xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision ecf674b7)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/cpu.h>
29 #include <asm/lapic.h>
30 #include <asm/mp.h>
31 #include <asm/msr.h>
32 #include <asm/mtrr.h>
33 #include <asm/post.h>
34 #include <asm/processor.h>
35 #include <asm/processor-flags.h>
36 #include <asm/interrupt.h>
37 #include <asm/tables.h>
38 #include <linux/compiler.h>
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 /*
43  * Constructor for a conventional segment GDT (or LDT) entry
44  * This is a macro so it can be used in initialisers
45  */
46 #define GDT_ENTRY(flags, base, limit)			\
47 	((((base)  & 0xff000000ULL) << (56-24)) |	\
48 	 (((flags) & 0x0000f0ffULL) << 40) |		\
49 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
50 	 (((base)  & 0x00ffffffULL) << 16) |		\
51 	 (((limit) & 0x0000ffffULL)))
52 
53 struct gdt_ptr {
54 	u16 len;
55 	u32 ptr;
56 } __packed;
57 
58 struct cpu_device_id {
59 	unsigned vendor;
60 	unsigned device;
61 };
62 
63 struct cpuinfo_x86 {
64 	uint8_t x86;            /* CPU family */
65 	uint8_t x86_vendor;     /* CPU vendor */
66 	uint8_t x86_model;
67 	uint8_t x86_mask;
68 };
69 
70 /*
71  * List of cpu vendor strings along with their normalized
72  * id values.
73  */
74 static struct {
75 	int vendor;
76 	const char *name;
77 } x86_vendors[] = {
78 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
79 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
80 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
81 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
82 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
83 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
84 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
85 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
86 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
87 	{ X86_VENDOR_NSC,       "Geode by NSC", },
88 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
89 };
90 
91 static const char *const x86_vendor_name[] = {
92 	[X86_VENDOR_INTEL]     = "Intel",
93 	[X86_VENDOR_CYRIX]     = "Cyrix",
94 	[X86_VENDOR_AMD]       = "AMD",
95 	[X86_VENDOR_UMC]       = "UMC",
96 	[X86_VENDOR_NEXGEN]    = "NexGen",
97 	[X86_VENDOR_CENTAUR]   = "Centaur",
98 	[X86_VENDOR_RISE]      = "Rise",
99 	[X86_VENDOR_TRANSMETA] = "Transmeta",
100 	[X86_VENDOR_NSC]       = "NSC",
101 	[X86_VENDOR_SIS]       = "SiS",
102 };
103 
104 static void load_ds(u32 segment)
105 {
106 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
107 }
108 
109 static void load_es(u32 segment)
110 {
111 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 }
113 
114 static void load_fs(u32 segment)
115 {
116 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 }
118 
119 static void load_gs(u32 segment)
120 {
121 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 }
123 
124 static void load_ss(u32 segment)
125 {
126 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
127 }
128 
129 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
130 {
131 	struct gdt_ptr gdt;
132 
133 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
134 	gdt.ptr = (u32)boot_gdt;
135 
136 	asm volatile("lgdtl %0\n" : : "m" (gdt));
137 }
138 
139 void arch_setup_gd(gd_t *new_gd)
140 {
141 	u64 *gdt_addr;
142 
143 	gdt_addr = new_gd->arch.gdt;
144 
145 	/* CS: code, read/execute, 4 GB, base 0 */
146 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
147 
148 	/* DS: data, read/write, 4 GB, base 0 */
149 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
150 
151 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
152 	new_gd->arch.gd_addr = new_gd;
153 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
154 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
155 
156 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
157 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
158 
159 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
160 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
161 
162 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
163 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
164 
165 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
166 	load_ds(X86_GDT_ENTRY_32BIT_DS);
167 	load_es(X86_GDT_ENTRY_32BIT_DS);
168 	load_gs(X86_GDT_ENTRY_32BIT_DS);
169 	load_ss(X86_GDT_ENTRY_32BIT_DS);
170 	load_fs(X86_GDT_ENTRY_32BIT_FS);
171 }
172 
173 #ifdef CONFIG_HAVE_FSP
174 /*
175  * Setup FSP execution environment GDT
176  *
177  * Per Intel FSP external architecture specification, before calling any FSP
178  * APIs, we need make sure the system is in flat 32-bit mode and both the code
179  * and data selectors should have full 4GB access range. Here we reuse the one
180  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
181  */
182 void setup_fsp_gdt(void)
183 {
184 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
185 	load_ds(X86_GDT_ENTRY_32BIT_DS);
186 	load_ss(X86_GDT_ENTRY_32BIT_DS);
187 	load_es(X86_GDT_ENTRY_32BIT_DS);
188 	load_fs(X86_GDT_ENTRY_32BIT_DS);
189 	load_gs(X86_GDT_ENTRY_32BIT_DS);
190 }
191 #endif
192 
193 int __weak x86_cleanup_before_linux(void)
194 {
195 #ifdef CONFIG_BOOTSTAGE_STASH
196 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
197 			CONFIG_BOOTSTAGE_STASH_SIZE);
198 #endif
199 
200 	return 0;
201 }
202 
203 /*
204  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
205  * by the fact that they preserve the flags across the division of 5/2.
206  * PII and PPro exhibit this behavior too, but they have cpuid available.
207  */
208 
209 /*
210  * Perform the Cyrix 5/2 test. A Cyrix won't change
211  * the flags, while other 486 chips will.
212  */
213 static inline int test_cyrix_52div(void)
214 {
215 	unsigned int test;
216 
217 	__asm__ __volatile__(
218 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
219 	     "div %b2\n\t"	/* divide 5 by 2 */
220 	     "lahf"		/* store flags into %ah */
221 	     : "=a" (test)
222 	     : "0" (5), "q" (2)
223 	     : "cc");
224 
225 	/* AH is 0x02 on Cyrix after the divide.. */
226 	return (unsigned char) (test >> 8) == 0x02;
227 }
228 
229 /*
230  *	Detect a NexGen CPU running without BIOS hypercode new enough
231  *	to have CPUID. (Thanks to Herbert Oppmann)
232  */
233 
234 static int deep_magic_nexgen_probe(void)
235 {
236 	int ret;
237 
238 	__asm__ __volatile__ (
239 		"	movw	$0x5555, %%ax\n"
240 		"	xorw	%%dx,%%dx\n"
241 		"	movw	$2, %%cx\n"
242 		"	divw	%%cx\n"
243 		"	movl	$0, %%eax\n"
244 		"	jnz	1f\n"
245 		"	movl	$1, %%eax\n"
246 		"1:\n"
247 		: "=a" (ret) : : "cx", "dx");
248 	return  ret;
249 }
250 
251 static bool has_cpuid(void)
252 {
253 	return flag_is_changeable_p(X86_EFLAGS_ID);
254 }
255 
256 static bool has_mtrr(void)
257 {
258 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
259 }
260 
261 static int build_vendor_name(char *vendor_name)
262 {
263 	struct cpuid_result result;
264 	result = cpuid(0x00000000);
265 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
266 
267 	name_as_ints[0] = result.ebx;
268 	name_as_ints[1] = result.edx;
269 	name_as_ints[2] = result.ecx;
270 
271 	return result.eax;
272 }
273 
274 static void identify_cpu(struct cpu_device_id *cpu)
275 {
276 	char vendor_name[16];
277 	int i;
278 
279 	vendor_name[0] = '\0'; /* Unset */
280 	cpu->device = 0; /* fix gcc 4.4.4 warning */
281 
282 	/* Find the id and vendor_name */
283 	if (!has_cpuid()) {
284 		/* Its a 486 if we can modify the AC flag */
285 		if (flag_is_changeable_p(X86_EFLAGS_AC))
286 			cpu->device = 0x00000400; /* 486 */
287 		else
288 			cpu->device = 0x00000300; /* 386 */
289 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
290 			memcpy(vendor_name, "CyrixInstead", 13);
291 			/* If we ever care we can enable cpuid here */
292 		}
293 		/* Detect NexGen with old hypercode */
294 		else if (deep_magic_nexgen_probe())
295 			memcpy(vendor_name, "NexGenDriven", 13);
296 	}
297 	if (has_cpuid()) {
298 		int  cpuid_level;
299 
300 		cpuid_level = build_vendor_name(vendor_name);
301 		vendor_name[12] = '\0';
302 
303 		/* Intel-defined flags: level 0x00000001 */
304 		if (cpuid_level >= 0x00000001) {
305 			cpu->device = cpuid_eax(0x00000001);
306 		} else {
307 			/* Have CPUID level 0 only unheard of */
308 			cpu->device = 0x00000400;
309 		}
310 	}
311 	cpu->vendor = X86_VENDOR_UNKNOWN;
312 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
313 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
314 			cpu->vendor = x86_vendors[i].vendor;
315 			break;
316 		}
317 	}
318 }
319 
320 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
321 {
322 	c->x86 = (tfms >> 8) & 0xf;
323 	c->x86_model = (tfms >> 4) & 0xf;
324 	c->x86_mask = tfms & 0xf;
325 	if (c->x86 == 0xf)
326 		c->x86 += (tfms >> 20) & 0xff;
327 	if (c->x86 >= 0x6)
328 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
329 }
330 
331 int x86_cpu_init_f(void)
332 {
333 	const u32 em_rst = ~X86_CR0_EM;
334 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
335 
336 	if (ll_boot_init()) {
337 		/* initialize FPU, reset EM, set MP and NE */
338 		asm ("fninit\n" \
339 		"movl %%cr0, %%eax\n" \
340 		"andl %0, %%eax\n" \
341 		"orl  %1, %%eax\n" \
342 		"movl %%eax, %%cr0\n" \
343 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
344 	}
345 
346 	/* identify CPU via cpuid and store the decoded info into gd->arch */
347 	if (has_cpuid()) {
348 		struct cpu_device_id cpu;
349 		struct cpuinfo_x86 c;
350 
351 		identify_cpu(&cpu);
352 		get_fms(&c, cpu.device);
353 		gd->arch.x86 = c.x86;
354 		gd->arch.x86_vendor = cpu.vendor;
355 		gd->arch.x86_model = c.x86_model;
356 		gd->arch.x86_mask = c.x86_mask;
357 		gd->arch.x86_device = cpu.device;
358 
359 		gd->arch.has_mtrr = has_mtrr();
360 	}
361 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
362 	gd->pci_ram_top = 0x80000000U;
363 
364 	/* Configure fixed range MTRRs for some legacy regions */
365 	if (gd->arch.has_mtrr) {
366 		u64 mtrr_cap;
367 
368 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
369 		if (mtrr_cap & MTRR_CAP_FIX) {
370 			/* Mark the VGA RAM area as uncacheable */
371 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
372 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
373 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
374 
375 			/*
376 			 * Mark the PCI ROM area as cacheable to improve ROM
377 			 * execution performance.
378 			 */
379 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
380 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
381 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
382 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
383 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
384 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
385 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
386 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
387 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
388 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
389 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
390 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
391 
392 			/* Enable the fixed range MTRRs */
393 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
394 		}
395 	}
396 
397 	return 0;
398 }
399 
400 void x86_enable_caches(void)
401 {
402 	unsigned long cr0;
403 
404 	cr0 = read_cr0();
405 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
406 	write_cr0(cr0);
407 	wbinvd();
408 }
409 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
410 
411 void x86_disable_caches(void)
412 {
413 	unsigned long cr0;
414 
415 	cr0 = read_cr0();
416 	cr0 |= X86_CR0_NW | X86_CR0_CD;
417 	wbinvd();
418 	write_cr0(cr0);
419 	wbinvd();
420 }
421 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
422 
423 int x86_init_cache(void)
424 {
425 	enable_caches();
426 
427 	return 0;
428 }
429 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
430 
431 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
432 {
433 	printf("resetting ...\n");
434 
435 	/* wait 50 ms */
436 	udelay(50000);
437 	disable_interrupts();
438 	reset_cpu(0);
439 
440 	/*NOTREACHED*/
441 	return 0;
442 }
443 
444 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
445 {
446 	asm("wbinvd\n");
447 }
448 
449 __weak void reset_cpu(ulong addr)
450 {
451 	/* Do a hard reset through the chipset's reset control register */
452 	outb(SYS_RST | RST_CPU, PORT_RESET);
453 	for (;;)
454 		cpu_hlt();
455 }
456 
457 void x86_full_reset(void)
458 {
459 	outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
460 }
461 
462 int dcache_status(void)
463 {
464 	return !(read_cr0() & X86_CR0_CD);
465 }
466 
467 /* Define these functions to allow ehch-hcd to function */
468 void flush_dcache_range(unsigned long start, unsigned long stop)
469 {
470 }
471 
472 void invalidate_dcache_range(unsigned long start, unsigned long stop)
473 {
474 }
475 
476 void dcache_enable(void)
477 {
478 	enable_caches();
479 }
480 
481 void dcache_disable(void)
482 {
483 	disable_caches();
484 }
485 
486 void icache_enable(void)
487 {
488 }
489 
490 void icache_disable(void)
491 {
492 }
493 
494 int icache_status(void)
495 {
496 	return 1;
497 }
498 
499 void cpu_enable_paging_pae(ulong cr3)
500 {
501 	__asm__ __volatile__(
502 		/* Load the page table address */
503 		"movl	%0, %%cr3\n"
504 		/* Enable pae */
505 		"movl	%%cr4, %%eax\n"
506 		"orl	$0x00000020, %%eax\n"
507 		"movl	%%eax, %%cr4\n"
508 		/* Enable paging */
509 		"movl	%%cr0, %%eax\n"
510 		"orl	$0x80000000, %%eax\n"
511 		"movl	%%eax, %%cr0\n"
512 		:
513 		: "r" (cr3)
514 		: "eax");
515 }
516 
517 void cpu_disable_paging_pae(void)
518 {
519 	/* Turn off paging */
520 	__asm__ __volatile__ (
521 		/* Disable paging */
522 		"movl	%%cr0, %%eax\n"
523 		"andl	$0x7fffffff, %%eax\n"
524 		"movl	%%eax, %%cr0\n"
525 		/* Disable pae */
526 		"movl	%%cr4, %%eax\n"
527 		"andl	$0xffffffdf, %%eax\n"
528 		"movl	%%eax, %%cr4\n"
529 		:
530 		:
531 		: "eax");
532 }
533 
534 static bool can_detect_long_mode(void)
535 {
536 	return cpuid_eax(0x80000000) > 0x80000000UL;
537 }
538 
539 static bool has_long_mode(void)
540 {
541 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
542 }
543 
544 int cpu_has_64bit(void)
545 {
546 	return has_cpuid() && can_detect_long_mode() &&
547 		has_long_mode();
548 }
549 
550 const char *cpu_vendor_name(int vendor)
551 {
552 	const char *name;
553 	name = "<invalid cpu vendor>";
554 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
555 	    (x86_vendor_name[vendor] != 0))
556 		name = x86_vendor_name[vendor];
557 
558 	return name;
559 }
560 
561 char *cpu_get_name(char *name)
562 {
563 	unsigned int *name_as_ints = (unsigned int *)name;
564 	struct cpuid_result regs;
565 	char *ptr;
566 	int i;
567 
568 	/* This bit adds up to 48 bytes */
569 	for (i = 0; i < 3; i++) {
570 		regs = cpuid(0x80000002 + i);
571 		name_as_ints[i * 4 + 0] = regs.eax;
572 		name_as_ints[i * 4 + 1] = regs.ebx;
573 		name_as_ints[i * 4 + 2] = regs.ecx;
574 		name_as_ints[i * 4 + 3] = regs.edx;
575 	}
576 	name[CPU_MAX_NAME_LEN - 1] = '\0';
577 
578 	/* Skip leading spaces. */
579 	ptr = name;
580 	while (*ptr == ' ')
581 		ptr++;
582 
583 	return ptr;
584 }
585 
586 int default_print_cpuinfo(void)
587 {
588 	printf("CPU: %s, vendor %s, device %xh\n",
589 	       cpu_has_64bit() ? "x86_64" : "x86",
590 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
591 
592 	return 0;
593 }
594 
595 #define PAGETABLE_SIZE		(6 * 4096)
596 
597 /**
598  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
599  *
600  * @pgtable: Pointer to a 24iKB block of memory
601  */
602 static void build_pagetable(uint32_t *pgtable)
603 {
604 	uint i;
605 
606 	memset(pgtable, '\0', PAGETABLE_SIZE);
607 
608 	/* Level 4 needs a single entry */
609 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
610 
611 	/* Level 3 has one 64-bit entry for each GiB of memory */
612 	for (i = 0; i < 4; i++) {
613 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
614 							0x1000 * i + 7;
615 	}
616 
617 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
618 	for (i = 0; i < 2048; i++)
619 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
620 }
621 
622 int cpu_jump_to_64bit(ulong setup_base, ulong target)
623 {
624 	uint32_t *pgtable;
625 
626 	pgtable = memalign(4096, PAGETABLE_SIZE);
627 	if (!pgtable)
628 		return -ENOMEM;
629 
630 	build_pagetable(pgtable);
631 	cpu_call64((ulong)pgtable, setup_base, target);
632 	free(pgtable);
633 
634 	return -EFAULT;
635 }
636 
637 void show_boot_progress(int val)
638 {
639 #if MIN_PORT80_KCLOCKS_DELAY
640 	/*
641 	 * Scale the time counter reading to avoid using 64 bit arithmetics.
642 	 * Can't use get_timer() here becuase it could be not yet
643 	 * initialized or even implemented.
644 	 */
645 	if (!gd->arch.tsc_prev) {
646 		gd->arch.tsc_base_kclocks = rdtsc() / 1000;
647 		gd->arch.tsc_prev = 0;
648 	} else {
649 		uint32_t now;
650 
651 		do {
652 			now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
653 		} while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
654 		gd->arch.tsc_prev = now;
655 	}
656 #endif
657 	outb(val, POST_PORT);
658 }
659 
660 #ifndef CONFIG_SYS_COREBOOT
661 int last_stage_init(void)
662 {
663 	write_tables();
664 
665 	return 0;
666 }
667 #endif
668 
669 #ifdef CONFIG_SMP
670 static int enable_smis(struct udevice *cpu, void *unused)
671 {
672 	return 0;
673 }
674 
675 static struct mp_flight_record mp_steps[] = {
676 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
677 	/* Wait for APs to finish initialization before proceeding */
678 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
679 };
680 
681 static int x86_mp_init(void)
682 {
683 	struct mp_params mp_params;
684 
685 	mp_params.parallel_microcode_load = 0,
686 	mp_params.flight_plan = &mp_steps[0];
687 	mp_params.num_records = ARRAY_SIZE(mp_steps);
688 	mp_params.microcode_pointer = 0;
689 
690 	if (mp_init(&mp_params)) {
691 		printf("Warning: MP init failure\n");
692 		return -EIO;
693 	}
694 
695 	return 0;
696 }
697 #endif
698 
699 __weak int x86_init_cpus(void)
700 {
701 #ifdef CONFIG_SMP
702 	debug("Init additional CPUs\n");
703 	x86_mp_init();
704 #else
705 	struct udevice *dev;
706 
707 	/*
708 	 * This causes the cpu-x86 driver to be probed.
709 	 * We don't check return value here as we want to allow boards
710 	 * which have not been converted to use cpu uclass driver to boot.
711 	 */
712 	uclass_first_device(UCLASS_CPU, &dev);
713 #endif
714 
715 	return 0;
716 }
717 
718 int cpu_init_r(void)
719 {
720 	if (ll_boot_init())
721 		return x86_init_cpus();
722 
723 	return 0;
724 }
725