xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision b616d9b0)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/coreboot_tables.h>
29 #include <asm/cpu.h>
30 #include <asm/lapic.h>
31 #include <asm/microcode.h>
32 #include <asm/mp.h>
33 #include <asm/mrccache.h>
34 #include <asm/msr.h>
35 #include <asm/mtrr.h>
36 #include <asm/post.h>
37 #include <asm/processor.h>
38 #include <asm/processor-flags.h>
39 #include <asm/interrupt.h>
40 #include <asm/tables.h>
41 #include <linux/compiler.h>
42 
43 DECLARE_GLOBAL_DATA_PTR;
44 
45 /*
46  * Constructor for a conventional segment GDT (or LDT) entry
47  * This is a macro so it can be used in initialisers
48  */
49 #define GDT_ENTRY(flags, base, limit)			\
50 	((((base)  & 0xff000000ULL) << (56-24)) |	\
51 	 (((flags) & 0x0000f0ffULL) << 40) |		\
52 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
53 	 (((base)  & 0x00ffffffULL) << 16) |		\
54 	 (((limit) & 0x0000ffffULL)))
55 
56 struct gdt_ptr {
57 	u16 len;
58 	u32 ptr;
59 } __packed;
60 
61 struct cpu_device_id {
62 	unsigned vendor;
63 	unsigned device;
64 };
65 
66 struct cpuinfo_x86 {
67 	uint8_t x86;            /* CPU family */
68 	uint8_t x86_vendor;     /* CPU vendor */
69 	uint8_t x86_model;
70 	uint8_t x86_mask;
71 };
72 
73 /*
74  * List of cpu vendor strings along with their normalized
75  * id values.
76  */
77 static const struct {
78 	int vendor;
79 	const char *name;
80 } x86_vendors[] = {
81 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
82 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
83 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
84 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
85 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
86 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
87 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
88 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
89 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
90 	{ X86_VENDOR_NSC,       "Geode by NSC", },
91 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
92 };
93 
94 static const char *const x86_vendor_name[] = {
95 	[X86_VENDOR_INTEL]     = "Intel",
96 	[X86_VENDOR_CYRIX]     = "Cyrix",
97 	[X86_VENDOR_AMD]       = "AMD",
98 	[X86_VENDOR_UMC]       = "UMC",
99 	[X86_VENDOR_NEXGEN]    = "NexGen",
100 	[X86_VENDOR_CENTAUR]   = "Centaur",
101 	[X86_VENDOR_RISE]      = "Rise",
102 	[X86_VENDOR_TRANSMETA] = "Transmeta",
103 	[X86_VENDOR_NSC]       = "NSC",
104 	[X86_VENDOR_SIS]       = "SiS",
105 };
106 
107 static void load_ds(u32 segment)
108 {
109 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
110 }
111 
112 static void load_es(u32 segment)
113 {
114 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
115 }
116 
117 static void load_fs(u32 segment)
118 {
119 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
120 }
121 
122 static void load_gs(u32 segment)
123 {
124 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
125 }
126 
127 static void load_ss(u32 segment)
128 {
129 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
130 }
131 
132 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
133 {
134 	struct gdt_ptr gdt;
135 
136 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
137 	gdt.ptr = (u32)boot_gdt;
138 
139 	asm volatile("lgdtl %0\n" : : "m" (gdt));
140 }
141 
142 void arch_setup_gd(gd_t *new_gd)
143 {
144 	u64 *gdt_addr;
145 
146 	gdt_addr = new_gd->arch.gdt;
147 
148 	/*
149 	 * CS: code, read/execute, 4 GB, base 0
150 	 *
151 	 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
152 	 */
153 	gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
154 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
155 
156 	/* DS: data, read/write, 4 GB, base 0 */
157 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
158 
159 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
160 	new_gd->arch.gd_addr = new_gd;
161 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
162 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
163 
164 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
165 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
166 
167 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
168 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
169 
170 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
171 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
172 
173 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
174 	load_ds(X86_GDT_ENTRY_32BIT_DS);
175 	load_es(X86_GDT_ENTRY_32BIT_DS);
176 	load_gs(X86_GDT_ENTRY_32BIT_DS);
177 	load_ss(X86_GDT_ENTRY_32BIT_DS);
178 	load_fs(X86_GDT_ENTRY_32BIT_FS);
179 }
180 
181 #ifdef CONFIG_HAVE_FSP
182 /*
183  * Setup FSP execution environment GDT
184  *
185  * Per Intel FSP external architecture specification, before calling any FSP
186  * APIs, we need make sure the system is in flat 32-bit mode and both the code
187  * and data selectors should have full 4GB access range. Here we reuse the one
188  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
189  */
190 void setup_fsp_gdt(void)
191 {
192 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
193 	load_ds(X86_GDT_ENTRY_32BIT_DS);
194 	load_ss(X86_GDT_ENTRY_32BIT_DS);
195 	load_es(X86_GDT_ENTRY_32BIT_DS);
196 	load_fs(X86_GDT_ENTRY_32BIT_DS);
197 	load_gs(X86_GDT_ENTRY_32BIT_DS);
198 }
199 #endif
200 
201 int __weak x86_cleanup_before_linux(void)
202 {
203 #ifdef CONFIG_BOOTSTAGE_STASH
204 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
205 			CONFIG_BOOTSTAGE_STASH_SIZE);
206 #endif
207 
208 	return 0;
209 }
210 
211 /*
212  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
213  * by the fact that they preserve the flags across the division of 5/2.
214  * PII and PPro exhibit this behavior too, but they have cpuid available.
215  */
216 
217 /*
218  * Perform the Cyrix 5/2 test. A Cyrix won't change
219  * the flags, while other 486 chips will.
220  */
221 static inline int test_cyrix_52div(void)
222 {
223 	unsigned int test;
224 
225 	__asm__ __volatile__(
226 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
227 	     "div %b2\n\t"	/* divide 5 by 2 */
228 	     "lahf"		/* store flags into %ah */
229 	     : "=a" (test)
230 	     : "0" (5), "q" (2)
231 	     : "cc");
232 
233 	/* AH is 0x02 on Cyrix after the divide.. */
234 	return (unsigned char) (test >> 8) == 0x02;
235 }
236 
237 /*
238  *	Detect a NexGen CPU running without BIOS hypercode new enough
239  *	to have CPUID. (Thanks to Herbert Oppmann)
240  */
241 
242 static int deep_magic_nexgen_probe(void)
243 {
244 	int ret;
245 
246 	__asm__ __volatile__ (
247 		"	movw	$0x5555, %%ax\n"
248 		"	xorw	%%dx,%%dx\n"
249 		"	movw	$2, %%cx\n"
250 		"	divw	%%cx\n"
251 		"	movl	$0, %%eax\n"
252 		"	jnz	1f\n"
253 		"	movl	$1, %%eax\n"
254 		"1:\n"
255 		: "=a" (ret) : : "cx", "dx");
256 	return  ret;
257 }
258 
259 static bool has_cpuid(void)
260 {
261 	return flag_is_changeable_p(X86_EFLAGS_ID);
262 }
263 
264 static bool has_mtrr(void)
265 {
266 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
267 }
268 
269 static int build_vendor_name(char *vendor_name)
270 {
271 	struct cpuid_result result;
272 	result = cpuid(0x00000000);
273 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
274 
275 	name_as_ints[0] = result.ebx;
276 	name_as_ints[1] = result.edx;
277 	name_as_ints[2] = result.ecx;
278 
279 	return result.eax;
280 }
281 
282 static void identify_cpu(struct cpu_device_id *cpu)
283 {
284 	char vendor_name[16];
285 	int i;
286 
287 	vendor_name[0] = '\0'; /* Unset */
288 	cpu->device = 0; /* fix gcc 4.4.4 warning */
289 
290 	/* Find the id and vendor_name */
291 	if (!has_cpuid()) {
292 		/* Its a 486 if we can modify the AC flag */
293 		if (flag_is_changeable_p(X86_EFLAGS_AC))
294 			cpu->device = 0x00000400; /* 486 */
295 		else
296 			cpu->device = 0x00000300; /* 386 */
297 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
298 			memcpy(vendor_name, "CyrixInstead", 13);
299 			/* If we ever care we can enable cpuid here */
300 		}
301 		/* Detect NexGen with old hypercode */
302 		else if (deep_magic_nexgen_probe())
303 			memcpy(vendor_name, "NexGenDriven", 13);
304 	}
305 	if (has_cpuid()) {
306 		int  cpuid_level;
307 
308 		cpuid_level = build_vendor_name(vendor_name);
309 		vendor_name[12] = '\0';
310 
311 		/* Intel-defined flags: level 0x00000001 */
312 		if (cpuid_level >= 0x00000001) {
313 			cpu->device = cpuid_eax(0x00000001);
314 		} else {
315 			/* Have CPUID level 0 only unheard of */
316 			cpu->device = 0x00000400;
317 		}
318 	}
319 	cpu->vendor = X86_VENDOR_UNKNOWN;
320 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
321 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
322 			cpu->vendor = x86_vendors[i].vendor;
323 			break;
324 		}
325 	}
326 }
327 
328 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
329 {
330 	c->x86 = (tfms >> 8) & 0xf;
331 	c->x86_model = (tfms >> 4) & 0xf;
332 	c->x86_mask = tfms & 0xf;
333 	if (c->x86 == 0xf)
334 		c->x86 += (tfms >> 20) & 0xff;
335 	if (c->x86 >= 0x6)
336 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
337 }
338 
339 u32 cpu_get_family_model(void)
340 {
341 	return gd->arch.x86_device & 0x0fff0ff0;
342 }
343 
344 u32 cpu_get_stepping(void)
345 {
346 	return gd->arch.x86_mask;
347 }
348 
349 int x86_cpu_init_f(void)
350 {
351 	const u32 em_rst = ~X86_CR0_EM;
352 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
353 
354 	if (ll_boot_init()) {
355 		/* initialize FPU, reset EM, set MP and NE */
356 		asm ("fninit\n" \
357 		"movl %%cr0, %%eax\n" \
358 		"andl %0, %%eax\n" \
359 		"orl  %1, %%eax\n" \
360 		"movl %%eax, %%cr0\n" \
361 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
362 	}
363 
364 	/* identify CPU via cpuid and store the decoded info into gd->arch */
365 	if (has_cpuid()) {
366 		struct cpu_device_id cpu;
367 		struct cpuinfo_x86 c;
368 
369 		identify_cpu(&cpu);
370 		get_fms(&c, cpu.device);
371 		gd->arch.x86 = c.x86;
372 		gd->arch.x86_vendor = cpu.vendor;
373 		gd->arch.x86_model = c.x86_model;
374 		gd->arch.x86_mask = c.x86_mask;
375 		gd->arch.x86_device = cpu.device;
376 
377 		gd->arch.has_mtrr = has_mtrr();
378 	}
379 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
380 	gd->pci_ram_top = 0x80000000U;
381 
382 	/* Configure fixed range MTRRs for some legacy regions */
383 	if (gd->arch.has_mtrr) {
384 		u64 mtrr_cap;
385 
386 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
387 		if (mtrr_cap & MTRR_CAP_FIX) {
388 			/* Mark the VGA RAM area as uncacheable */
389 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
390 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
391 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
392 
393 			/*
394 			 * Mark the PCI ROM area as cacheable to improve ROM
395 			 * execution performance.
396 			 */
397 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
398 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
399 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
400 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
401 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
402 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
403 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
404 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
405 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
406 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
407 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
408 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
409 
410 			/* Enable the fixed range MTRRs */
411 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
412 		}
413 	}
414 
415 #ifdef CONFIG_I8254_TIMER
416 	/* Set up the i8254 timer if required */
417 	i8254_init();
418 #endif
419 
420 	return 0;
421 }
422 
423 void x86_enable_caches(void)
424 {
425 	unsigned long cr0;
426 
427 	cr0 = read_cr0();
428 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
429 	write_cr0(cr0);
430 	wbinvd();
431 }
432 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
433 
434 void x86_disable_caches(void)
435 {
436 	unsigned long cr0;
437 
438 	cr0 = read_cr0();
439 	cr0 |= X86_CR0_NW | X86_CR0_CD;
440 	wbinvd();
441 	write_cr0(cr0);
442 	wbinvd();
443 }
444 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
445 
446 int x86_init_cache(void)
447 {
448 	enable_caches();
449 
450 	return 0;
451 }
452 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
453 
454 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
455 {
456 	printf("resetting ...\n");
457 
458 	/* wait 50 ms */
459 	udelay(50000);
460 	disable_interrupts();
461 	reset_cpu(0);
462 
463 	/*NOTREACHED*/
464 	return 0;
465 }
466 
467 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
468 {
469 	asm("wbinvd\n");
470 }
471 
472 __weak void reset_cpu(ulong addr)
473 {
474 	/* Do a hard reset through the chipset's reset control register */
475 	outb(SYS_RST | RST_CPU, IO_PORT_RESET);
476 	for (;;)
477 		cpu_hlt();
478 }
479 
480 void x86_full_reset(void)
481 {
482 	outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
483 }
484 
485 int dcache_status(void)
486 {
487 	return !(read_cr0() & X86_CR0_CD);
488 }
489 
490 /* Define these functions to allow ehch-hcd to function */
491 void flush_dcache_range(unsigned long start, unsigned long stop)
492 {
493 }
494 
495 void invalidate_dcache_range(unsigned long start, unsigned long stop)
496 {
497 }
498 
499 void dcache_enable(void)
500 {
501 	enable_caches();
502 }
503 
504 void dcache_disable(void)
505 {
506 	disable_caches();
507 }
508 
509 void icache_enable(void)
510 {
511 }
512 
513 void icache_disable(void)
514 {
515 }
516 
517 int icache_status(void)
518 {
519 	return 1;
520 }
521 
522 void cpu_enable_paging_pae(ulong cr3)
523 {
524 	__asm__ __volatile__(
525 		/* Load the page table address */
526 		"movl	%0, %%cr3\n"
527 		/* Enable pae */
528 		"movl	%%cr4, %%eax\n"
529 		"orl	$0x00000020, %%eax\n"
530 		"movl	%%eax, %%cr4\n"
531 		/* Enable paging */
532 		"movl	%%cr0, %%eax\n"
533 		"orl	$0x80000000, %%eax\n"
534 		"movl	%%eax, %%cr0\n"
535 		:
536 		: "r" (cr3)
537 		: "eax");
538 }
539 
540 void cpu_disable_paging_pae(void)
541 {
542 	/* Turn off paging */
543 	__asm__ __volatile__ (
544 		/* Disable paging */
545 		"movl	%%cr0, %%eax\n"
546 		"andl	$0x7fffffff, %%eax\n"
547 		"movl	%%eax, %%cr0\n"
548 		/* Disable pae */
549 		"movl	%%cr4, %%eax\n"
550 		"andl	$0xffffffdf, %%eax\n"
551 		"movl	%%eax, %%cr4\n"
552 		:
553 		:
554 		: "eax");
555 }
556 
557 static bool can_detect_long_mode(void)
558 {
559 	return cpuid_eax(0x80000000) > 0x80000000UL;
560 }
561 
562 static bool has_long_mode(void)
563 {
564 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
565 }
566 
567 int cpu_has_64bit(void)
568 {
569 	return has_cpuid() && can_detect_long_mode() &&
570 		has_long_mode();
571 }
572 
573 const char *cpu_vendor_name(int vendor)
574 {
575 	const char *name;
576 	name = "<invalid cpu vendor>";
577 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
578 	    (x86_vendor_name[vendor] != 0))
579 		name = x86_vendor_name[vendor];
580 
581 	return name;
582 }
583 
584 char *cpu_get_name(char *name)
585 {
586 	unsigned int *name_as_ints = (unsigned int *)name;
587 	struct cpuid_result regs;
588 	char *ptr;
589 	int i;
590 
591 	/* This bit adds up to 48 bytes */
592 	for (i = 0; i < 3; i++) {
593 		regs = cpuid(0x80000002 + i);
594 		name_as_ints[i * 4 + 0] = regs.eax;
595 		name_as_ints[i * 4 + 1] = regs.ebx;
596 		name_as_ints[i * 4 + 2] = regs.ecx;
597 		name_as_ints[i * 4 + 3] = regs.edx;
598 	}
599 	name[CPU_MAX_NAME_LEN - 1] = '\0';
600 
601 	/* Skip leading spaces. */
602 	ptr = name;
603 	while (*ptr == ' ')
604 		ptr++;
605 
606 	return ptr;
607 }
608 
609 int default_print_cpuinfo(void)
610 {
611 	printf("CPU: %s, vendor %s, device %xh\n",
612 	       cpu_has_64bit() ? "x86_64" : "x86",
613 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
614 
615 	return 0;
616 }
617 
618 #define PAGETABLE_SIZE		(6 * 4096)
619 
620 /**
621  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
622  *
623  * @pgtable: Pointer to a 24iKB block of memory
624  */
625 static void build_pagetable(uint32_t *pgtable)
626 {
627 	uint i;
628 
629 	memset(pgtable, '\0', PAGETABLE_SIZE);
630 
631 	/* Level 4 needs a single entry */
632 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
633 
634 	/* Level 3 has one 64-bit entry for each GiB of memory */
635 	for (i = 0; i < 4; i++) {
636 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
637 							0x1000 * i + 7;
638 	}
639 
640 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
641 	for (i = 0; i < 2048; i++)
642 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
643 }
644 
645 int cpu_jump_to_64bit(ulong setup_base, ulong target)
646 {
647 	uint32_t *pgtable;
648 
649 	pgtable = memalign(4096, PAGETABLE_SIZE);
650 	if (!pgtable)
651 		return -ENOMEM;
652 
653 	build_pagetable(pgtable);
654 	cpu_call64((ulong)pgtable, setup_base, target);
655 	free(pgtable);
656 
657 	return -EFAULT;
658 }
659 
660 void show_boot_progress(int val)
661 {
662 	outb(val, POST_PORT);
663 }
664 
665 #ifndef CONFIG_SYS_COREBOOT
666 /*
667  * Implement a weak default function for boards that optionally
668  * need to clean up the system before jumping to the kernel.
669  */
670 __weak void board_final_cleanup(void)
671 {
672 }
673 
674 int last_stage_init(void)
675 {
676 	write_tables();
677 
678 	board_final_cleanup();
679 
680 	return 0;
681 }
682 #endif
683 
684 #ifdef CONFIG_SMP
685 static int enable_smis(struct udevice *cpu, void *unused)
686 {
687 	return 0;
688 }
689 
690 static struct mp_flight_record mp_steps[] = {
691 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
692 	/* Wait for APs to finish initialization before proceeding */
693 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
694 };
695 
696 static int x86_mp_init(void)
697 {
698 	struct mp_params mp_params;
699 
700 	mp_params.parallel_microcode_load = 0,
701 	mp_params.flight_plan = &mp_steps[0];
702 	mp_params.num_records = ARRAY_SIZE(mp_steps);
703 	mp_params.microcode_pointer = 0;
704 
705 	if (mp_init(&mp_params)) {
706 		printf("Warning: MP init failure\n");
707 		return -EIO;
708 	}
709 
710 	return 0;
711 }
712 #endif
713 
714 static int x86_init_cpus(void)
715 {
716 #ifdef CONFIG_SMP
717 	debug("Init additional CPUs\n");
718 	x86_mp_init();
719 #else
720 	struct udevice *dev;
721 
722 	/*
723 	 * This causes the cpu-x86 driver to be probed.
724 	 * We don't check return value here as we want to allow boards
725 	 * which have not been converted to use cpu uclass driver to boot.
726 	 */
727 	uclass_first_device(UCLASS_CPU, &dev);
728 #endif
729 
730 	return 0;
731 }
732 
733 int cpu_init_r(void)
734 {
735 	struct udevice *dev;
736 	int ret;
737 
738 	if (!ll_boot_init())
739 		return 0;
740 
741 	ret = x86_init_cpus();
742 	if (ret)
743 		return ret;
744 
745 	/*
746 	 * Set up the northbridge, PCH and LPC if available. Note that these
747 	 * may have had some limited pre-relocation init if they were probed
748 	 * before relocation, but this is post relocation.
749 	 */
750 	uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
751 	uclass_first_device(UCLASS_PCH, &dev);
752 	uclass_first_device(UCLASS_LPC, &dev);
753 
754 	return 0;
755 }
756 
757 #ifndef CONFIG_EFI_STUB
758 int reserve_arch(void)
759 {
760 #ifdef CONFIG_ENABLE_MRC_CACHE
761 	mrccache_reserve();
762 #endif
763 
764 #ifdef CONFIG_SEABIOS
765 	high_table_reserve();
766 #endif
767 
768 	return 0;
769 }
770 #endif
771