xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision ec90ac73)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <syscon.h>
28 #include <asm/control_regs.h>
29 #include <asm/coreboot_tables.h>
30 #include <asm/cpu.h>
31 #include <asm/lapic.h>
32 #include <asm/microcode.h>
33 #include <asm/mp.h>
34 #include <asm/mrccache.h>
35 #include <asm/msr.h>
36 #include <asm/mtrr.h>
37 #include <asm/post.h>
38 #include <asm/processor.h>
39 #include <asm/processor-flags.h>
40 #include <asm/interrupt.h>
41 #include <asm/tables.h>
42 #include <linux/compiler.h>
43 
44 DECLARE_GLOBAL_DATA_PTR;
45 
46 /*
47  * Constructor for a conventional segment GDT (or LDT) entry
48  * This is a macro so it can be used in initialisers
49  */
50 #define GDT_ENTRY(flags, base, limit)			\
51 	((((base)  & 0xff000000ULL) << (56-24)) |	\
52 	 (((flags) & 0x0000f0ffULL) << 40) |		\
53 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
54 	 (((base)  & 0x00ffffffULL) << 16) |		\
55 	 (((limit) & 0x0000ffffULL)))
56 
57 struct gdt_ptr {
58 	u16 len;
59 	u32 ptr;
60 } __packed;
61 
62 struct cpu_device_id {
63 	unsigned vendor;
64 	unsigned device;
65 };
66 
67 struct cpuinfo_x86 {
68 	uint8_t x86;            /* CPU family */
69 	uint8_t x86_vendor;     /* CPU vendor */
70 	uint8_t x86_model;
71 	uint8_t x86_mask;
72 };
73 
74 /*
75  * List of cpu vendor strings along with their normalized
76  * id values.
77  */
78 static const struct {
79 	int vendor;
80 	const char *name;
81 } x86_vendors[] = {
82 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
83 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
84 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
85 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
86 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
87 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
88 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
89 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
90 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
91 	{ X86_VENDOR_NSC,       "Geode by NSC", },
92 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
93 };
94 
95 static const char *const x86_vendor_name[] = {
96 	[X86_VENDOR_INTEL]     = "Intel",
97 	[X86_VENDOR_CYRIX]     = "Cyrix",
98 	[X86_VENDOR_AMD]       = "AMD",
99 	[X86_VENDOR_UMC]       = "UMC",
100 	[X86_VENDOR_NEXGEN]    = "NexGen",
101 	[X86_VENDOR_CENTAUR]   = "Centaur",
102 	[X86_VENDOR_RISE]      = "Rise",
103 	[X86_VENDOR_TRANSMETA] = "Transmeta",
104 	[X86_VENDOR_NSC]       = "NSC",
105 	[X86_VENDOR_SIS]       = "SiS",
106 };
107 
108 static void load_ds(u32 segment)
109 {
110 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
111 }
112 
113 static void load_es(u32 segment)
114 {
115 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
116 }
117 
118 static void load_fs(u32 segment)
119 {
120 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
121 }
122 
123 static void load_gs(u32 segment)
124 {
125 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
126 }
127 
128 static void load_ss(u32 segment)
129 {
130 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
131 }
132 
133 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
134 {
135 	struct gdt_ptr gdt;
136 
137 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
138 	gdt.ptr = (ulong)boot_gdt;
139 
140 	asm volatile("lgdtl %0\n" : : "m" (gdt));
141 }
142 
143 void arch_setup_gd(gd_t *new_gd)
144 {
145 	u64 *gdt_addr;
146 
147 	gdt_addr = new_gd->arch.gdt;
148 
149 	/*
150 	 * CS: code, read/execute, 4 GB, base 0
151 	 *
152 	 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
153 	 */
154 	gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
155 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
156 
157 	/* DS: data, read/write, 4 GB, base 0 */
158 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
159 
160 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
161 	new_gd->arch.gd_addr = new_gd;
162 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
163 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
164 
165 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
166 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
167 
168 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
169 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
170 
171 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
172 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
173 
174 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
175 	load_ds(X86_GDT_ENTRY_32BIT_DS);
176 	load_es(X86_GDT_ENTRY_32BIT_DS);
177 	load_gs(X86_GDT_ENTRY_32BIT_DS);
178 	load_ss(X86_GDT_ENTRY_32BIT_DS);
179 	load_fs(X86_GDT_ENTRY_32BIT_FS);
180 }
181 
182 #ifdef CONFIG_HAVE_FSP
183 /*
184  * Setup FSP execution environment GDT
185  *
186  * Per Intel FSP external architecture specification, before calling any FSP
187  * APIs, we need make sure the system is in flat 32-bit mode and both the code
188  * and data selectors should have full 4GB access range. Here we reuse the one
189  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
190  */
191 void setup_fsp_gdt(void)
192 {
193 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
194 	load_ds(X86_GDT_ENTRY_32BIT_DS);
195 	load_ss(X86_GDT_ENTRY_32BIT_DS);
196 	load_es(X86_GDT_ENTRY_32BIT_DS);
197 	load_fs(X86_GDT_ENTRY_32BIT_DS);
198 	load_gs(X86_GDT_ENTRY_32BIT_DS);
199 }
200 #endif
201 
202 int __weak x86_cleanup_before_linux(void)
203 {
204 #ifdef CONFIG_BOOTSTAGE_STASH
205 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
206 			CONFIG_BOOTSTAGE_STASH_SIZE);
207 #endif
208 
209 	return 0;
210 }
211 
212 /*
213  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
214  * by the fact that they preserve the flags across the division of 5/2.
215  * PII and PPro exhibit this behavior too, but they have cpuid available.
216  */
217 
218 /*
219  * Perform the Cyrix 5/2 test. A Cyrix won't change
220  * the flags, while other 486 chips will.
221  */
222 static inline int test_cyrix_52div(void)
223 {
224 	unsigned int test;
225 
226 	__asm__ __volatile__(
227 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
228 	     "div %b2\n\t"	/* divide 5 by 2 */
229 	     "lahf"		/* store flags into %ah */
230 	     : "=a" (test)
231 	     : "0" (5), "q" (2)
232 	     : "cc");
233 
234 	/* AH is 0x02 on Cyrix after the divide.. */
235 	return (unsigned char) (test >> 8) == 0x02;
236 }
237 
238 /*
239  *	Detect a NexGen CPU running without BIOS hypercode new enough
240  *	to have CPUID. (Thanks to Herbert Oppmann)
241  */
242 
243 static int deep_magic_nexgen_probe(void)
244 {
245 	int ret;
246 
247 	__asm__ __volatile__ (
248 		"	movw	$0x5555, %%ax\n"
249 		"	xorw	%%dx,%%dx\n"
250 		"	movw	$2, %%cx\n"
251 		"	divw	%%cx\n"
252 		"	movl	$0, %%eax\n"
253 		"	jnz	1f\n"
254 		"	movl	$1, %%eax\n"
255 		"1:\n"
256 		: "=a" (ret) : : "cx", "dx");
257 	return  ret;
258 }
259 
260 static bool has_cpuid(void)
261 {
262 	return flag_is_changeable_p(X86_EFLAGS_ID);
263 }
264 
265 static bool has_mtrr(void)
266 {
267 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
268 }
269 
270 static int build_vendor_name(char *vendor_name)
271 {
272 	struct cpuid_result result;
273 	result = cpuid(0x00000000);
274 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
275 
276 	name_as_ints[0] = result.ebx;
277 	name_as_ints[1] = result.edx;
278 	name_as_ints[2] = result.ecx;
279 
280 	return result.eax;
281 }
282 
283 static void identify_cpu(struct cpu_device_id *cpu)
284 {
285 	char vendor_name[16];
286 	int i;
287 
288 	vendor_name[0] = '\0'; /* Unset */
289 	cpu->device = 0; /* fix gcc 4.4.4 warning */
290 
291 	/* Find the id and vendor_name */
292 	if (!has_cpuid()) {
293 		/* Its a 486 if we can modify the AC flag */
294 		if (flag_is_changeable_p(X86_EFLAGS_AC))
295 			cpu->device = 0x00000400; /* 486 */
296 		else
297 			cpu->device = 0x00000300; /* 386 */
298 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
299 			memcpy(vendor_name, "CyrixInstead", 13);
300 			/* If we ever care we can enable cpuid here */
301 		}
302 		/* Detect NexGen with old hypercode */
303 		else if (deep_magic_nexgen_probe())
304 			memcpy(vendor_name, "NexGenDriven", 13);
305 	}
306 	if (has_cpuid()) {
307 		int  cpuid_level;
308 
309 		cpuid_level = build_vendor_name(vendor_name);
310 		vendor_name[12] = '\0';
311 
312 		/* Intel-defined flags: level 0x00000001 */
313 		if (cpuid_level >= 0x00000001) {
314 			cpu->device = cpuid_eax(0x00000001);
315 		} else {
316 			/* Have CPUID level 0 only unheard of */
317 			cpu->device = 0x00000400;
318 		}
319 	}
320 	cpu->vendor = X86_VENDOR_UNKNOWN;
321 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
322 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
323 			cpu->vendor = x86_vendors[i].vendor;
324 			break;
325 		}
326 	}
327 }
328 
329 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
330 {
331 	c->x86 = (tfms >> 8) & 0xf;
332 	c->x86_model = (tfms >> 4) & 0xf;
333 	c->x86_mask = tfms & 0xf;
334 	if (c->x86 == 0xf)
335 		c->x86 += (tfms >> 20) & 0xff;
336 	if (c->x86 >= 0x6)
337 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
338 }
339 
340 u32 cpu_get_family_model(void)
341 {
342 	return gd->arch.x86_device & 0x0fff0ff0;
343 }
344 
345 u32 cpu_get_stepping(void)
346 {
347 	return gd->arch.x86_mask;
348 }
349 
350 int x86_cpu_init_f(void)
351 {
352 	const u32 em_rst = ~X86_CR0_EM;
353 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
354 
355 	if (ll_boot_init()) {
356 		/* initialize FPU, reset EM, set MP and NE */
357 		asm ("fninit\n" \
358 		"movl %%cr0, %%eax\n" \
359 		"andl %0, %%eax\n" \
360 		"orl  %1, %%eax\n" \
361 		"movl %%eax, %%cr0\n" \
362 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
363 	}
364 
365 	/* identify CPU via cpuid and store the decoded info into gd->arch */
366 	if (has_cpuid()) {
367 		struct cpu_device_id cpu;
368 		struct cpuinfo_x86 c;
369 
370 		identify_cpu(&cpu);
371 		get_fms(&c, cpu.device);
372 		gd->arch.x86 = c.x86;
373 		gd->arch.x86_vendor = cpu.vendor;
374 		gd->arch.x86_model = c.x86_model;
375 		gd->arch.x86_mask = c.x86_mask;
376 		gd->arch.x86_device = cpu.device;
377 
378 		gd->arch.has_mtrr = has_mtrr();
379 	}
380 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
381 	gd->pci_ram_top = 0x80000000U;
382 
383 	/* Configure fixed range MTRRs for some legacy regions */
384 	if (gd->arch.has_mtrr) {
385 		u64 mtrr_cap;
386 
387 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
388 		if (mtrr_cap & MTRR_CAP_FIX) {
389 			/* Mark the VGA RAM area as uncacheable */
390 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
391 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
392 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
393 
394 			/*
395 			 * Mark the PCI ROM area as cacheable to improve ROM
396 			 * execution performance.
397 			 */
398 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
399 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
400 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
401 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
402 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
403 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
404 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
405 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
406 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
407 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
408 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
409 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
410 
411 			/* Enable the fixed range MTRRs */
412 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
413 		}
414 	}
415 
416 #ifdef CONFIG_I8254_TIMER
417 	/* Set up the i8254 timer if required */
418 	i8254_init();
419 #endif
420 
421 	return 0;
422 }
423 
424 void x86_enable_caches(void)
425 {
426 	unsigned long cr0;
427 
428 	cr0 = read_cr0();
429 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
430 	write_cr0(cr0);
431 	wbinvd();
432 }
433 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
434 
435 void x86_disable_caches(void)
436 {
437 	unsigned long cr0;
438 
439 	cr0 = read_cr0();
440 	cr0 |= X86_CR0_NW | X86_CR0_CD;
441 	wbinvd();
442 	write_cr0(cr0);
443 	wbinvd();
444 }
445 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
446 
447 int x86_init_cache(void)
448 {
449 	enable_caches();
450 
451 	return 0;
452 }
453 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
454 
455 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
456 {
457 	printf("resetting ...\n");
458 
459 	/* wait 50 ms */
460 	udelay(50000);
461 	disable_interrupts();
462 	reset_cpu(0);
463 
464 	/*NOTREACHED*/
465 	return 0;
466 }
467 
468 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
469 {
470 	asm("wbinvd\n");
471 }
472 
473 __weak void reset_cpu(ulong addr)
474 {
475 	/* Do a hard reset through the chipset's reset control register */
476 	outb(SYS_RST | RST_CPU, IO_PORT_RESET);
477 	for (;;)
478 		cpu_hlt();
479 }
480 
481 void x86_full_reset(void)
482 {
483 	outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
484 }
485 
486 int dcache_status(void)
487 {
488 	return !(read_cr0() & X86_CR0_CD);
489 }
490 
491 /* Define these functions to allow ehch-hcd to function */
492 void flush_dcache_range(unsigned long start, unsigned long stop)
493 {
494 }
495 
496 void invalidate_dcache_range(unsigned long start, unsigned long stop)
497 {
498 }
499 
500 void dcache_enable(void)
501 {
502 	enable_caches();
503 }
504 
505 void dcache_disable(void)
506 {
507 	disable_caches();
508 }
509 
510 void icache_enable(void)
511 {
512 }
513 
514 void icache_disable(void)
515 {
516 }
517 
518 int icache_status(void)
519 {
520 	return 1;
521 }
522 
523 void cpu_enable_paging_pae(ulong cr3)
524 {
525 	__asm__ __volatile__(
526 		/* Load the page table address */
527 		"movl	%0, %%cr3\n"
528 		/* Enable pae */
529 		"movl	%%cr4, %%eax\n"
530 		"orl	$0x00000020, %%eax\n"
531 		"movl	%%eax, %%cr4\n"
532 		/* Enable paging */
533 		"movl	%%cr0, %%eax\n"
534 		"orl	$0x80000000, %%eax\n"
535 		"movl	%%eax, %%cr0\n"
536 		:
537 		: "r" (cr3)
538 		: "eax");
539 }
540 
541 void cpu_disable_paging_pae(void)
542 {
543 	/* Turn off paging */
544 	__asm__ __volatile__ (
545 		/* Disable paging */
546 		"movl	%%cr0, %%eax\n"
547 		"andl	$0x7fffffff, %%eax\n"
548 		"movl	%%eax, %%cr0\n"
549 		/* Disable pae */
550 		"movl	%%cr4, %%eax\n"
551 		"andl	$0xffffffdf, %%eax\n"
552 		"movl	%%eax, %%cr4\n"
553 		:
554 		:
555 		: "eax");
556 }
557 
558 static bool can_detect_long_mode(void)
559 {
560 	return cpuid_eax(0x80000000) > 0x80000000UL;
561 }
562 
563 static bool has_long_mode(void)
564 {
565 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
566 }
567 
568 int cpu_has_64bit(void)
569 {
570 	return has_cpuid() && can_detect_long_mode() &&
571 		has_long_mode();
572 }
573 
574 const char *cpu_vendor_name(int vendor)
575 {
576 	const char *name;
577 	name = "<invalid cpu vendor>";
578 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
579 	    (x86_vendor_name[vendor] != 0))
580 		name = x86_vendor_name[vendor];
581 
582 	return name;
583 }
584 
585 char *cpu_get_name(char *name)
586 {
587 	unsigned int *name_as_ints = (unsigned int *)name;
588 	struct cpuid_result regs;
589 	char *ptr;
590 	int i;
591 
592 	/* This bit adds up to 48 bytes */
593 	for (i = 0; i < 3; i++) {
594 		regs = cpuid(0x80000002 + i);
595 		name_as_ints[i * 4 + 0] = regs.eax;
596 		name_as_ints[i * 4 + 1] = regs.ebx;
597 		name_as_ints[i * 4 + 2] = regs.ecx;
598 		name_as_ints[i * 4 + 3] = regs.edx;
599 	}
600 	name[CPU_MAX_NAME_LEN - 1] = '\0';
601 
602 	/* Skip leading spaces. */
603 	ptr = name;
604 	while (*ptr == ' ')
605 		ptr++;
606 
607 	return ptr;
608 }
609 
610 int default_print_cpuinfo(void)
611 {
612 	printf("CPU: %s, vendor %s, device %xh\n",
613 	       cpu_has_64bit() ? "x86_64" : "x86",
614 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
615 
616 	return 0;
617 }
618 
619 #define PAGETABLE_SIZE		(6 * 4096)
620 
621 /**
622  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
623  *
624  * @pgtable: Pointer to a 24iKB block of memory
625  */
626 static void build_pagetable(uint32_t *pgtable)
627 {
628 	uint i;
629 
630 	memset(pgtable, '\0', PAGETABLE_SIZE);
631 
632 	/* Level 4 needs a single entry */
633 	pgtable[0] = (ulong)&pgtable[1024] + 7;
634 
635 	/* Level 3 has one 64-bit entry for each GiB of memory */
636 	for (i = 0; i < 4; i++)
637 		pgtable[1024 + i * 2] = (ulong)&pgtable[2048] + 0x1000 * i + 7;
638 
639 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
640 	for (i = 0; i < 2048; i++)
641 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
642 }
643 
644 int cpu_jump_to_64bit(ulong setup_base, ulong target)
645 {
646 	uint32_t *pgtable;
647 
648 	pgtable = memalign(4096, PAGETABLE_SIZE);
649 	if (!pgtable)
650 		return -ENOMEM;
651 
652 	build_pagetable(pgtable);
653 	cpu_call64((ulong)pgtable, setup_base, target);
654 	free(pgtable);
655 
656 	return -EFAULT;
657 }
658 
659 void show_boot_progress(int val)
660 {
661 	outb(val, POST_PORT);
662 }
663 
664 #ifndef CONFIG_SYS_COREBOOT
665 /*
666  * Implement a weak default function for boards that optionally
667  * need to clean up the system before jumping to the kernel.
668  */
669 __weak void board_final_cleanup(void)
670 {
671 }
672 
673 int last_stage_init(void)
674 {
675 	write_tables();
676 
677 	board_final_cleanup();
678 
679 	return 0;
680 }
681 #endif
682 
683 #ifdef CONFIG_SMP
684 static int enable_smis(struct udevice *cpu, void *unused)
685 {
686 	return 0;
687 }
688 
689 static struct mp_flight_record mp_steps[] = {
690 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
691 	/* Wait for APs to finish initialization before proceeding */
692 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
693 };
694 
695 static int x86_mp_init(void)
696 {
697 	struct mp_params mp_params;
698 
699 	mp_params.parallel_microcode_load = 0,
700 	mp_params.flight_plan = &mp_steps[0];
701 	mp_params.num_records = ARRAY_SIZE(mp_steps);
702 	mp_params.microcode_pointer = 0;
703 
704 	if (mp_init(&mp_params)) {
705 		printf("Warning: MP init failure\n");
706 		return -EIO;
707 	}
708 
709 	return 0;
710 }
711 #endif
712 
713 static int x86_init_cpus(void)
714 {
715 #ifdef CONFIG_SMP
716 	debug("Init additional CPUs\n");
717 	x86_mp_init();
718 #else
719 	struct udevice *dev;
720 
721 	/*
722 	 * This causes the cpu-x86 driver to be probed.
723 	 * We don't check return value here as we want to allow boards
724 	 * which have not been converted to use cpu uclass driver to boot.
725 	 */
726 	uclass_first_device(UCLASS_CPU, &dev);
727 #endif
728 
729 	return 0;
730 }
731 
732 int cpu_init_r(void)
733 {
734 	struct udevice *dev;
735 	int ret;
736 
737 	if (!ll_boot_init())
738 		return 0;
739 
740 	ret = x86_init_cpus();
741 	if (ret)
742 		return ret;
743 
744 	/*
745 	 * Set up the northbridge, PCH and LPC if available. Note that these
746 	 * may have had some limited pre-relocation init if they were probed
747 	 * before relocation, but this is post relocation.
748 	 */
749 	uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
750 	uclass_first_device(UCLASS_PCH, &dev);
751 	uclass_first_device(UCLASS_LPC, &dev);
752 
753 	/* Set up pin control if available */
754 	ret = syscon_get_by_driver_data(X86_SYSCON_PINCONF, &dev);
755 	debug("%s, pinctrl=%p, ret=%d\n", __func__, dev, ret);
756 
757 	return 0;
758 }
759 
760 #ifndef CONFIG_EFI_STUB
761 int reserve_arch(void)
762 {
763 #ifdef CONFIG_ENABLE_MRC_CACHE
764 	mrccache_reserve();
765 #endif
766 
767 #ifdef CONFIG_SEABIOS
768 	high_table_reserve();
769 #endif
770 
771 	return 0;
772 }
773 #endif
774