xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision 5f7e3104)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/cpu.h>
29 #include <asm/lapic.h>
30 #include <asm/mp.h>
31 #include <asm/msr.h>
32 #include <asm/mtrr.h>
33 #include <asm/post.h>
34 #include <asm/processor.h>
35 #include <asm/processor-flags.h>
36 #include <asm/interrupt.h>
37 #include <asm/tables.h>
38 #include <linux/compiler.h>
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 /*
43  * Constructor for a conventional segment GDT (or LDT) entry
44  * This is a macro so it can be used in initialisers
45  */
46 #define GDT_ENTRY(flags, base, limit)			\
47 	((((base)  & 0xff000000ULL) << (56-24)) |	\
48 	 (((flags) & 0x0000f0ffULL) << 40) |		\
49 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
50 	 (((base)  & 0x00ffffffULL) << 16) |		\
51 	 (((limit) & 0x0000ffffULL)))
52 
53 struct gdt_ptr {
54 	u16 len;
55 	u32 ptr;
56 } __packed;
57 
58 struct cpu_device_id {
59 	unsigned vendor;
60 	unsigned device;
61 };
62 
63 struct cpuinfo_x86 {
64 	uint8_t x86;            /* CPU family */
65 	uint8_t x86_vendor;     /* CPU vendor */
66 	uint8_t x86_model;
67 	uint8_t x86_mask;
68 };
69 
70 /*
71  * List of cpu vendor strings along with their normalized
72  * id values.
73  */
74 static struct {
75 	int vendor;
76 	const char *name;
77 } x86_vendors[] = {
78 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
79 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
80 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
81 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
82 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
83 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
84 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
85 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
86 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
87 	{ X86_VENDOR_NSC,       "Geode by NSC", },
88 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
89 };
90 
91 static const char *const x86_vendor_name[] = {
92 	[X86_VENDOR_INTEL]     = "Intel",
93 	[X86_VENDOR_CYRIX]     = "Cyrix",
94 	[X86_VENDOR_AMD]       = "AMD",
95 	[X86_VENDOR_UMC]       = "UMC",
96 	[X86_VENDOR_NEXGEN]    = "NexGen",
97 	[X86_VENDOR_CENTAUR]   = "Centaur",
98 	[X86_VENDOR_RISE]      = "Rise",
99 	[X86_VENDOR_TRANSMETA] = "Transmeta",
100 	[X86_VENDOR_NSC]       = "NSC",
101 	[X86_VENDOR_SIS]       = "SiS",
102 };
103 
104 static void load_ds(u32 segment)
105 {
106 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
107 }
108 
109 static void load_es(u32 segment)
110 {
111 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 }
113 
114 static void load_fs(u32 segment)
115 {
116 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 }
118 
119 static void load_gs(u32 segment)
120 {
121 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 }
123 
124 static void load_ss(u32 segment)
125 {
126 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
127 }
128 
129 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
130 {
131 	struct gdt_ptr gdt;
132 
133 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
134 	gdt.ptr = (u32)boot_gdt;
135 
136 	asm volatile("lgdtl %0\n" : : "m" (gdt));
137 }
138 
139 void setup_gdt(gd_t *id, u64 *gdt_addr)
140 {
141 	id->arch.gdt = gdt_addr;
142 	/* CS: code, read/execute, 4 GB, base 0 */
143 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
144 
145 	/* DS: data, read/write, 4 GB, base 0 */
146 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
147 
148 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
149 	id->arch.gd_addr = id;
150 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
151 		     (ulong)&id->arch.gd_addr, 0xfffff);
152 
153 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
154 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
155 
156 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
157 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
158 
159 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
160 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
161 
162 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
163 	load_ds(X86_GDT_ENTRY_32BIT_DS);
164 	load_es(X86_GDT_ENTRY_32BIT_DS);
165 	load_gs(X86_GDT_ENTRY_32BIT_DS);
166 	load_ss(X86_GDT_ENTRY_32BIT_DS);
167 	load_fs(X86_GDT_ENTRY_32BIT_FS);
168 }
169 
170 #ifdef CONFIG_HAVE_FSP
171 /*
172  * Setup FSP execution environment GDT
173  *
174  * Per Intel FSP external architecture specification, before calling any FSP
175  * APIs, we need make sure the system is in flat 32-bit mode and both the code
176  * and data selectors should have full 4GB access range. Here we reuse the one
177  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
178  */
179 void setup_fsp_gdt(void)
180 {
181 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
182 	load_ds(X86_GDT_ENTRY_32BIT_DS);
183 	load_ss(X86_GDT_ENTRY_32BIT_DS);
184 	load_es(X86_GDT_ENTRY_32BIT_DS);
185 	load_fs(X86_GDT_ENTRY_32BIT_DS);
186 	load_gs(X86_GDT_ENTRY_32BIT_DS);
187 }
188 #endif
189 
190 int __weak x86_cleanup_before_linux(void)
191 {
192 #ifdef CONFIG_BOOTSTAGE_STASH
193 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
194 			CONFIG_BOOTSTAGE_STASH_SIZE);
195 #endif
196 
197 	return 0;
198 }
199 
200 /*
201  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
202  * by the fact that they preserve the flags across the division of 5/2.
203  * PII and PPro exhibit this behavior too, but they have cpuid available.
204  */
205 
206 /*
207  * Perform the Cyrix 5/2 test. A Cyrix won't change
208  * the flags, while other 486 chips will.
209  */
210 static inline int test_cyrix_52div(void)
211 {
212 	unsigned int test;
213 
214 	__asm__ __volatile__(
215 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
216 	     "div %b2\n\t"	/* divide 5 by 2 */
217 	     "lahf"		/* store flags into %ah */
218 	     : "=a" (test)
219 	     : "0" (5), "q" (2)
220 	     : "cc");
221 
222 	/* AH is 0x02 on Cyrix after the divide.. */
223 	return (unsigned char) (test >> 8) == 0x02;
224 }
225 
226 /*
227  *	Detect a NexGen CPU running without BIOS hypercode new enough
228  *	to have CPUID. (Thanks to Herbert Oppmann)
229  */
230 
231 static int deep_magic_nexgen_probe(void)
232 {
233 	int ret;
234 
235 	__asm__ __volatile__ (
236 		"	movw	$0x5555, %%ax\n"
237 		"	xorw	%%dx,%%dx\n"
238 		"	movw	$2, %%cx\n"
239 		"	divw	%%cx\n"
240 		"	movl	$0, %%eax\n"
241 		"	jnz	1f\n"
242 		"	movl	$1, %%eax\n"
243 		"1:\n"
244 		: "=a" (ret) : : "cx", "dx");
245 	return  ret;
246 }
247 
248 static bool has_cpuid(void)
249 {
250 	return flag_is_changeable_p(X86_EFLAGS_ID);
251 }
252 
253 static bool has_mtrr(void)
254 {
255 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
256 }
257 
258 static int build_vendor_name(char *vendor_name)
259 {
260 	struct cpuid_result result;
261 	result = cpuid(0x00000000);
262 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
263 
264 	name_as_ints[0] = result.ebx;
265 	name_as_ints[1] = result.edx;
266 	name_as_ints[2] = result.ecx;
267 
268 	return result.eax;
269 }
270 
271 static void identify_cpu(struct cpu_device_id *cpu)
272 {
273 	char vendor_name[16];
274 	int i;
275 
276 	vendor_name[0] = '\0'; /* Unset */
277 	cpu->device = 0; /* fix gcc 4.4.4 warning */
278 
279 	/* Find the id and vendor_name */
280 	if (!has_cpuid()) {
281 		/* Its a 486 if we can modify the AC flag */
282 		if (flag_is_changeable_p(X86_EFLAGS_AC))
283 			cpu->device = 0x00000400; /* 486 */
284 		else
285 			cpu->device = 0x00000300; /* 386 */
286 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
287 			memcpy(vendor_name, "CyrixInstead", 13);
288 			/* If we ever care we can enable cpuid here */
289 		}
290 		/* Detect NexGen with old hypercode */
291 		else if (deep_magic_nexgen_probe())
292 			memcpy(vendor_name, "NexGenDriven", 13);
293 	}
294 	if (has_cpuid()) {
295 		int  cpuid_level;
296 
297 		cpuid_level = build_vendor_name(vendor_name);
298 		vendor_name[12] = '\0';
299 
300 		/* Intel-defined flags: level 0x00000001 */
301 		if (cpuid_level >= 0x00000001) {
302 			cpu->device = cpuid_eax(0x00000001);
303 		} else {
304 			/* Have CPUID level 0 only unheard of */
305 			cpu->device = 0x00000400;
306 		}
307 	}
308 	cpu->vendor = X86_VENDOR_UNKNOWN;
309 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
310 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
311 			cpu->vendor = x86_vendors[i].vendor;
312 			break;
313 		}
314 	}
315 }
316 
317 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
318 {
319 	c->x86 = (tfms >> 8) & 0xf;
320 	c->x86_model = (tfms >> 4) & 0xf;
321 	c->x86_mask = tfms & 0xf;
322 	if (c->x86 == 0xf)
323 		c->x86 += (tfms >> 20) & 0xff;
324 	if (c->x86 >= 0x6)
325 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
326 }
327 
328 int x86_cpu_init_f(void)
329 {
330 	const u32 em_rst = ~X86_CR0_EM;
331 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
332 
333 	/* initialize FPU, reset EM, set MP and NE */
334 	asm ("fninit\n" \
335 	     "movl %%cr0, %%eax\n" \
336 	     "andl %0, %%eax\n" \
337 	     "orl  %1, %%eax\n" \
338 	     "movl %%eax, %%cr0\n" \
339 	     : : "i" (em_rst), "i" (mp_ne_set) : "eax");
340 
341 	/* identify CPU via cpuid and store the decoded info into gd->arch */
342 	if (has_cpuid()) {
343 		struct cpu_device_id cpu;
344 		struct cpuinfo_x86 c;
345 
346 		identify_cpu(&cpu);
347 		get_fms(&c, cpu.device);
348 		gd->arch.x86 = c.x86;
349 		gd->arch.x86_vendor = cpu.vendor;
350 		gd->arch.x86_model = c.x86_model;
351 		gd->arch.x86_mask = c.x86_mask;
352 		gd->arch.x86_device = cpu.device;
353 
354 		gd->arch.has_mtrr = has_mtrr();
355 	}
356 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
357 	gd->pci_ram_top = 0x80000000U;
358 
359 	/* Configure fixed range MTRRs for some legacy regions */
360 	if (gd->arch.has_mtrr) {
361 		u64 mtrr_cap;
362 
363 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
364 		if (mtrr_cap & MTRR_CAP_FIX) {
365 			/* Mark the VGA RAM area as uncacheable */
366 			native_write_msr(MTRR_FIX_16K_A0000_MSR, 0, 0);
367 
368 			/* Mark the PCI ROM area as uncacheable */
369 			native_write_msr(MTRR_FIX_4K_C0000_MSR, 0, 0);
370 			native_write_msr(MTRR_FIX_4K_C8000_MSR, 0, 0);
371 			native_write_msr(MTRR_FIX_4K_D0000_MSR, 0, 0);
372 			native_write_msr(MTRR_FIX_4K_D8000_MSR, 0, 0);
373 
374 			/* Enable the fixed range MTRRs */
375 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
376 		}
377 	}
378 
379 	return 0;
380 }
381 
382 void x86_enable_caches(void)
383 {
384 	unsigned long cr0;
385 
386 	cr0 = read_cr0();
387 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
388 	write_cr0(cr0);
389 	wbinvd();
390 }
391 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
392 
393 void x86_disable_caches(void)
394 {
395 	unsigned long cr0;
396 
397 	cr0 = read_cr0();
398 	cr0 |= X86_CR0_NW | X86_CR0_CD;
399 	wbinvd();
400 	write_cr0(cr0);
401 	wbinvd();
402 }
403 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
404 
405 int x86_init_cache(void)
406 {
407 	enable_caches();
408 
409 	return 0;
410 }
411 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
412 
413 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
414 {
415 	printf("resetting ...\n");
416 
417 	/* wait 50 ms */
418 	udelay(50000);
419 	disable_interrupts();
420 	reset_cpu(0);
421 
422 	/*NOTREACHED*/
423 	return 0;
424 }
425 
426 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
427 {
428 	asm("wbinvd\n");
429 }
430 
431 __weak void reset_cpu(ulong addr)
432 {
433 	/* Do a hard reset through the chipset's reset control register */
434 	outb(SYS_RST | RST_CPU, PORT_RESET);
435 	for (;;)
436 		cpu_hlt();
437 }
438 
439 void x86_full_reset(void)
440 {
441 	outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
442 }
443 
444 int dcache_status(void)
445 {
446 	return !(read_cr0() & 0x40000000);
447 }
448 
449 /* Define these functions to allow ehch-hcd to function */
450 void flush_dcache_range(unsigned long start, unsigned long stop)
451 {
452 }
453 
454 void invalidate_dcache_range(unsigned long start, unsigned long stop)
455 {
456 }
457 
458 void dcache_enable(void)
459 {
460 	enable_caches();
461 }
462 
463 void dcache_disable(void)
464 {
465 	disable_caches();
466 }
467 
468 void icache_enable(void)
469 {
470 }
471 
472 void icache_disable(void)
473 {
474 }
475 
476 int icache_status(void)
477 {
478 	return 1;
479 }
480 
481 void cpu_enable_paging_pae(ulong cr3)
482 {
483 	__asm__ __volatile__(
484 		/* Load the page table address */
485 		"movl	%0, %%cr3\n"
486 		/* Enable pae */
487 		"movl	%%cr4, %%eax\n"
488 		"orl	$0x00000020, %%eax\n"
489 		"movl	%%eax, %%cr4\n"
490 		/* Enable paging */
491 		"movl	%%cr0, %%eax\n"
492 		"orl	$0x80000000, %%eax\n"
493 		"movl	%%eax, %%cr0\n"
494 		:
495 		: "r" (cr3)
496 		: "eax");
497 }
498 
499 void cpu_disable_paging_pae(void)
500 {
501 	/* Turn off paging */
502 	__asm__ __volatile__ (
503 		/* Disable paging */
504 		"movl	%%cr0, %%eax\n"
505 		"andl	$0x7fffffff, %%eax\n"
506 		"movl	%%eax, %%cr0\n"
507 		/* Disable pae */
508 		"movl	%%cr4, %%eax\n"
509 		"andl	$0xffffffdf, %%eax\n"
510 		"movl	%%eax, %%cr4\n"
511 		:
512 		:
513 		: "eax");
514 }
515 
516 static bool can_detect_long_mode(void)
517 {
518 	return cpuid_eax(0x80000000) > 0x80000000UL;
519 }
520 
521 static bool has_long_mode(void)
522 {
523 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
524 }
525 
526 int cpu_has_64bit(void)
527 {
528 	return has_cpuid() && can_detect_long_mode() &&
529 		has_long_mode();
530 }
531 
532 const char *cpu_vendor_name(int vendor)
533 {
534 	const char *name;
535 	name = "<invalid cpu vendor>";
536 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
537 	    (x86_vendor_name[vendor] != 0))
538 		name = x86_vendor_name[vendor];
539 
540 	return name;
541 }
542 
543 char *cpu_get_name(char *name)
544 {
545 	unsigned int *name_as_ints = (unsigned int *)name;
546 	struct cpuid_result regs;
547 	char *ptr;
548 	int i;
549 
550 	/* This bit adds up to 48 bytes */
551 	for (i = 0; i < 3; i++) {
552 		regs = cpuid(0x80000002 + i);
553 		name_as_ints[i * 4 + 0] = regs.eax;
554 		name_as_ints[i * 4 + 1] = regs.ebx;
555 		name_as_ints[i * 4 + 2] = regs.ecx;
556 		name_as_ints[i * 4 + 3] = regs.edx;
557 	}
558 	name[CPU_MAX_NAME_LEN - 1] = '\0';
559 
560 	/* Skip leading spaces. */
561 	ptr = name;
562 	while (*ptr == ' ')
563 		ptr++;
564 
565 	return ptr;
566 }
567 
568 int default_print_cpuinfo(void)
569 {
570 	printf("CPU: %s, vendor %s, device %xh\n",
571 	       cpu_has_64bit() ? "x86_64" : "x86",
572 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
573 
574 	return 0;
575 }
576 
577 #define PAGETABLE_SIZE		(6 * 4096)
578 
579 /**
580  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
581  *
582  * @pgtable: Pointer to a 24iKB block of memory
583  */
584 static void build_pagetable(uint32_t *pgtable)
585 {
586 	uint i;
587 
588 	memset(pgtable, '\0', PAGETABLE_SIZE);
589 
590 	/* Level 4 needs a single entry */
591 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
592 
593 	/* Level 3 has one 64-bit entry for each GiB of memory */
594 	for (i = 0; i < 4; i++) {
595 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
596 							0x1000 * i + 7;
597 	}
598 
599 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
600 	for (i = 0; i < 2048; i++)
601 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
602 }
603 
604 int cpu_jump_to_64bit(ulong setup_base, ulong target)
605 {
606 	uint32_t *pgtable;
607 
608 	pgtable = memalign(4096, PAGETABLE_SIZE);
609 	if (!pgtable)
610 		return -ENOMEM;
611 
612 	build_pagetable(pgtable);
613 	cpu_call64((ulong)pgtable, setup_base, target);
614 	free(pgtable);
615 
616 	return -EFAULT;
617 }
618 
619 void show_boot_progress(int val)
620 {
621 #if MIN_PORT80_KCLOCKS_DELAY
622 	/*
623 	 * Scale the time counter reading to avoid using 64 bit arithmetics.
624 	 * Can't use get_timer() here becuase it could be not yet
625 	 * initialized or even implemented.
626 	 */
627 	if (!gd->arch.tsc_prev) {
628 		gd->arch.tsc_base_kclocks = rdtsc() / 1000;
629 		gd->arch.tsc_prev = 0;
630 	} else {
631 		uint32_t now;
632 
633 		do {
634 			now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
635 		} while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
636 		gd->arch.tsc_prev = now;
637 	}
638 #endif
639 	outb(val, POST_PORT);
640 }
641 
642 #ifndef CONFIG_SYS_COREBOOT
643 int last_stage_init(void)
644 {
645 	write_tables();
646 
647 	return 0;
648 }
649 #endif
650 
651 #ifdef CONFIG_SMP
652 static int enable_smis(struct udevice *cpu, void *unused)
653 {
654 	return 0;
655 }
656 
657 static struct mp_flight_record mp_steps[] = {
658 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
659 	/* Wait for APs to finish initialization before proceeding */
660 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
661 };
662 
663 static int x86_mp_init(void)
664 {
665 	struct mp_params mp_params;
666 
667 	mp_params.parallel_microcode_load = 0,
668 	mp_params.flight_plan = &mp_steps[0];
669 	mp_params.num_records = ARRAY_SIZE(mp_steps);
670 	mp_params.microcode_pointer = 0;
671 
672 	if (mp_init(&mp_params)) {
673 		printf("Warning: MP init failure\n");
674 		return -EIO;
675 	}
676 
677 	return 0;
678 }
679 #endif
680 
681 __weak int x86_init_cpus(void)
682 {
683 #ifdef CONFIG_SMP
684 	debug("Init additional CPUs\n");
685 	x86_mp_init();
686 #endif
687 
688 	return 0;
689 }
690 
691 int cpu_init_r(void)
692 {
693 	return x86_init_cpus();
694 }
695