xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision 2db93745)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/cpu.h>
29 #include <asm/lapic.h>
30 #include <asm/mp.h>
31 #include <asm/msr.h>
32 #include <asm/mtrr.h>
33 #include <asm/post.h>
34 #include <asm/processor.h>
35 #include <asm/processor-flags.h>
36 #include <asm/interrupt.h>
37 #include <asm/tables.h>
38 #include <linux/compiler.h>
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 /*
43  * Constructor for a conventional segment GDT (or LDT) entry
44  * This is a macro so it can be used in initialisers
45  */
46 #define GDT_ENTRY(flags, base, limit)			\
47 	((((base)  & 0xff000000ULL) << (56-24)) |	\
48 	 (((flags) & 0x0000f0ffULL) << 40) |		\
49 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
50 	 (((base)  & 0x00ffffffULL) << 16) |		\
51 	 (((limit) & 0x0000ffffULL)))
52 
53 struct gdt_ptr {
54 	u16 len;
55 	u32 ptr;
56 } __packed;
57 
58 struct cpu_device_id {
59 	unsigned vendor;
60 	unsigned device;
61 };
62 
63 struct cpuinfo_x86 {
64 	uint8_t x86;            /* CPU family */
65 	uint8_t x86_vendor;     /* CPU vendor */
66 	uint8_t x86_model;
67 	uint8_t x86_mask;
68 };
69 
70 /*
71  * List of cpu vendor strings along with their normalized
72  * id values.
73  */
74 static struct {
75 	int vendor;
76 	const char *name;
77 } x86_vendors[] = {
78 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
79 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
80 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
81 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
82 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
83 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
84 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
85 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
86 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
87 	{ X86_VENDOR_NSC,       "Geode by NSC", },
88 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
89 };
90 
91 static const char *const x86_vendor_name[] = {
92 	[X86_VENDOR_INTEL]     = "Intel",
93 	[X86_VENDOR_CYRIX]     = "Cyrix",
94 	[X86_VENDOR_AMD]       = "AMD",
95 	[X86_VENDOR_UMC]       = "UMC",
96 	[X86_VENDOR_NEXGEN]    = "NexGen",
97 	[X86_VENDOR_CENTAUR]   = "Centaur",
98 	[X86_VENDOR_RISE]      = "Rise",
99 	[X86_VENDOR_TRANSMETA] = "Transmeta",
100 	[X86_VENDOR_NSC]       = "NSC",
101 	[X86_VENDOR_SIS]       = "SiS",
102 };
103 
104 static void load_ds(u32 segment)
105 {
106 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
107 }
108 
109 static void load_es(u32 segment)
110 {
111 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 }
113 
114 static void load_fs(u32 segment)
115 {
116 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 }
118 
119 static void load_gs(u32 segment)
120 {
121 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 }
123 
124 static void load_ss(u32 segment)
125 {
126 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
127 }
128 
129 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
130 {
131 	struct gdt_ptr gdt;
132 
133 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
134 	gdt.ptr = (u32)boot_gdt;
135 
136 	asm volatile("lgdtl %0\n" : : "m" (gdt));
137 }
138 
139 void setup_gdt(gd_t *new_gd, u64 *gdt_addr)
140 {
141 	gdt_addr = new_gd->arch.gdt;
142 
143 	/* CS: code, read/execute, 4 GB, base 0 */
144 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
145 
146 	/* DS: data, read/write, 4 GB, base 0 */
147 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
148 
149 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
150 	new_gd->arch.gd_addr = new_gd;
151 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
152 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
153 
154 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
155 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
156 
157 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
158 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
159 
160 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
161 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
162 
163 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
164 	load_ds(X86_GDT_ENTRY_32BIT_DS);
165 	load_es(X86_GDT_ENTRY_32BIT_DS);
166 	load_gs(X86_GDT_ENTRY_32BIT_DS);
167 	load_ss(X86_GDT_ENTRY_32BIT_DS);
168 	load_fs(X86_GDT_ENTRY_32BIT_FS);
169 }
170 
171 #ifdef CONFIG_HAVE_FSP
172 /*
173  * Setup FSP execution environment GDT
174  *
175  * Per Intel FSP external architecture specification, before calling any FSP
176  * APIs, we need make sure the system is in flat 32-bit mode and both the code
177  * and data selectors should have full 4GB access range. Here we reuse the one
178  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
179  */
180 void setup_fsp_gdt(void)
181 {
182 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
183 	load_ds(X86_GDT_ENTRY_32BIT_DS);
184 	load_ss(X86_GDT_ENTRY_32BIT_DS);
185 	load_es(X86_GDT_ENTRY_32BIT_DS);
186 	load_fs(X86_GDT_ENTRY_32BIT_DS);
187 	load_gs(X86_GDT_ENTRY_32BIT_DS);
188 }
189 #endif
190 
191 int __weak x86_cleanup_before_linux(void)
192 {
193 #ifdef CONFIG_BOOTSTAGE_STASH
194 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
195 			CONFIG_BOOTSTAGE_STASH_SIZE);
196 #endif
197 
198 	return 0;
199 }
200 
201 /*
202  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
203  * by the fact that they preserve the flags across the division of 5/2.
204  * PII and PPro exhibit this behavior too, but they have cpuid available.
205  */
206 
207 /*
208  * Perform the Cyrix 5/2 test. A Cyrix won't change
209  * the flags, while other 486 chips will.
210  */
211 static inline int test_cyrix_52div(void)
212 {
213 	unsigned int test;
214 
215 	__asm__ __volatile__(
216 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
217 	     "div %b2\n\t"	/* divide 5 by 2 */
218 	     "lahf"		/* store flags into %ah */
219 	     : "=a" (test)
220 	     : "0" (5), "q" (2)
221 	     : "cc");
222 
223 	/* AH is 0x02 on Cyrix after the divide.. */
224 	return (unsigned char) (test >> 8) == 0x02;
225 }
226 
227 /*
228  *	Detect a NexGen CPU running without BIOS hypercode new enough
229  *	to have CPUID. (Thanks to Herbert Oppmann)
230  */
231 
232 static int deep_magic_nexgen_probe(void)
233 {
234 	int ret;
235 
236 	__asm__ __volatile__ (
237 		"	movw	$0x5555, %%ax\n"
238 		"	xorw	%%dx,%%dx\n"
239 		"	movw	$2, %%cx\n"
240 		"	divw	%%cx\n"
241 		"	movl	$0, %%eax\n"
242 		"	jnz	1f\n"
243 		"	movl	$1, %%eax\n"
244 		"1:\n"
245 		: "=a" (ret) : : "cx", "dx");
246 	return  ret;
247 }
248 
249 static bool has_cpuid(void)
250 {
251 	return flag_is_changeable_p(X86_EFLAGS_ID);
252 }
253 
254 static bool has_mtrr(void)
255 {
256 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
257 }
258 
259 static int build_vendor_name(char *vendor_name)
260 {
261 	struct cpuid_result result;
262 	result = cpuid(0x00000000);
263 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
264 
265 	name_as_ints[0] = result.ebx;
266 	name_as_ints[1] = result.edx;
267 	name_as_ints[2] = result.ecx;
268 
269 	return result.eax;
270 }
271 
272 static void identify_cpu(struct cpu_device_id *cpu)
273 {
274 	char vendor_name[16];
275 	int i;
276 
277 	vendor_name[0] = '\0'; /* Unset */
278 	cpu->device = 0; /* fix gcc 4.4.4 warning */
279 
280 	/* Find the id and vendor_name */
281 	if (!has_cpuid()) {
282 		/* Its a 486 if we can modify the AC flag */
283 		if (flag_is_changeable_p(X86_EFLAGS_AC))
284 			cpu->device = 0x00000400; /* 486 */
285 		else
286 			cpu->device = 0x00000300; /* 386 */
287 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
288 			memcpy(vendor_name, "CyrixInstead", 13);
289 			/* If we ever care we can enable cpuid here */
290 		}
291 		/* Detect NexGen with old hypercode */
292 		else if (deep_magic_nexgen_probe())
293 			memcpy(vendor_name, "NexGenDriven", 13);
294 	}
295 	if (has_cpuid()) {
296 		int  cpuid_level;
297 
298 		cpuid_level = build_vendor_name(vendor_name);
299 		vendor_name[12] = '\0';
300 
301 		/* Intel-defined flags: level 0x00000001 */
302 		if (cpuid_level >= 0x00000001) {
303 			cpu->device = cpuid_eax(0x00000001);
304 		} else {
305 			/* Have CPUID level 0 only unheard of */
306 			cpu->device = 0x00000400;
307 		}
308 	}
309 	cpu->vendor = X86_VENDOR_UNKNOWN;
310 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
311 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
312 			cpu->vendor = x86_vendors[i].vendor;
313 			break;
314 		}
315 	}
316 }
317 
318 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
319 {
320 	c->x86 = (tfms >> 8) & 0xf;
321 	c->x86_model = (tfms >> 4) & 0xf;
322 	c->x86_mask = tfms & 0xf;
323 	if (c->x86 == 0xf)
324 		c->x86 += (tfms >> 20) & 0xff;
325 	if (c->x86 >= 0x6)
326 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
327 }
328 
329 int x86_cpu_init_f(void)
330 {
331 	const u32 em_rst = ~X86_CR0_EM;
332 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
333 
334 	if (ll_boot_init()) {
335 		/* initialize FPU, reset EM, set MP and NE */
336 		asm ("fninit\n" \
337 		"movl %%cr0, %%eax\n" \
338 		"andl %0, %%eax\n" \
339 		"orl  %1, %%eax\n" \
340 		"movl %%eax, %%cr0\n" \
341 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
342 	}
343 
344 	/* identify CPU via cpuid and store the decoded info into gd->arch */
345 	if (has_cpuid()) {
346 		struct cpu_device_id cpu;
347 		struct cpuinfo_x86 c;
348 
349 		identify_cpu(&cpu);
350 		get_fms(&c, cpu.device);
351 		gd->arch.x86 = c.x86;
352 		gd->arch.x86_vendor = cpu.vendor;
353 		gd->arch.x86_model = c.x86_model;
354 		gd->arch.x86_mask = c.x86_mask;
355 		gd->arch.x86_device = cpu.device;
356 
357 		gd->arch.has_mtrr = has_mtrr();
358 	}
359 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
360 	gd->pci_ram_top = 0x80000000U;
361 
362 	/* Configure fixed range MTRRs for some legacy regions */
363 	if (gd->arch.has_mtrr) {
364 		u64 mtrr_cap;
365 
366 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
367 		if (mtrr_cap & MTRR_CAP_FIX) {
368 			/* Mark the VGA RAM area as uncacheable */
369 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
370 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
371 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
372 
373 			/*
374 			 * Mark the PCI ROM area as cacheable to improve ROM
375 			 * execution performance.
376 			 */
377 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
378 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
379 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
380 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
381 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
382 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
383 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
384 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
385 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
386 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
387 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
388 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
389 
390 			/* Enable the fixed range MTRRs */
391 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
392 		}
393 	}
394 
395 	return 0;
396 }
397 
398 void x86_enable_caches(void)
399 {
400 	unsigned long cr0;
401 
402 	cr0 = read_cr0();
403 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
404 	write_cr0(cr0);
405 	wbinvd();
406 }
407 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
408 
409 void x86_disable_caches(void)
410 {
411 	unsigned long cr0;
412 
413 	cr0 = read_cr0();
414 	cr0 |= X86_CR0_NW | X86_CR0_CD;
415 	wbinvd();
416 	write_cr0(cr0);
417 	wbinvd();
418 }
419 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
420 
421 int x86_init_cache(void)
422 {
423 	enable_caches();
424 
425 	return 0;
426 }
427 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
428 
429 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
430 {
431 	printf("resetting ...\n");
432 
433 	/* wait 50 ms */
434 	udelay(50000);
435 	disable_interrupts();
436 	reset_cpu(0);
437 
438 	/*NOTREACHED*/
439 	return 0;
440 }
441 
442 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
443 {
444 	asm("wbinvd\n");
445 }
446 
447 __weak void reset_cpu(ulong addr)
448 {
449 	/* Do a hard reset through the chipset's reset control register */
450 	outb(SYS_RST | RST_CPU, PORT_RESET);
451 	for (;;)
452 		cpu_hlt();
453 }
454 
455 void x86_full_reset(void)
456 {
457 	outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
458 }
459 
460 int dcache_status(void)
461 {
462 	return !(read_cr0() & X86_CR0_CD);
463 }
464 
465 /* Define these functions to allow ehch-hcd to function */
466 void flush_dcache_range(unsigned long start, unsigned long stop)
467 {
468 }
469 
470 void invalidate_dcache_range(unsigned long start, unsigned long stop)
471 {
472 }
473 
474 void dcache_enable(void)
475 {
476 	enable_caches();
477 }
478 
479 void dcache_disable(void)
480 {
481 	disable_caches();
482 }
483 
484 void icache_enable(void)
485 {
486 }
487 
488 void icache_disable(void)
489 {
490 }
491 
492 int icache_status(void)
493 {
494 	return 1;
495 }
496 
497 void cpu_enable_paging_pae(ulong cr3)
498 {
499 	__asm__ __volatile__(
500 		/* Load the page table address */
501 		"movl	%0, %%cr3\n"
502 		/* Enable pae */
503 		"movl	%%cr4, %%eax\n"
504 		"orl	$0x00000020, %%eax\n"
505 		"movl	%%eax, %%cr4\n"
506 		/* Enable paging */
507 		"movl	%%cr0, %%eax\n"
508 		"orl	$0x80000000, %%eax\n"
509 		"movl	%%eax, %%cr0\n"
510 		:
511 		: "r" (cr3)
512 		: "eax");
513 }
514 
515 void cpu_disable_paging_pae(void)
516 {
517 	/* Turn off paging */
518 	__asm__ __volatile__ (
519 		/* Disable paging */
520 		"movl	%%cr0, %%eax\n"
521 		"andl	$0x7fffffff, %%eax\n"
522 		"movl	%%eax, %%cr0\n"
523 		/* Disable pae */
524 		"movl	%%cr4, %%eax\n"
525 		"andl	$0xffffffdf, %%eax\n"
526 		"movl	%%eax, %%cr4\n"
527 		:
528 		:
529 		: "eax");
530 }
531 
532 static bool can_detect_long_mode(void)
533 {
534 	return cpuid_eax(0x80000000) > 0x80000000UL;
535 }
536 
537 static bool has_long_mode(void)
538 {
539 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
540 }
541 
542 int cpu_has_64bit(void)
543 {
544 	return has_cpuid() && can_detect_long_mode() &&
545 		has_long_mode();
546 }
547 
548 const char *cpu_vendor_name(int vendor)
549 {
550 	const char *name;
551 	name = "<invalid cpu vendor>";
552 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
553 	    (x86_vendor_name[vendor] != 0))
554 		name = x86_vendor_name[vendor];
555 
556 	return name;
557 }
558 
559 char *cpu_get_name(char *name)
560 {
561 	unsigned int *name_as_ints = (unsigned int *)name;
562 	struct cpuid_result regs;
563 	char *ptr;
564 	int i;
565 
566 	/* This bit adds up to 48 bytes */
567 	for (i = 0; i < 3; i++) {
568 		regs = cpuid(0x80000002 + i);
569 		name_as_ints[i * 4 + 0] = regs.eax;
570 		name_as_ints[i * 4 + 1] = regs.ebx;
571 		name_as_ints[i * 4 + 2] = regs.ecx;
572 		name_as_ints[i * 4 + 3] = regs.edx;
573 	}
574 	name[CPU_MAX_NAME_LEN - 1] = '\0';
575 
576 	/* Skip leading spaces. */
577 	ptr = name;
578 	while (*ptr == ' ')
579 		ptr++;
580 
581 	return ptr;
582 }
583 
584 int default_print_cpuinfo(void)
585 {
586 	printf("CPU: %s, vendor %s, device %xh\n",
587 	       cpu_has_64bit() ? "x86_64" : "x86",
588 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
589 
590 	return 0;
591 }
592 
593 #define PAGETABLE_SIZE		(6 * 4096)
594 
595 /**
596  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
597  *
598  * @pgtable: Pointer to a 24iKB block of memory
599  */
600 static void build_pagetable(uint32_t *pgtable)
601 {
602 	uint i;
603 
604 	memset(pgtable, '\0', PAGETABLE_SIZE);
605 
606 	/* Level 4 needs a single entry */
607 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
608 
609 	/* Level 3 has one 64-bit entry for each GiB of memory */
610 	for (i = 0; i < 4; i++) {
611 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
612 							0x1000 * i + 7;
613 	}
614 
615 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
616 	for (i = 0; i < 2048; i++)
617 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
618 }
619 
620 int cpu_jump_to_64bit(ulong setup_base, ulong target)
621 {
622 	uint32_t *pgtable;
623 
624 	pgtable = memalign(4096, PAGETABLE_SIZE);
625 	if (!pgtable)
626 		return -ENOMEM;
627 
628 	build_pagetable(pgtable);
629 	cpu_call64((ulong)pgtable, setup_base, target);
630 	free(pgtable);
631 
632 	return -EFAULT;
633 }
634 
635 void show_boot_progress(int val)
636 {
637 #if MIN_PORT80_KCLOCKS_DELAY
638 	/*
639 	 * Scale the time counter reading to avoid using 64 bit arithmetics.
640 	 * Can't use get_timer() here becuase it could be not yet
641 	 * initialized or even implemented.
642 	 */
643 	if (!gd->arch.tsc_prev) {
644 		gd->arch.tsc_base_kclocks = rdtsc() / 1000;
645 		gd->arch.tsc_prev = 0;
646 	} else {
647 		uint32_t now;
648 
649 		do {
650 			now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
651 		} while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
652 		gd->arch.tsc_prev = now;
653 	}
654 #endif
655 	outb(val, POST_PORT);
656 }
657 
658 #ifndef CONFIG_SYS_COREBOOT
659 int last_stage_init(void)
660 {
661 	write_tables();
662 
663 	return 0;
664 }
665 #endif
666 
667 #ifdef CONFIG_SMP
668 static int enable_smis(struct udevice *cpu, void *unused)
669 {
670 	return 0;
671 }
672 
673 static struct mp_flight_record mp_steps[] = {
674 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
675 	/* Wait for APs to finish initialization before proceeding */
676 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
677 };
678 
679 static int x86_mp_init(void)
680 {
681 	struct mp_params mp_params;
682 
683 	mp_params.parallel_microcode_load = 0,
684 	mp_params.flight_plan = &mp_steps[0];
685 	mp_params.num_records = ARRAY_SIZE(mp_steps);
686 	mp_params.microcode_pointer = 0;
687 
688 	if (mp_init(&mp_params)) {
689 		printf("Warning: MP init failure\n");
690 		return -EIO;
691 	}
692 
693 	return 0;
694 }
695 #endif
696 
697 __weak int x86_init_cpus(void)
698 {
699 #ifdef CONFIG_SMP
700 	debug("Init additional CPUs\n");
701 	x86_mp_init();
702 #else
703 	struct udevice *dev;
704 
705 	/*
706 	 * This causes the cpu-x86 driver to be probed.
707 	 * We don't check return value here as we want to allow boards
708 	 * which have not been converted to use cpu uclass driver to boot.
709 	 */
710 	uclass_first_device(UCLASS_CPU, &dev);
711 #endif
712 
713 	return 0;
714 }
715 
716 int cpu_init_r(void)
717 {
718 	if (ll_boot_init())
719 		return x86_init_cpus();
720 
721 	return 0;
722 }
723