1 /* 2 * (C) Copyright 2008-2011 3 * Graeme Russ, <graeme.russ@gmail.com> 4 * 5 * (C) Copyright 2002 6 * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se> 7 * 8 * (C) Copyright 2002 9 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> 10 * Marius Groeger <mgroeger@sysgo.de> 11 * 12 * (C) Copyright 2002 13 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> 14 * Alex Zuepke <azu@sysgo.de> 15 * 16 * Part of this file is adapted from coreboot 17 * src/arch/x86/lib/cpu.c 18 * 19 * SPDX-License-Identifier: GPL-2.0+ 20 */ 21 22 #include <common.h> 23 #include <command.h> 24 #include <cpu.h> 25 #include <dm.h> 26 #include <errno.h> 27 #include <malloc.h> 28 #include <asm/control_regs.h> 29 #include <asm/cpu.h> 30 #include <asm/post.h> 31 #include <asm/processor.h> 32 #include <asm/processor-flags.h> 33 #include <asm/interrupt.h> 34 #include <asm/tables.h> 35 #include <linux/compiler.h> 36 37 DECLARE_GLOBAL_DATA_PTR; 38 39 /* 40 * Constructor for a conventional segment GDT (or LDT) entry 41 * This is a macro so it can be used in initialisers 42 */ 43 #define GDT_ENTRY(flags, base, limit) \ 44 ((((base) & 0xff000000ULL) << (56-24)) | \ 45 (((flags) & 0x0000f0ffULL) << 40) | \ 46 (((limit) & 0x000f0000ULL) << (48-16)) | \ 47 (((base) & 0x00ffffffULL) << 16) | \ 48 (((limit) & 0x0000ffffULL))) 49 50 struct gdt_ptr { 51 u16 len; 52 u32 ptr; 53 } __packed; 54 55 struct cpu_device_id { 56 unsigned vendor; 57 unsigned device; 58 }; 59 60 struct cpuinfo_x86 { 61 uint8_t x86; /* CPU family */ 62 uint8_t x86_vendor; /* CPU vendor */ 63 uint8_t x86_model; 64 uint8_t x86_mask; 65 }; 66 67 /* 68 * List of cpu vendor strings along with their normalized 69 * id values. 70 */ 71 static struct { 72 int vendor; 73 const char *name; 74 } x86_vendors[] = { 75 { X86_VENDOR_INTEL, "GenuineIntel", }, 76 { X86_VENDOR_CYRIX, "CyrixInstead", }, 77 { X86_VENDOR_AMD, "AuthenticAMD", }, 78 { X86_VENDOR_UMC, "UMC UMC UMC ", }, 79 { X86_VENDOR_NEXGEN, "NexGenDriven", }, 80 { X86_VENDOR_CENTAUR, "CentaurHauls", }, 81 { X86_VENDOR_RISE, "RiseRiseRise", }, 82 { X86_VENDOR_TRANSMETA, "GenuineTMx86", }, 83 { X86_VENDOR_TRANSMETA, "TransmetaCPU", }, 84 { X86_VENDOR_NSC, "Geode by NSC", }, 85 { X86_VENDOR_SIS, "SiS SiS SiS ", }, 86 }; 87 88 static const char *const x86_vendor_name[] = { 89 [X86_VENDOR_INTEL] = "Intel", 90 [X86_VENDOR_CYRIX] = "Cyrix", 91 [X86_VENDOR_AMD] = "AMD", 92 [X86_VENDOR_UMC] = "UMC", 93 [X86_VENDOR_NEXGEN] = "NexGen", 94 [X86_VENDOR_CENTAUR] = "Centaur", 95 [X86_VENDOR_RISE] = "Rise", 96 [X86_VENDOR_TRANSMETA] = "Transmeta", 97 [X86_VENDOR_NSC] = "NSC", 98 [X86_VENDOR_SIS] = "SiS", 99 }; 100 101 static void load_ds(u32 segment) 102 { 103 asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 104 } 105 106 static void load_es(u32 segment) 107 { 108 asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 109 } 110 111 static void load_fs(u32 segment) 112 { 113 asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 114 } 115 116 static void load_gs(u32 segment) 117 { 118 asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 119 } 120 121 static void load_ss(u32 segment) 122 { 123 asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE)); 124 } 125 126 static void load_gdt(const u64 *boot_gdt, u16 num_entries) 127 { 128 struct gdt_ptr gdt; 129 130 gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1; 131 gdt.ptr = (u32)boot_gdt; 132 133 asm volatile("lgdtl %0\n" : : "m" (gdt)); 134 } 135 136 void setup_gdt(gd_t *id, u64 *gdt_addr) 137 { 138 id->arch.gdt = gdt_addr; 139 /* CS: code, read/execute, 4 GB, base 0 */ 140 gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff); 141 142 /* DS: data, read/write, 4 GB, base 0 */ 143 gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff); 144 145 /* FS: data, read/write, 4 GB, base (Global Data Pointer) */ 146 id->arch.gd_addr = id; 147 gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093, 148 (ulong)&id->arch.gd_addr, 0xfffff); 149 150 /* 16-bit CS: code, read/execute, 64 kB, base 0 */ 151 gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff); 152 153 /* 16-bit DS: data, read/write, 64 kB, base 0 */ 154 gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff); 155 156 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff); 157 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff); 158 159 load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES); 160 load_ds(X86_GDT_ENTRY_32BIT_DS); 161 load_es(X86_GDT_ENTRY_32BIT_DS); 162 load_gs(X86_GDT_ENTRY_32BIT_DS); 163 load_ss(X86_GDT_ENTRY_32BIT_DS); 164 load_fs(X86_GDT_ENTRY_32BIT_FS); 165 } 166 167 int __weak x86_cleanup_before_linux(void) 168 { 169 #ifdef CONFIG_BOOTSTAGE_STASH 170 bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR, 171 CONFIG_BOOTSTAGE_STASH_SIZE); 172 #endif 173 174 return 0; 175 } 176 177 /* 178 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected 179 * by the fact that they preserve the flags across the division of 5/2. 180 * PII and PPro exhibit this behavior too, but they have cpuid available. 181 */ 182 183 /* 184 * Perform the Cyrix 5/2 test. A Cyrix won't change 185 * the flags, while other 486 chips will. 186 */ 187 static inline int test_cyrix_52div(void) 188 { 189 unsigned int test; 190 191 __asm__ __volatile__( 192 "sahf\n\t" /* clear flags (%eax = 0x0005) */ 193 "div %b2\n\t" /* divide 5 by 2 */ 194 "lahf" /* store flags into %ah */ 195 : "=a" (test) 196 : "0" (5), "q" (2) 197 : "cc"); 198 199 /* AH is 0x02 on Cyrix after the divide.. */ 200 return (unsigned char) (test >> 8) == 0x02; 201 } 202 203 /* 204 * Detect a NexGen CPU running without BIOS hypercode new enough 205 * to have CPUID. (Thanks to Herbert Oppmann) 206 */ 207 208 static int deep_magic_nexgen_probe(void) 209 { 210 int ret; 211 212 __asm__ __volatile__ ( 213 " movw $0x5555, %%ax\n" 214 " xorw %%dx,%%dx\n" 215 " movw $2, %%cx\n" 216 " divw %%cx\n" 217 " movl $0, %%eax\n" 218 " jnz 1f\n" 219 " movl $1, %%eax\n" 220 "1:\n" 221 : "=a" (ret) : : "cx", "dx"); 222 return ret; 223 } 224 225 static bool has_cpuid(void) 226 { 227 return flag_is_changeable_p(X86_EFLAGS_ID); 228 } 229 230 static bool has_mtrr(void) 231 { 232 return cpuid_edx(0x00000001) & (1 << 12) ? true : false; 233 } 234 235 static int build_vendor_name(char *vendor_name) 236 { 237 struct cpuid_result result; 238 result = cpuid(0x00000000); 239 unsigned int *name_as_ints = (unsigned int *)vendor_name; 240 241 name_as_ints[0] = result.ebx; 242 name_as_ints[1] = result.edx; 243 name_as_ints[2] = result.ecx; 244 245 return result.eax; 246 } 247 248 static void identify_cpu(struct cpu_device_id *cpu) 249 { 250 char vendor_name[16]; 251 int i; 252 253 vendor_name[0] = '\0'; /* Unset */ 254 cpu->device = 0; /* fix gcc 4.4.4 warning */ 255 256 /* Find the id and vendor_name */ 257 if (!has_cpuid()) { 258 /* Its a 486 if we can modify the AC flag */ 259 if (flag_is_changeable_p(X86_EFLAGS_AC)) 260 cpu->device = 0x00000400; /* 486 */ 261 else 262 cpu->device = 0x00000300; /* 386 */ 263 if ((cpu->device == 0x00000400) && test_cyrix_52div()) { 264 memcpy(vendor_name, "CyrixInstead", 13); 265 /* If we ever care we can enable cpuid here */ 266 } 267 /* Detect NexGen with old hypercode */ 268 else if (deep_magic_nexgen_probe()) 269 memcpy(vendor_name, "NexGenDriven", 13); 270 } 271 if (has_cpuid()) { 272 int cpuid_level; 273 274 cpuid_level = build_vendor_name(vendor_name); 275 vendor_name[12] = '\0'; 276 277 /* Intel-defined flags: level 0x00000001 */ 278 if (cpuid_level >= 0x00000001) { 279 cpu->device = cpuid_eax(0x00000001); 280 } else { 281 /* Have CPUID level 0 only unheard of */ 282 cpu->device = 0x00000400; 283 } 284 } 285 cpu->vendor = X86_VENDOR_UNKNOWN; 286 for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) { 287 if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) { 288 cpu->vendor = x86_vendors[i].vendor; 289 break; 290 } 291 } 292 } 293 294 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms) 295 { 296 c->x86 = (tfms >> 8) & 0xf; 297 c->x86_model = (tfms >> 4) & 0xf; 298 c->x86_mask = tfms & 0xf; 299 if (c->x86 == 0xf) 300 c->x86 += (tfms >> 20) & 0xff; 301 if (c->x86 >= 0x6) 302 c->x86_model += ((tfms >> 16) & 0xF) << 4; 303 } 304 305 int x86_cpu_init_f(void) 306 { 307 const u32 em_rst = ~X86_CR0_EM; 308 const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE; 309 310 /* initialize FPU, reset EM, set MP and NE */ 311 asm ("fninit\n" \ 312 "movl %%cr0, %%eax\n" \ 313 "andl %0, %%eax\n" \ 314 "orl %1, %%eax\n" \ 315 "movl %%eax, %%cr0\n" \ 316 : : "i" (em_rst), "i" (mp_ne_set) : "eax"); 317 318 /* identify CPU via cpuid and store the decoded info into gd->arch */ 319 if (has_cpuid()) { 320 struct cpu_device_id cpu; 321 struct cpuinfo_x86 c; 322 323 identify_cpu(&cpu); 324 get_fms(&c, cpu.device); 325 gd->arch.x86 = c.x86; 326 gd->arch.x86_vendor = cpu.vendor; 327 gd->arch.x86_model = c.x86_model; 328 gd->arch.x86_mask = c.x86_mask; 329 gd->arch.x86_device = cpu.device; 330 331 gd->arch.has_mtrr = has_mtrr(); 332 } 333 334 return 0; 335 } 336 337 void x86_enable_caches(void) 338 { 339 unsigned long cr0; 340 341 cr0 = read_cr0(); 342 cr0 &= ~(X86_CR0_NW | X86_CR0_CD); 343 write_cr0(cr0); 344 wbinvd(); 345 } 346 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches"))); 347 348 void x86_disable_caches(void) 349 { 350 unsigned long cr0; 351 352 cr0 = read_cr0(); 353 cr0 |= X86_CR0_NW | X86_CR0_CD; 354 wbinvd(); 355 write_cr0(cr0); 356 wbinvd(); 357 } 358 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches"))); 359 360 int x86_init_cache(void) 361 { 362 enable_caches(); 363 364 return 0; 365 } 366 int init_cache(void) __attribute__((weak, alias("x86_init_cache"))); 367 368 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 369 { 370 printf("resetting ...\n"); 371 372 /* wait 50 ms */ 373 udelay(50000); 374 disable_interrupts(); 375 reset_cpu(0); 376 377 /*NOTREACHED*/ 378 return 0; 379 } 380 381 void flush_cache(unsigned long dummy1, unsigned long dummy2) 382 { 383 asm("wbinvd\n"); 384 } 385 386 __weak void reset_cpu(ulong addr) 387 { 388 /* Do a hard reset through the chipset's reset control register */ 389 outb(SYS_RST | RST_CPU, PORT_RESET); 390 for (;;) 391 cpu_hlt(); 392 } 393 394 void x86_full_reset(void) 395 { 396 outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET); 397 } 398 399 int dcache_status(void) 400 { 401 return !(read_cr0() & 0x40000000); 402 } 403 404 /* Define these functions to allow ehch-hcd to function */ 405 void flush_dcache_range(unsigned long start, unsigned long stop) 406 { 407 } 408 409 void invalidate_dcache_range(unsigned long start, unsigned long stop) 410 { 411 } 412 413 void dcache_enable(void) 414 { 415 enable_caches(); 416 } 417 418 void dcache_disable(void) 419 { 420 disable_caches(); 421 } 422 423 void icache_enable(void) 424 { 425 } 426 427 void icache_disable(void) 428 { 429 } 430 431 int icache_status(void) 432 { 433 return 1; 434 } 435 436 void cpu_enable_paging_pae(ulong cr3) 437 { 438 __asm__ __volatile__( 439 /* Load the page table address */ 440 "movl %0, %%cr3\n" 441 /* Enable pae */ 442 "movl %%cr4, %%eax\n" 443 "orl $0x00000020, %%eax\n" 444 "movl %%eax, %%cr4\n" 445 /* Enable paging */ 446 "movl %%cr0, %%eax\n" 447 "orl $0x80000000, %%eax\n" 448 "movl %%eax, %%cr0\n" 449 : 450 : "r" (cr3) 451 : "eax"); 452 } 453 454 void cpu_disable_paging_pae(void) 455 { 456 /* Turn off paging */ 457 __asm__ __volatile__ ( 458 /* Disable paging */ 459 "movl %%cr0, %%eax\n" 460 "andl $0x7fffffff, %%eax\n" 461 "movl %%eax, %%cr0\n" 462 /* Disable pae */ 463 "movl %%cr4, %%eax\n" 464 "andl $0xffffffdf, %%eax\n" 465 "movl %%eax, %%cr4\n" 466 : 467 : 468 : "eax"); 469 } 470 471 static bool can_detect_long_mode(void) 472 { 473 return cpuid_eax(0x80000000) > 0x80000000UL; 474 } 475 476 static bool has_long_mode(void) 477 { 478 return cpuid_edx(0x80000001) & (1 << 29) ? true : false; 479 } 480 481 int cpu_has_64bit(void) 482 { 483 return has_cpuid() && can_detect_long_mode() && 484 has_long_mode(); 485 } 486 487 const char *cpu_vendor_name(int vendor) 488 { 489 const char *name; 490 name = "<invalid cpu vendor>"; 491 if ((vendor < (ARRAY_SIZE(x86_vendor_name))) && 492 (x86_vendor_name[vendor] != 0)) 493 name = x86_vendor_name[vendor]; 494 495 return name; 496 } 497 498 char *cpu_get_name(char *name) 499 { 500 unsigned int *name_as_ints = (unsigned int *)name; 501 struct cpuid_result regs; 502 char *ptr; 503 int i; 504 505 /* This bit adds up to 48 bytes */ 506 for (i = 0; i < 3; i++) { 507 regs = cpuid(0x80000002 + i); 508 name_as_ints[i * 4 + 0] = regs.eax; 509 name_as_ints[i * 4 + 1] = regs.ebx; 510 name_as_ints[i * 4 + 2] = regs.ecx; 511 name_as_ints[i * 4 + 3] = regs.edx; 512 } 513 name[CPU_MAX_NAME_LEN - 1] = '\0'; 514 515 /* Skip leading spaces. */ 516 ptr = name; 517 while (*ptr == ' ') 518 ptr++; 519 520 return ptr; 521 } 522 523 int x86_cpu_get_desc(struct udevice *dev, char *buf, int size) 524 { 525 if (size < CPU_MAX_NAME_LEN) 526 return -ENOSPC; 527 528 cpu_get_name(buf); 529 530 return 0; 531 } 532 533 int default_print_cpuinfo(void) 534 { 535 printf("CPU: %s, vendor %s, device %xh\n", 536 cpu_has_64bit() ? "x86_64" : "x86", 537 cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device); 538 539 return 0; 540 } 541 542 #define PAGETABLE_SIZE (6 * 4096) 543 544 /** 545 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode 546 * 547 * @pgtable: Pointer to a 24iKB block of memory 548 */ 549 static void build_pagetable(uint32_t *pgtable) 550 { 551 uint i; 552 553 memset(pgtable, '\0', PAGETABLE_SIZE); 554 555 /* Level 4 needs a single entry */ 556 pgtable[0] = (uint32_t)&pgtable[1024] + 7; 557 558 /* Level 3 has one 64-bit entry for each GiB of memory */ 559 for (i = 0; i < 4; i++) { 560 pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] + 561 0x1000 * i + 7; 562 } 563 564 /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */ 565 for (i = 0; i < 2048; i++) 566 pgtable[2048 + i * 2] = 0x183 + (i << 21UL); 567 } 568 569 int cpu_jump_to_64bit(ulong setup_base, ulong target) 570 { 571 uint32_t *pgtable; 572 573 pgtable = memalign(4096, PAGETABLE_SIZE); 574 if (!pgtable) 575 return -ENOMEM; 576 577 build_pagetable(pgtable); 578 cpu_call64((ulong)pgtable, setup_base, target); 579 free(pgtable); 580 581 return -EFAULT; 582 } 583 584 void show_boot_progress(int val) 585 { 586 #if MIN_PORT80_KCLOCKS_DELAY 587 /* 588 * Scale the time counter reading to avoid using 64 bit arithmetics. 589 * Can't use get_timer() here becuase it could be not yet 590 * initialized or even implemented. 591 */ 592 if (!gd->arch.tsc_prev) { 593 gd->arch.tsc_base_kclocks = rdtsc() / 1000; 594 gd->arch.tsc_prev = 0; 595 } else { 596 uint32_t now; 597 598 do { 599 now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks; 600 } while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY)); 601 gd->arch.tsc_prev = now; 602 } 603 #endif 604 outb(val, POST_PORT); 605 } 606 607 #ifndef CONFIG_SYS_COREBOOT 608 int last_stage_init(void) 609 { 610 write_tables(); 611 612 return 0; 613 } 614 #endif 615 616 __weak int x86_init_cpus(void) 617 { 618 return 0; 619 } 620 621 int cpu_init_r(void) 622 { 623 return x86_init_cpus(); 624 } 625 626 static const struct cpu_ops cpu_x86_ops = { 627 .get_desc = x86_cpu_get_desc, 628 }; 629 630 static const struct udevice_id cpu_x86_ids[] = { 631 { .compatible = "cpu-x86" }, 632 { } 633 }; 634 635 U_BOOT_DRIVER(cpu_x86_drv) = { 636 .name = "cpu_x86", 637 .id = UCLASS_CPU, 638 .of_match = cpu_x86_ids, 639 .ops = &cpu_x86_ops, 640 }; 641