231 return (unsigned char) (test >> 8) == 0x02; 232 } 233 234 /* 235 * Detect a NexGen CPU running without BIOS hypercode new enough 236 * to have CPUID. (Thanks to Herbert Oppmann) 237 */ 238 239 static int deep_magic_nexgen_probe(void) 240 { 241 int ret; 242 243 __asm__ __volatile__ ( 244 " movw $0x5555, %%ax\n" 245 " xorw %%dx,%%dx\n" 246 " movw $2, %%cx\n" 247 " divw %%cx\n" 248 " movl $0, %%eax\n" 249 " jnz 1f\n" 250 " movl $1, %%eax\n" 251 "1:\n" 252 : "=a" (ret) : : "cx", "dx"); 253 return ret; 254 } 255 256 static bool has_cpuid(void) 257 { 258 return flag_is_changeable_p(X86_EFLAGS_ID); 259 } 260 261 static bool has_mtrr(void) 262 { 263 return cpuid_edx(0x00000001) & (1 << 12) ? true : false; 264 } 265 266 static int build_vendor_name(char *vendor_name) 267 { 268 struct cpuid_result result; 269 result = cpuid(0x00000000); 270 unsigned int *name_as_ints = (unsigned int *)vendor_name; 271 272 name_as_ints[0] = result.ebx; 273 name_as_ints[1] = result.edx; 274 name_as_ints[2] = result.ecx; 275 276 return result.eax; 277 } 278 279 static void identify_cpu(struct cpu_device_id *cpu) 280 { 281 char vendor_name[16]; 282 int i; 283 284 vendor_name[0] = '\0'; /* Unset */ 285 cpu->device = 0; /* fix gcc 4.4.4 warning */ 286 287 /* Find the id and vendor_name */ 288 if (!has_cpuid()) { 289 /* Its a 486 if we can modify the AC flag */ 290 if (flag_is_changeable_p(X86_EFLAGS_AC)) 291 cpu->device = 0x00000400; /* 486 */ 292 else 293 cpu->device = 0x00000300; /* 386 */ 294 if ((cpu->device == 0x00000400) && test_cyrix_52div()) { 295 memcpy(vendor_name, "CyrixInstead", 13); 296 /* If we ever care we can enable cpuid here */ 297 } 298 /* Detect NexGen with old hypercode */ 299 else if (deep_magic_nexgen_probe()) 300 memcpy(vendor_name, "NexGenDriven", 13); 301 } 302 if (has_cpuid()) { 303 int cpuid_level; 304 305 cpuid_level = build_vendor_name(vendor_name); 306 vendor_name[12] = '\0'; 307 308 /* Intel-defined flags: level 0x00000001 */ 309 if (cpuid_level >= 0x00000001) { 310 cpu->device = cpuid_eax(0x00000001); 311 } else { 312 /* Have CPUID level 0 only unheard of */ 313 cpu->device = 0x00000400; 314 } 315 } 316 cpu->vendor = X86_VENDOR_UNKNOWN; 317 for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) { 318 if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) { 319 cpu->vendor = x86_vendors[i].vendor; 320 break; 321 } 322 } 323 } 324 325 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms) 326 { 327 c->x86 = (tfms >> 8) & 0xf; 328 c->x86_model = (tfms >> 4) & 0xf; 329 c->x86_mask = tfms & 0xf; 330 if (c->x86 == 0xf) 331 c->x86 += (tfms >> 20) & 0xff; 332 if (c->x86 >= 0x6) 333 c->x86_model += ((tfms >> 16) & 0xF) << 4; 334 } 335 336 int x86_cpu_init_f(void) 337 { 338 const u32 em_rst = ~X86_CR0_EM; 339 const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE; 340 341 if (ll_boot_init()) { 342 /* initialize FPU, reset EM, set MP and NE */ 343 asm ("fninit\n" \ 344 "movl %%cr0, %%eax\n" \ 345 "andl %0, %%eax\n" \ 346 "orl %1, %%eax\n" \ 347 "movl %%eax, %%cr0\n" \ 348 : : "i" (em_rst), "i" (mp_ne_set) : "eax"); 349 } 350 351 /* identify CPU via cpuid and store the decoded info into gd->arch */ 352 if (has_cpuid()) { 353 struct cpu_device_id cpu; 354 struct cpuinfo_x86 c; 355 356 identify_cpu(&cpu); 357 get_fms(&c, cpu.device); 358 gd->arch.x86 = c.x86; 359 gd->arch.x86_vendor = cpu.vendor; 360 gd->arch.x86_model = c.x86_model; 361 gd->arch.x86_mask = c.x86_mask; 362 gd->arch.x86_device = cpu.device; 363 364 gd->arch.has_mtrr = has_mtrr(); 365 } 366 /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */ 367 gd->pci_ram_top = 0x80000000U; 368 369 /* Configure fixed range MTRRs for some legacy regions */ 370 if (gd->arch.has_mtrr) { 371 u64 mtrr_cap; 372 373 mtrr_cap = native_read_msr(MTRR_CAP_MSR); 374 if (mtrr_cap & MTRR_CAP_FIX) { 375 /* Mark the VGA RAM area as uncacheable */ 376 native_write_msr(MTRR_FIX_16K_A0000_MSR, 377 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE), 378 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE)); 379 380 /* 381 * Mark the PCI ROM area as cacheable to improve ROM 382 * execution performance. 383 */ 384 native_write_msr(MTRR_FIX_4K_C0000_MSR, 385 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), 386 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); 387 native_write_msr(MTRR_FIX_4K_C8000_MSR, 388 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), 389 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); 390 native_write_msr(MTRR_FIX_4K_D0000_MSR, 391 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), 392 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); 393 native_write_msr(MTRR_FIX_4K_D8000_MSR, 394 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK), 395 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK)); 396 397 /* Enable the fixed range MTRRs */ 398 msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN); 399 } 400 } 401 402 return 0; 403 } 404 405 void x86_enable_caches(void) 406 { 407 unsigned long cr0; 408 409 cr0 = read_cr0(); 410 cr0 &= ~(X86_CR0_NW | X86_CR0_CD); 411 write_cr0(cr0); 412 wbinvd(); 413 } 414 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches"))); 415 416 void x86_disable_caches(void) 417 { 418 unsigned long cr0; 419 420 cr0 = read_cr0(); 421 cr0 |= X86_CR0_NW | X86_CR0_CD; 422 wbinvd(); 423 write_cr0(cr0); 424 wbinvd(); 425 } 426 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches"))); 427 428 int x86_init_cache(void) 429 { 430 enable_caches(); 431 432 return 0; 433 } 434 int init_cache(void) __attribute__((weak, alias("x86_init_cache"))); 435 436 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 437 { 438 printf("resetting ...\n"); 439 440 /* wait 50 ms */ 441 udelay(50000); 442 disable_interrupts(); 443 reset_cpu(0); 444 445 /*NOTREACHED*/ 446 return 0; 447 } 448 449 void flush_cache(unsigned long dummy1, unsigned long dummy2) 450 { 451 asm("wbinvd\n"); 452 } 453 454 __weak void reset_cpu(ulong addr) 455 { 456 /* Do a hard reset through the chipset's reset control register */ 457 outb(SYS_RST | RST_CPU, PORT_RESET); 458 for (;;) 459 cpu_hlt(); 460 } 461 462 void x86_full_reset(void) 463 { 464 outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET); 465 } 466 467 int dcache_status(void) 468 { 469 return !(read_cr0() & X86_CR0_CD); 470 } 471 472 /* Define these functions to allow ehch-hcd to function */ 473 void flush_dcache_range(unsigned long start, unsigned long stop) 474 { 475 } 476 477 void invalidate_dcache_range(unsigned long start, unsigned long stop) 478 { 479 } 480 481 void dcache_enable(void) 482 { 483 enable_caches(); 484 } 485 486 void dcache_disable(void) 487 { 488 disable_caches(); 489 } 490 491 void icache_enable(void) 492 { 493 } 494 495 void icache_disable(void) 496 { 497 } 498 499 int icache_status(void) 500 { 501 return 1; 502 } 503 504 void cpu_enable_paging_pae(ulong cr3) 505 { 506 __asm__ __volatile__( 507 /* Load the page table address */ 508 "movl %0, %%cr3\n" 509 /* Enable pae */ 510 "movl %%cr4, %%eax\n" 511 "orl $0x00000020, %%eax\n" 512 "movl %%eax, %%cr4\n" 513 /* Enable paging */ 514 "movl %%cr0, %%eax\n" 515 "orl $0x80000000, %%eax\n" 516 "movl %%eax, %%cr0\n" 517 : 518 : "r" (cr3) 519 : "eax"); 520 } 521 522 void cpu_disable_paging_pae(void) 523 { 524 /* Turn off paging */ 525 __asm__ __volatile__ ( 526 /* Disable paging */ 527 "movl %%cr0, %%eax\n" 528 "andl $0x7fffffff, %%eax\n" 529 "movl %%eax, %%cr0\n" 530 /* Disable pae */ 531 "movl %%cr4, %%eax\n" 532 "andl $0xffffffdf, %%eax\n" 533 "movl %%eax, %%cr4\n" 534 : 535 : 536 : "eax"); 537 } 538 539 static bool can_detect_long_mode(void) 540 { 541 return cpuid_eax(0x80000000) > 0x80000000UL; 542 } 543 544 static bool has_long_mode(void) 545 { 546 return cpuid_edx(0x80000001) & (1 << 29) ? true : false; 547 } 548 549 int cpu_has_64bit(void) 550 { 551 return has_cpuid() && can_detect_long_mode() && 552 has_long_mode(); 553 } 554 555 const char *cpu_vendor_name(int vendor) 556 { 557 const char *name; 558 name = "<invalid cpu vendor>"; 559 if ((vendor < (ARRAY_SIZE(x86_vendor_name))) && 560 (x86_vendor_name[vendor] != 0)) 561 name = x86_vendor_name[vendor]; 562 563 return name; 564 } 565 566 char *cpu_get_name(char *name) 567 { 568 unsigned int *name_as_ints = (unsigned int *)name; 569 struct cpuid_result regs; 570 char *ptr; 571 int i; 572 573 /* This bit adds up to 48 bytes */ 574 for (i = 0; i < 3; i++) { 575 regs = cpuid(0x80000002 + i); 576 name_as_ints[i * 4 + 0] = regs.eax; 577 name_as_ints[i * 4 + 1] = regs.ebx; 578 name_as_ints[i * 4 + 2] = regs.ecx; 579 name_as_ints[i * 4 + 3] = regs.edx; 580 } 581 name[CPU_MAX_NAME_LEN - 1] = '\0'; 582 583 /* Skip leading spaces. */ 584 ptr = name; 585 while (*ptr == ' ') 586 ptr++; 587 588 return ptr; 589 } 590 591 int default_print_cpuinfo(void) 592 { 593 printf("CPU: %s, vendor %s, device %xh\n", 594 cpu_has_64bit() ? "x86_64" : "x86", 595 cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device); 596 597 return 0; 598 } 599 600 #define PAGETABLE_SIZE (6 * 4096) 601 602 /** 603 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode 604 * 605 * @pgtable: Pointer to a 24iKB block of memory 606 */ 607 static void build_pagetable(uint32_t *pgtable) 608 { 609 uint i; 610 611 memset(pgtable, '\0', PAGETABLE_SIZE); 612 613 /* Level 4 needs a single entry */ 614 pgtable[0] = (uint32_t)&pgtable[1024] + 7; 615 616 /* Level 3 has one 64-bit entry for each GiB of memory */ 617 for (i = 0; i < 4; i++) { 618 pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] + 619 0x1000 * i + 7; 620 } 621 622 /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */ 623 for (i = 0; i < 2048; i++) 624 pgtable[2048 + i * 2] = 0x183 + (i << 21UL); 625 } 626 627 int cpu_jump_to_64bit(ulong setup_base, ulong target) 628 { 629 uint32_t *pgtable; 630 631 pgtable = memalign(4096, PAGETABLE_SIZE); 632 if (!pgtable) 633 return -ENOMEM; 634 635 build_pagetable(pgtable); 636 cpu_call64((ulong)pgtable, setup_base, target); 637 free(pgtable); 638 639 return -EFAULT; 640 } 641 642 void show_boot_progress(int val) 643 { 644 #if MIN_PORT80_KCLOCKS_DELAY 645 /* 646 * Scale the time counter reading to avoid using 64 bit arithmetics. 647 * Can't use get_timer() here becuase it could be not yet 648 * initialized or even implemented. 649 */ 650 if (!gd->arch.tsc_prev) { 651 gd->arch.tsc_base_kclocks = rdtsc() / 1000; 652 gd->arch.tsc_prev = 0; 653 } else { 654 uint32_t now; 655 656 do { 657 now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks; 658 } while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY)); 659 gd->arch.tsc_prev = now; 660 } 661 #endif 662 outb(val, POST_PORT); 663 } 664 665 #ifndef CONFIG_SYS_COREBOOT 666 int last_stage_init(void) 667 { 668 write_tables(); 669 670 return 0; 671 } 672 #endif 673 674 #ifdef CONFIG_SMP 675 static int enable_smis(struct udevice *cpu, void *unused) 676 { 677 return 0; 678 } 679 680 static struct mp_flight_record mp_steps[] = { 681 MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL), 682 /* Wait for APs to finish initialization before proceeding */ 683 MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL), 684 }; 685 686 static int x86_mp_init(void) 687 { 688 struct mp_params mp_params; 689 690 mp_params.parallel_microcode_load = 0, 691 mp_params.flight_plan = &mp_steps[0]; 692 mp_params.num_records = ARRAY_SIZE(mp_steps); 693 mp_params.microcode_pointer = 0; 694 695 if (mp_init(&mp_params)) { 696 printf("Warning: MP init failure\n"); 697 return -EIO; 698 } 699 700 return 0; 701 } 702 #endif 703 704 __weak int x86_init_cpus(void) 705 { 706 #ifdef CONFIG_SMP 707 debug("Init additional CPUs\n"); 708 x86_mp_init(); 709 #else 710 struct udevice *dev; 711 712 /* 713 * This causes the cpu-x86 driver to be probed. 714 * We don't check return value here as we want to allow boards 715 * which have not been converted to use cpu uclass driver to boot. 716 */ 717 uclass_first_device(UCLASS_CPU, &dev); 718 #endif 719 720 return 0; 721 } 722 723 int cpu_init_r(void) 724 { 725 if (ll_boot_init()) 726 return x86_init_cpus(); 727 728 return 0; 729 } 730