xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/cpu.h>
29 #include <asm/lapic.h>
30 #include <asm/microcode.h>
31 #include <asm/mp.h>
32 #include <asm/msr.h>
33 #include <asm/mtrr.h>
34 #include <asm/post.h>
35 #include <asm/processor.h>
36 #include <asm/processor-flags.h>
37 #include <asm/interrupt.h>
38 #include <asm/tables.h>
39 #include <linux/compiler.h>
40 
41 DECLARE_GLOBAL_DATA_PTR;
42 
43 /*
44  * Constructor for a conventional segment GDT (or LDT) entry
45  * This is a macro so it can be used in initialisers
46  */
47 #define GDT_ENTRY(flags, base, limit)			\
48 	((((base)  & 0xff000000ULL) << (56-24)) |	\
49 	 (((flags) & 0x0000f0ffULL) << 40) |		\
50 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
51 	 (((base)  & 0x00ffffffULL) << 16) |		\
52 	 (((limit) & 0x0000ffffULL)))
53 
54 struct gdt_ptr {
55 	u16 len;
56 	u32 ptr;
57 } __packed;
58 
59 struct cpu_device_id {
60 	unsigned vendor;
61 	unsigned device;
62 };
63 
64 struct cpuinfo_x86 {
65 	uint8_t x86;            /* CPU family */
66 	uint8_t x86_vendor;     /* CPU vendor */
67 	uint8_t x86_model;
68 	uint8_t x86_mask;
69 };
70 
71 /*
72  * List of cpu vendor strings along with their normalized
73  * id values.
74  */
75 static const struct {
76 	int vendor;
77 	const char *name;
78 } x86_vendors[] = {
79 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
80 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
81 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
82 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
83 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
84 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
85 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
86 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
87 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
88 	{ X86_VENDOR_NSC,       "Geode by NSC", },
89 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
90 };
91 
92 static const char *const x86_vendor_name[] = {
93 	[X86_VENDOR_INTEL]     = "Intel",
94 	[X86_VENDOR_CYRIX]     = "Cyrix",
95 	[X86_VENDOR_AMD]       = "AMD",
96 	[X86_VENDOR_UMC]       = "UMC",
97 	[X86_VENDOR_NEXGEN]    = "NexGen",
98 	[X86_VENDOR_CENTAUR]   = "Centaur",
99 	[X86_VENDOR_RISE]      = "Rise",
100 	[X86_VENDOR_TRANSMETA] = "Transmeta",
101 	[X86_VENDOR_NSC]       = "NSC",
102 	[X86_VENDOR_SIS]       = "SiS",
103 };
104 
105 static void load_ds(u32 segment)
106 {
107 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
108 }
109 
110 static void load_es(u32 segment)
111 {
112 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
113 }
114 
115 static void load_fs(u32 segment)
116 {
117 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
118 }
119 
120 static void load_gs(u32 segment)
121 {
122 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
123 }
124 
125 static void load_ss(u32 segment)
126 {
127 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
128 }
129 
130 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
131 {
132 	struct gdt_ptr gdt;
133 
134 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
135 	gdt.ptr = (u32)boot_gdt;
136 
137 	asm volatile("lgdtl %0\n" : : "m" (gdt));
138 }
139 
140 void arch_setup_gd(gd_t *new_gd)
141 {
142 	u64 *gdt_addr;
143 
144 	gdt_addr = new_gd->arch.gdt;
145 
146 	/*
147 	 * CS: code, read/execute, 4 GB, base 0
148 	 *
149 	 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
150 	 */
151 	gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
152 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
153 
154 	/* DS: data, read/write, 4 GB, base 0 */
155 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
156 
157 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
158 	new_gd->arch.gd_addr = new_gd;
159 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
160 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
161 
162 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
163 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
164 
165 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
166 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
167 
168 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
169 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
170 
171 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
172 	load_ds(X86_GDT_ENTRY_32BIT_DS);
173 	load_es(X86_GDT_ENTRY_32BIT_DS);
174 	load_gs(X86_GDT_ENTRY_32BIT_DS);
175 	load_ss(X86_GDT_ENTRY_32BIT_DS);
176 	load_fs(X86_GDT_ENTRY_32BIT_FS);
177 }
178 
179 #ifdef CONFIG_HAVE_FSP
180 /*
181  * Setup FSP execution environment GDT
182  *
183  * Per Intel FSP external architecture specification, before calling any FSP
184  * APIs, we need make sure the system is in flat 32-bit mode and both the code
185  * and data selectors should have full 4GB access range. Here we reuse the one
186  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
187  */
188 void setup_fsp_gdt(void)
189 {
190 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
191 	load_ds(X86_GDT_ENTRY_32BIT_DS);
192 	load_ss(X86_GDT_ENTRY_32BIT_DS);
193 	load_es(X86_GDT_ENTRY_32BIT_DS);
194 	load_fs(X86_GDT_ENTRY_32BIT_DS);
195 	load_gs(X86_GDT_ENTRY_32BIT_DS);
196 }
197 #endif
198 
199 int __weak x86_cleanup_before_linux(void)
200 {
201 #ifdef CONFIG_BOOTSTAGE_STASH
202 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
203 			CONFIG_BOOTSTAGE_STASH_SIZE);
204 #endif
205 
206 	return 0;
207 }
208 
209 /*
210  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
211  * by the fact that they preserve the flags across the division of 5/2.
212  * PII and PPro exhibit this behavior too, but they have cpuid available.
213  */
214 
215 /*
216  * Perform the Cyrix 5/2 test. A Cyrix won't change
217  * the flags, while other 486 chips will.
218  */
219 static inline int test_cyrix_52div(void)
220 {
221 	unsigned int test;
222 
223 	__asm__ __volatile__(
224 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
225 	     "div %b2\n\t"	/* divide 5 by 2 */
226 	     "lahf"		/* store flags into %ah */
227 	     : "=a" (test)
228 	     : "0" (5), "q" (2)
229 	     : "cc");
230 
231 	/* AH is 0x02 on Cyrix after the divide.. */
232 	return (unsigned char) (test >> 8) == 0x02;
233 }
234 
235 /*
236  *	Detect a NexGen CPU running without BIOS hypercode new enough
237  *	to have CPUID. (Thanks to Herbert Oppmann)
238  */
239 
240 static int deep_magic_nexgen_probe(void)
241 {
242 	int ret;
243 
244 	__asm__ __volatile__ (
245 		"	movw	$0x5555, %%ax\n"
246 		"	xorw	%%dx,%%dx\n"
247 		"	movw	$2, %%cx\n"
248 		"	divw	%%cx\n"
249 		"	movl	$0, %%eax\n"
250 		"	jnz	1f\n"
251 		"	movl	$1, %%eax\n"
252 		"1:\n"
253 		: "=a" (ret) : : "cx", "dx");
254 	return  ret;
255 }
256 
257 static bool has_cpuid(void)
258 {
259 	return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261 
262 static bool has_mtrr(void)
263 {
264 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
265 }
266 
267 static int build_vendor_name(char *vendor_name)
268 {
269 	struct cpuid_result result;
270 	result = cpuid(0x00000000);
271 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
272 
273 	name_as_ints[0] = result.ebx;
274 	name_as_ints[1] = result.edx;
275 	name_as_ints[2] = result.ecx;
276 
277 	return result.eax;
278 }
279 
280 static void identify_cpu(struct cpu_device_id *cpu)
281 {
282 	char vendor_name[16];
283 	int i;
284 
285 	vendor_name[0] = '\0'; /* Unset */
286 	cpu->device = 0; /* fix gcc 4.4.4 warning */
287 
288 	/* Find the id and vendor_name */
289 	if (!has_cpuid()) {
290 		/* Its a 486 if we can modify the AC flag */
291 		if (flag_is_changeable_p(X86_EFLAGS_AC))
292 			cpu->device = 0x00000400; /* 486 */
293 		else
294 			cpu->device = 0x00000300; /* 386 */
295 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
296 			memcpy(vendor_name, "CyrixInstead", 13);
297 			/* If we ever care we can enable cpuid here */
298 		}
299 		/* Detect NexGen with old hypercode */
300 		else if (deep_magic_nexgen_probe())
301 			memcpy(vendor_name, "NexGenDriven", 13);
302 	}
303 	if (has_cpuid()) {
304 		int  cpuid_level;
305 
306 		cpuid_level = build_vendor_name(vendor_name);
307 		vendor_name[12] = '\0';
308 
309 		/* Intel-defined flags: level 0x00000001 */
310 		if (cpuid_level >= 0x00000001) {
311 			cpu->device = cpuid_eax(0x00000001);
312 		} else {
313 			/* Have CPUID level 0 only unheard of */
314 			cpu->device = 0x00000400;
315 		}
316 	}
317 	cpu->vendor = X86_VENDOR_UNKNOWN;
318 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
319 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
320 			cpu->vendor = x86_vendors[i].vendor;
321 			break;
322 		}
323 	}
324 }
325 
326 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
327 {
328 	c->x86 = (tfms >> 8) & 0xf;
329 	c->x86_model = (tfms >> 4) & 0xf;
330 	c->x86_mask = tfms & 0xf;
331 	if (c->x86 == 0xf)
332 		c->x86 += (tfms >> 20) & 0xff;
333 	if (c->x86 >= 0x6)
334 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
335 }
336 
337 u32 cpu_get_family_model(void)
338 {
339 	return gd->arch.x86_device & 0x0fff0ff0;
340 }
341 
342 u32 cpu_get_stepping(void)
343 {
344 	return gd->arch.x86_mask;
345 }
346 
347 int x86_cpu_init_f(void)
348 {
349 	const u32 em_rst = ~X86_CR0_EM;
350 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
351 
352 	if (ll_boot_init()) {
353 		/* initialize FPU, reset EM, set MP and NE */
354 		asm ("fninit\n" \
355 		"movl %%cr0, %%eax\n" \
356 		"andl %0, %%eax\n" \
357 		"orl  %1, %%eax\n" \
358 		"movl %%eax, %%cr0\n" \
359 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
360 	}
361 
362 	/* identify CPU via cpuid and store the decoded info into gd->arch */
363 	if (has_cpuid()) {
364 		struct cpu_device_id cpu;
365 		struct cpuinfo_x86 c;
366 
367 		identify_cpu(&cpu);
368 		get_fms(&c, cpu.device);
369 		gd->arch.x86 = c.x86;
370 		gd->arch.x86_vendor = cpu.vendor;
371 		gd->arch.x86_model = c.x86_model;
372 		gd->arch.x86_mask = c.x86_mask;
373 		gd->arch.x86_device = cpu.device;
374 
375 		gd->arch.has_mtrr = has_mtrr();
376 	}
377 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
378 	gd->pci_ram_top = 0x80000000U;
379 
380 	/* Configure fixed range MTRRs for some legacy regions */
381 	if (gd->arch.has_mtrr) {
382 		u64 mtrr_cap;
383 
384 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
385 		if (mtrr_cap & MTRR_CAP_FIX) {
386 			/* Mark the VGA RAM area as uncacheable */
387 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
388 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
389 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
390 
391 			/*
392 			 * Mark the PCI ROM area as cacheable to improve ROM
393 			 * execution performance.
394 			 */
395 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
396 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
397 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
398 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
399 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
400 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
401 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
402 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
403 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
404 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
405 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
406 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
407 
408 			/* Enable the fixed range MTRRs */
409 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
410 		}
411 	}
412 
413 #ifdef CONFIG_I8254_TIMER
414 	/* Set up the i8254 timer if required */
415 	i8254_init();
416 #endif
417 
418 	return 0;
419 }
420 
421 void x86_enable_caches(void)
422 {
423 	unsigned long cr0;
424 
425 	cr0 = read_cr0();
426 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
427 	write_cr0(cr0);
428 	wbinvd();
429 }
430 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
431 
432 void x86_disable_caches(void)
433 {
434 	unsigned long cr0;
435 
436 	cr0 = read_cr0();
437 	cr0 |= X86_CR0_NW | X86_CR0_CD;
438 	wbinvd();
439 	write_cr0(cr0);
440 	wbinvd();
441 }
442 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
443 
444 int x86_init_cache(void)
445 {
446 	enable_caches();
447 
448 	return 0;
449 }
450 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
451 
452 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
453 {
454 	printf("resetting ...\n");
455 
456 	/* wait 50 ms */
457 	udelay(50000);
458 	disable_interrupts();
459 	reset_cpu(0);
460 
461 	/*NOTREACHED*/
462 	return 0;
463 }
464 
465 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
466 {
467 	asm("wbinvd\n");
468 }
469 
470 __weak void reset_cpu(ulong addr)
471 {
472 	/* Do a hard reset through the chipset's reset control register */
473 	outb(SYS_RST | RST_CPU, IO_PORT_RESET);
474 	for (;;)
475 		cpu_hlt();
476 }
477 
478 void x86_full_reset(void)
479 {
480 	outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
481 }
482 
483 int dcache_status(void)
484 {
485 	return !(read_cr0() & X86_CR0_CD);
486 }
487 
488 /* Define these functions to allow ehch-hcd to function */
489 void flush_dcache_range(unsigned long start, unsigned long stop)
490 {
491 }
492 
493 void invalidate_dcache_range(unsigned long start, unsigned long stop)
494 {
495 }
496 
497 void dcache_enable(void)
498 {
499 	enable_caches();
500 }
501 
502 void dcache_disable(void)
503 {
504 	disable_caches();
505 }
506 
507 void icache_enable(void)
508 {
509 }
510 
511 void icache_disable(void)
512 {
513 }
514 
515 int icache_status(void)
516 {
517 	return 1;
518 }
519 
520 void cpu_enable_paging_pae(ulong cr3)
521 {
522 	__asm__ __volatile__(
523 		/* Load the page table address */
524 		"movl	%0, %%cr3\n"
525 		/* Enable pae */
526 		"movl	%%cr4, %%eax\n"
527 		"orl	$0x00000020, %%eax\n"
528 		"movl	%%eax, %%cr4\n"
529 		/* Enable paging */
530 		"movl	%%cr0, %%eax\n"
531 		"orl	$0x80000000, %%eax\n"
532 		"movl	%%eax, %%cr0\n"
533 		:
534 		: "r" (cr3)
535 		: "eax");
536 }
537 
538 void cpu_disable_paging_pae(void)
539 {
540 	/* Turn off paging */
541 	__asm__ __volatile__ (
542 		/* Disable paging */
543 		"movl	%%cr0, %%eax\n"
544 		"andl	$0x7fffffff, %%eax\n"
545 		"movl	%%eax, %%cr0\n"
546 		/* Disable pae */
547 		"movl	%%cr4, %%eax\n"
548 		"andl	$0xffffffdf, %%eax\n"
549 		"movl	%%eax, %%cr4\n"
550 		:
551 		:
552 		: "eax");
553 }
554 
555 static bool can_detect_long_mode(void)
556 {
557 	return cpuid_eax(0x80000000) > 0x80000000UL;
558 }
559 
560 static bool has_long_mode(void)
561 {
562 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
563 }
564 
565 int cpu_has_64bit(void)
566 {
567 	return has_cpuid() && can_detect_long_mode() &&
568 		has_long_mode();
569 }
570 
571 const char *cpu_vendor_name(int vendor)
572 {
573 	const char *name;
574 	name = "<invalid cpu vendor>";
575 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
576 	    (x86_vendor_name[vendor] != 0))
577 		name = x86_vendor_name[vendor];
578 
579 	return name;
580 }
581 
582 char *cpu_get_name(char *name)
583 {
584 	unsigned int *name_as_ints = (unsigned int *)name;
585 	struct cpuid_result regs;
586 	char *ptr;
587 	int i;
588 
589 	/* This bit adds up to 48 bytes */
590 	for (i = 0; i < 3; i++) {
591 		regs = cpuid(0x80000002 + i);
592 		name_as_ints[i * 4 + 0] = regs.eax;
593 		name_as_ints[i * 4 + 1] = regs.ebx;
594 		name_as_ints[i * 4 + 2] = regs.ecx;
595 		name_as_ints[i * 4 + 3] = regs.edx;
596 	}
597 	name[CPU_MAX_NAME_LEN - 1] = '\0';
598 
599 	/* Skip leading spaces. */
600 	ptr = name;
601 	while (*ptr == ' ')
602 		ptr++;
603 
604 	return ptr;
605 }
606 
607 int default_print_cpuinfo(void)
608 {
609 	printf("CPU: %s, vendor %s, device %xh\n",
610 	       cpu_has_64bit() ? "x86_64" : "x86",
611 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
612 
613 	return 0;
614 }
615 
616 #define PAGETABLE_SIZE		(6 * 4096)
617 
618 /**
619  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
620  *
621  * @pgtable: Pointer to a 24iKB block of memory
622  */
623 static void build_pagetable(uint32_t *pgtable)
624 {
625 	uint i;
626 
627 	memset(pgtable, '\0', PAGETABLE_SIZE);
628 
629 	/* Level 4 needs a single entry */
630 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
631 
632 	/* Level 3 has one 64-bit entry for each GiB of memory */
633 	for (i = 0; i < 4; i++) {
634 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
635 							0x1000 * i + 7;
636 	}
637 
638 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
639 	for (i = 0; i < 2048; i++)
640 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
641 }
642 
643 int cpu_jump_to_64bit(ulong setup_base, ulong target)
644 {
645 	uint32_t *pgtable;
646 
647 	pgtable = memalign(4096, PAGETABLE_SIZE);
648 	if (!pgtable)
649 		return -ENOMEM;
650 
651 	build_pagetable(pgtable);
652 	cpu_call64((ulong)pgtable, setup_base, target);
653 	free(pgtable);
654 
655 	return -EFAULT;
656 }
657 
658 void show_boot_progress(int val)
659 {
660 	outb(val, POST_PORT);
661 }
662 
663 #ifndef CONFIG_SYS_COREBOOT
664 int last_stage_init(void)
665 {
666 	write_tables();
667 
668 	return 0;
669 }
670 #endif
671 
672 #ifdef CONFIG_SMP
673 static int enable_smis(struct udevice *cpu, void *unused)
674 {
675 	return 0;
676 }
677 
678 static struct mp_flight_record mp_steps[] = {
679 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
680 	/* Wait for APs to finish initialization before proceeding */
681 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
682 };
683 
684 static int x86_mp_init(void)
685 {
686 	struct mp_params mp_params;
687 
688 	mp_params.parallel_microcode_load = 0,
689 	mp_params.flight_plan = &mp_steps[0];
690 	mp_params.num_records = ARRAY_SIZE(mp_steps);
691 	mp_params.microcode_pointer = 0;
692 
693 	if (mp_init(&mp_params)) {
694 		printf("Warning: MP init failure\n");
695 		return -EIO;
696 	}
697 
698 	return 0;
699 }
700 #endif
701 
702 static int x86_init_cpus(void)
703 {
704 #ifdef CONFIG_SMP
705 	debug("Init additional CPUs\n");
706 	x86_mp_init();
707 #else
708 	struct udevice *dev;
709 
710 	/*
711 	 * This causes the cpu-x86 driver to be probed.
712 	 * We don't check return value here as we want to allow boards
713 	 * which have not been converted to use cpu uclass driver to boot.
714 	 */
715 	uclass_first_device(UCLASS_CPU, &dev);
716 #endif
717 
718 	return 0;
719 }
720 
721 int cpu_init_r(void)
722 {
723 	struct udevice *dev;
724 	int ret;
725 
726 	if (!ll_boot_init())
727 		return 0;
728 
729 	ret = x86_init_cpus();
730 	if (ret)
731 		return ret;
732 
733 	/*
734 	 * Set up the northbridge, PCH and LPC if available. Note that these
735 	 * may have had some limited pre-relocation init if they were probed
736 	 * before relocation, but this is post relocation.
737 	 */
738 	uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
739 	uclass_first_device(UCLASS_PCH, &dev);
740 	uclass_first_device(UCLASS_LPC, &dev);
741 
742 	return 0;
743 }
744