xref: /openbmc/u-boot/arch/x86/cpu/cpu.c (revision 0a61ee88)
1 /*
2  * (C) Copyright 2008-2011
3  * Graeme Russ, <graeme.russ@gmail.com>
4  *
5  * (C) Copyright 2002
6  * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7  *
8  * (C) Copyright 2002
9  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10  * Marius Groeger <mgroeger@sysgo.de>
11  *
12  * (C) Copyright 2002
13  * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14  * Alex Zuepke <azu@sysgo.de>
15  *
16  * Part of this file is adapted from coreboot
17  * src/arch/x86/lib/cpu.c
18  *
19  * SPDX-License-Identifier:	GPL-2.0+
20  */
21 
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/cpu.h>
29 #include <asm/lapic.h>
30 #include <asm/mp.h>
31 #include <asm/msr.h>
32 #include <asm/mtrr.h>
33 #include <asm/post.h>
34 #include <asm/processor.h>
35 #include <asm/processor-flags.h>
36 #include <asm/interrupt.h>
37 #include <asm/tables.h>
38 #include <linux/compiler.h>
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 /*
43  * Constructor for a conventional segment GDT (or LDT) entry
44  * This is a macro so it can be used in initialisers
45  */
46 #define GDT_ENTRY(flags, base, limit)			\
47 	((((base)  & 0xff000000ULL) << (56-24)) |	\
48 	 (((flags) & 0x0000f0ffULL) << 40) |		\
49 	 (((limit) & 0x000f0000ULL) << (48-16)) |	\
50 	 (((base)  & 0x00ffffffULL) << 16) |		\
51 	 (((limit) & 0x0000ffffULL)))
52 
53 struct gdt_ptr {
54 	u16 len;
55 	u32 ptr;
56 } __packed;
57 
58 struct cpu_device_id {
59 	unsigned vendor;
60 	unsigned device;
61 };
62 
63 struct cpuinfo_x86 {
64 	uint8_t x86;            /* CPU family */
65 	uint8_t x86_vendor;     /* CPU vendor */
66 	uint8_t x86_model;
67 	uint8_t x86_mask;
68 };
69 
70 /*
71  * List of cpu vendor strings along with their normalized
72  * id values.
73  */
74 static struct {
75 	int vendor;
76 	const char *name;
77 } x86_vendors[] = {
78 	{ X86_VENDOR_INTEL,     "GenuineIntel", },
79 	{ X86_VENDOR_CYRIX,     "CyrixInstead", },
80 	{ X86_VENDOR_AMD,       "AuthenticAMD", },
81 	{ X86_VENDOR_UMC,       "UMC UMC UMC ", },
82 	{ X86_VENDOR_NEXGEN,    "NexGenDriven", },
83 	{ X86_VENDOR_CENTAUR,   "CentaurHauls", },
84 	{ X86_VENDOR_RISE,      "RiseRiseRise", },
85 	{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
86 	{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
87 	{ X86_VENDOR_NSC,       "Geode by NSC", },
88 	{ X86_VENDOR_SIS,       "SiS SiS SiS ", },
89 };
90 
91 static const char *const x86_vendor_name[] = {
92 	[X86_VENDOR_INTEL]     = "Intel",
93 	[X86_VENDOR_CYRIX]     = "Cyrix",
94 	[X86_VENDOR_AMD]       = "AMD",
95 	[X86_VENDOR_UMC]       = "UMC",
96 	[X86_VENDOR_NEXGEN]    = "NexGen",
97 	[X86_VENDOR_CENTAUR]   = "Centaur",
98 	[X86_VENDOR_RISE]      = "Rise",
99 	[X86_VENDOR_TRANSMETA] = "Transmeta",
100 	[X86_VENDOR_NSC]       = "NSC",
101 	[X86_VENDOR_SIS]       = "SiS",
102 };
103 
104 static void load_ds(u32 segment)
105 {
106 	asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
107 }
108 
109 static void load_es(u32 segment)
110 {
111 	asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 }
113 
114 static void load_fs(u32 segment)
115 {
116 	asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 }
118 
119 static void load_gs(u32 segment)
120 {
121 	asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 }
123 
124 static void load_ss(u32 segment)
125 {
126 	asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
127 }
128 
129 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
130 {
131 	struct gdt_ptr gdt;
132 
133 	gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
134 	gdt.ptr = (u32)boot_gdt;
135 
136 	asm volatile("lgdtl %0\n" : : "m" (gdt));
137 }
138 
139 void arch_setup_gd(gd_t *new_gd)
140 {
141 	u64 *gdt_addr;
142 
143 	gdt_addr = new_gd->arch.gdt;
144 
145 	/*
146 	 * CS: code, read/execute, 4 GB, base 0
147 	 *
148 	 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
149 	 */
150 	gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
151 	gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
152 
153 	/* DS: data, read/write, 4 GB, base 0 */
154 	gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
155 
156 	/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
157 	new_gd->arch.gd_addr = new_gd;
158 	gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
159 		     (ulong)&new_gd->arch.gd_addr, 0xfffff);
160 
161 	/* 16-bit CS: code, read/execute, 64 kB, base 0 */
162 	gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
163 
164 	/* 16-bit DS: data, read/write, 64 kB, base 0 */
165 	gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
166 
167 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
168 	gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
169 
170 	load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
171 	load_ds(X86_GDT_ENTRY_32BIT_DS);
172 	load_es(X86_GDT_ENTRY_32BIT_DS);
173 	load_gs(X86_GDT_ENTRY_32BIT_DS);
174 	load_ss(X86_GDT_ENTRY_32BIT_DS);
175 	load_fs(X86_GDT_ENTRY_32BIT_FS);
176 }
177 
178 #ifdef CONFIG_HAVE_FSP
179 /*
180  * Setup FSP execution environment GDT
181  *
182  * Per Intel FSP external architecture specification, before calling any FSP
183  * APIs, we need make sure the system is in flat 32-bit mode and both the code
184  * and data selectors should have full 4GB access range. Here we reuse the one
185  * we used in arch/x86/cpu/start16.S, and reload the segement registers.
186  */
187 void setup_fsp_gdt(void)
188 {
189 	load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
190 	load_ds(X86_GDT_ENTRY_32BIT_DS);
191 	load_ss(X86_GDT_ENTRY_32BIT_DS);
192 	load_es(X86_GDT_ENTRY_32BIT_DS);
193 	load_fs(X86_GDT_ENTRY_32BIT_DS);
194 	load_gs(X86_GDT_ENTRY_32BIT_DS);
195 }
196 #endif
197 
198 int __weak x86_cleanup_before_linux(void)
199 {
200 #ifdef CONFIG_BOOTSTAGE_STASH
201 	bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
202 			CONFIG_BOOTSTAGE_STASH_SIZE);
203 #endif
204 
205 	return 0;
206 }
207 
208 /*
209  * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
210  * by the fact that they preserve the flags across the division of 5/2.
211  * PII and PPro exhibit this behavior too, but they have cpuid available.
212  */
213 
214 /*
215  * Perform the Cyrix 5/2 test. A Cyrix won't change
216  * the flags, while other 486 chips will.
217  */
218 static inline int test_cyrix_52div(void)
219 {
220 	unsigned int test;
221 
222 	__asm__ __volatile__(
223 	     "sahf\n\t"		/* clear flags (%eax = 0x0005) */
224 	     "div %b2\n\t"	/* divide 5 by 2 */
225 	     "lahf"		/* store flags into %ah */
226 	     : "=a" (test)
227 	     : "0" (5), "q" (2)
228 	     : "cc");
229 
230 	/* AH is 0x02 on Cyrix after the divide.. */
231 	return (unsigned char) (test >> 8) == 0x02;
232 }
233 
234 /*
235  *	Detect a NexGen CPU running without BIOS hypercode new enough
236  *	to have CPUID. (Thanks to Herbert Oppmann)
237  */
238 
239 static int deep_magic_nexgen_probe(void)
240 {
241 	int ret;
242 
243 	__asm__ __volatile__ (
244 		"	movw	$0x5555, %%ax\n"
245 		"	xorw	%%dx,%%dx\n"
246 		"	movw	$2, %%cx\n"
247 		"	divw	%%cx\n"
248 		"	movl	$0, %%eax\n"
249 		"	jnz	1f\n"
250 		"	movl	$1, %%eax\n"
251 		"1:\n"
252 		: "=a" (ret) : : "cx", "dx");
253 	return  ret;
254 }
255 
256 static bool has_cpuid(void)
257 {
258 	return flag_is_changeable_p(X86_EFLAGS_ID);
259 }
260 
261 static bool has_mtrr(void)
262 {
263 	return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
264 }
265 
266 static int build_vendor_name(char *vendor_name)
267 {
268 	struct cpuid_result result;
269 	result = cpuid(0x00000000);
270 	unsigned int *name_as_ints = (unsigned int *)vendor_name;
271 
272 	name_as_ints[0] = result.ebx;
273 	name_as_ints[1] = result.edx;
274 	name_as_ints[2] = result.ecx;
275 
276 	return result.eax;
277 }
278 
279 static void identify_cpu(struct cpu_device_id *cpu)
280 {
281 	char vendor_name[16];
282 	int i;
283 
284 	vendor_name[0] = '\0'; /* Unset */
285 	cpu->device = 0; /* fix gcc 4.4.4 warning */
286 
287 	/* Find the id and vendor_name */
288 	if (!has_cpuid()) {
289 		/* Its a 486 if we can modify the AC flag */
290 		if (flag_is_changeable_p(X86_EFLAGS_AC))
291 			cpu->device = 0x00000400; /* 486 */
292 		else
293 			cpu->device = 0x00000300; /* 386 */
294 		if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
295 			memcpy(vendor_name, "CyrixInstead", 13);
296 			/* If we ever care we can enable cpuid here */
297 		}
298 		/* Detect NexGen with old hypercode */
299 		else if (deep_magic_nexgen_probe())
300 			memcpy(vendor_name, "NexGenDriven", 13);
301 	}
302 	if (has_cpuid()) {
303 		int  cpuid_level;
304 
305 		cpuid_level = build_vendor_name(vendor_name);
306 		vendor_name[12] = '\0';
307 
308 		/* Intel-defined flags: level 0x00000001 */
309 		if (cpuid_level >= 0x00000001) {
310 			cpu->device = cpuid_eax(0x00000001);
311 		} else {
312 			/* Have CPUID level 0 only unheard of */
313 			cpu->device = 0x00000400;
314 		}
315 	}
316 	cpu->vendor = X86_VENDOR_UNKNOWN;
317 	for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
318 		if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
319 			cpu->vendor = x86_vendors[i].vendor;
320 			break;
321 		}
322 	}
323 }
324 
325 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
326 {
327 	c->x86 = (tfms >> 8) & 0xf;
328 	c->x86_model = (tfms >> 4) & 0xf;
329 	c->x86_mask = tfms & 0xf;
330 	if (c->x86 == 0xf)
331 		c->x86 += (tfms >> 20) & 0xff;
332 	if (c->x86 >= 0x6)
333 		c->x86_model += ((tfms >> 16) & 0xF) << 4;
334 }
335 
336 int x86_cpu_init_f(void)
337 {
338 	const u32 em_rst = ~X86_CR0_EM;
339 	const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
340 
341 	if (ll_boot_init()) {
342 		/* initialize FPU, reset EM, set MP and NE */
343 		asm ("fninit\n" \
344 		"movl %%cr0, %%eax\n" \
345 		"andl %0, %%eax\n" \
346 		"orl  %1, %%eax\n" \
347 		"movl %%eax, %%cr0\n" \
348 		: : "i" (em_rst), "i" (mp_ne_set) : "eax");
349 	}
350 
351 	/* identify CPU via cpuid and store the decoded info into gd->arch */
352 	if (has_cpuid()) {
353 		struct cpu_device_id cpu;
354 		struct cpuinfo_x86 c;
355 
356 		identify_cpu(&cpu);
357 		get_fms(&c, cpu.device);
358 		gd->arch.x86 = c.x86;
359 		gd->arch.x86_vendor = cpu.vendor;
360 		gd->arch.x86_model = c.x86_model;
361 		gd->arch.x86_mask = c.x86_mask;
362 		gd->arch.x86_device = cpu.device;
363 
364 		gd->arch.has_mtrr = has_mtrr();
365 	}
366 	/* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
367 	gd->pci_ram_top = 0x80000000U;
368 
369 	/* Configure fixed range MTRRs for some legacy regions */
370 	if (gd->arch.has_mtrr) {
371 		u64 mtrr_cap;
372 
373 		mtrr_cap = native_read_msr(MTRR_CAP_MSR);
374 		if (mtrr_cap & MTRR_CAP_FIX) {
375 			/* Mark the VGA RAM area as uncacheable */
376 			native_write_msr(MTRR_FIX_16K_A0000_MSR,
377 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
378 					 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
379 
380 			/*
381 			 * Mark the PCI ROM area as cacheable to improve ROM
382 			 * execution performance.
383 			 */
384 			native_write_msr(MTRR_FIX_4K_C0000_MSR,
385 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
386 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
387 			native_write_msr(MTRR_FIX_4K_C8000_MSR,
388 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
389 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
390 			native_write_msr(MTRR_FIX_4K_D0000_MSR,
391 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
392 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
393 			native_write_msr(MTRR_FIX_4K_D8000_MSR,
394 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
395 					 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
396 
397 			/* Enable the fixed range MTRRs */
398 			msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
399 		}
400 	}
401 
402 #ifdef CONFIG_I8254_TIMER
403 	/* Set up the i8254 timer if required */
404 	i8254_init();
405 #endif
406 
407 	return 0;
408 }
409 
410 void x86_enable_caches(void)
411 {
412 	unsigned long cr0;
413 
414 	cr0 = read_cr0();
415 	cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
416 	write_cr0(cr0);
417 	wbinvd();
418 }
419 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
420 
421 void x86_disable_caches(void)
422 {
423 	unsigned long cr0;
424 
425 	cr0 = read_cr0();
426 	cr0 |= X86_CR0_NW | X86_CR0_CD;
427 	wbinvd();
428 	write_cr0(cr0);
429 	wbinvd();
430 }
431 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
432 
433 int x86_init_cache(void)
434 {
435 	enable_caches();
436 
437 	return 0;
438 }
439 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
440 
441 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
442 {
443 	printf("resetting ...\n");
444 
445 	/* wait 50 ms */
446 	udelay(50000);
447 	disable_interrupts();
448 	reset_cpu(0);
449 
450 	/*NOTREACHED*/
451 	return 0;
452 }
453 
454 void  flush_cache(unsigned long dummy1, unsigned long dummy2)
455 {
456 	asm("wbinvd\n");
457 }
458 
459 __weak void reset_cpu(ulong addr)
460 {
461 	/* Do a hard reset through the chipset's reset control register */
462 	outb(SYS_RST | RST_CPU, PORT_RESET);
463 	for (;;)
464 		cpu_hlt();
465 }
466 
467 void x86_full_reset(void)
468 {
469 	outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
470 }
471 
472 int dcache_status(void)
473 {
474 	return !(read_cr0() & X86_CR0_CD);
475 }
476 
477 /* Define these functions to allow ehch-hcd to function */
478 void flush_dcache_range(unsigned long start, unsigned long stop)
479 {
480 }
481 
482 void invalidate_dcache_range(unsigned long start, unsigned long stop)
483 {
484 }
485 
486 void dcache_enable(void)
487 {
488 	enable_caches();
489 }
490 
491 void dcache_disable(void)
492 {
493 	disable_caches();
494 }
495 
496 void icache_enable(void)
497 {
498 }
499 
500 void icache_disable(void)
501 {
502 }
503 
504 int icache_status(void)
505 {
506 	return 1;
507 }
508 
509 void cpu_enable_paging_pae(ulong cr3)
510 {
511 	__asm__ __volatile__(
512 		/* Load the page table address */
513 		"movl	%0, %%cr3\n"
514 		/* Enable pae */
515 		"movl	%%cr4, %%eax\n"
516 		"orl	$0x00000020, %%eax\n"
517 		"movl	%%eax, %%cr4\n"
518 		/* Enable paging */
519 		"movl	%%cr0, %%eax\n"
520 		"orl	$0x80000000, %%eax\n"
521 		"movl	%%eax, %%cr0\n"
522 		:
523 		: "r" (cr3)
524 		: "eax");
525 }
526 
527 void cpu_disable_paging_pae(void)
528 {
529 	/* Turn off paging */
530 	__asm__ __volatile__ (
531 		/* Disable paging */
532 		"movl	%%cr0, %%eax\n"
533 		"andl	$0x7fffffff, %%eax\n"
534 		"movl	%%eax, %%cr0\n"
535 		/* Disable pae */
536 		"movl	%%cr4, %%eax\n"
537 		"andl	$0xffffffdf, %%eax\n"
538 		"movl	%%eax, %%cr4\n"
539 		:
540 		:
541 		: "eax");
542 }
543 
544 static bool can_detect_long_mode(void)
545 {
546 	return cpuid_eax(0x80000000) > 0x80000000UL;
547 }
548 
549 static bool has_long_mode(void)
550 {
551 	return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
552 }
553 
554 int cpu_has_64bit(void)
555 {
556 	return has_cpuid() && can_detect_long_mode() &&
557 		has_long_mode();
558 }
559 
560 const char *cpu_vendor_name(int vendor)
561 {
562 	const char *name;
563 	name = "<invalid cpu vendor>";
564 	if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
565 	    (x86_vendor_name[vendor] != 0))
566 		name = x86_vendor_name[vendor];
567 
568 	return name;
569 }
570 
571 char *cpu_get_name(char *name)
572 {
573 	unsigned int *name_as_ints = (unsigned int *)name;
574 	struct cpuid_result regs;
575 	char *ptr;
576 	int i;
577 
578 	/* This bit adds up to 48 bytes */
579 	for (i = 0; i < 3; i++) {
580 		regs = cpuid(0x80000002 + i);
581 		name_as_ints[i * 4 + 0] = regs.eax;
582 		name_as_ints[i * 4 + 1] = regs.ebx;
583 		name_as_ints[i * 4 + 2] = regs.ecx;
584 		name_as_ints[i * 4 + 3] = regs.edx;
585 	}
586 	name[CPU_MAX_NAME_LEN - 1] = '\0';
587 
588 	/* Skip leading spaces. */
589 	ptr = name;
590 	while (*ptr == ' ')
591 		ptr++;
592 
593 	return ptr;
594 }
595 
596 int default_print_cpuinfo(void)
597 {
598 	printf("CPU: %s, vendor %s, device %xh\n",
599 	       cpu_has_64bit() ? "x86_64" : "x86",
600 	       cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
601 
602 	return 0;
603 }
604 
605 #define PAGETABLE_SIZE		(6 * 4096)
606 
607 /**
608  * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
609  *
610  * @pgtable: Pointer to a 24iKB block of memory
611  */
612 static void build_pagetable(uint32_t *pgtable)
613 {
614 	uint i;
615 
616 	memset(pgtable, '\0', PAGETABLE_SIZE);
617 
618 	/* Level 4 needs a single entry */
619 	pgtable[0] = (uint32_t)&pgtable[1024] + 7;
620 
621 	/* Level 3 has one 64-bit entry for each GiB of memory */
622 	for (i = 0; i < 4; i++) {
623 		pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
624 							0x1000 * i + 7;
625 	}
626 
627 	/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
628 	for (i = 0; i < 2048; i++)
629 		pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
630 }
631 
632 int cpu_jump_to_64bit(ulong setup_base, ulong target)
633 {
634 	uint32_t *pgtable;
635 
636 	pgtable = memalign(4096, PAGETABLE_SIZE);
637 	if (!pgtable)
638 		return -ENOMEM;
639 
640 	build_pagetable(pgtable);
641 	cpu_call64((ulong)pgtable, setup_base, target);
642 	free(pgtable);
643 
644 	return -EFAULT;
645 }
646 
647 void show_boot_progress(int val)
648 {
649 	outb(val, POST_PORT);
650 }
651 
652 #ifndef CONFIG_SYS_COREBOOT
653 int last_stage_init(void)
654 {
655 	write_tables();
656 
657 	return 0;
658 }
659 #endif
660 
661 #ifdef CONFIG_SMP
662 static int enable_smis(struct udevice *cpu, void *unused)
663 {
664 	return 0;
665 }
666 
667 static struct mp_flight_record mp_steps[] = {
668 	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
669 	/* Wait for APs to finish initialization before proceeding */
670 	MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
671 };
672 
673 static int x86_mp_init(void)
674 {
675 	struct mp_params mp_params;
676 
677 	mp_params.parallel_microcode_load = 0,
678 	mp_params.flight_plan = &mp_steps[0];
679 	mp_params.num_records = ARRAY_SIZE(mp_steps);
680 	mp_params.microcode_pointer = 0;
681 
682 	if (mp_init(&mp_params)) {
683 		printf("Warning: MP init failure\n");
684 		return -EIO;
685 	}
686 
687 	return 0;
688 }
689 #endif
690 
691 __weak int x86_init_cpus(void)
692 {
693 #ifdef CONFIG_SMP
694 	debug("Init additional CPUs\n");
695 	x86_mp_init();
696 #else
697 	struct udevice *dev;
698 
699 	/*
700 	 * This causes the cpu-x86 driver to be probed.
701 	 * We don't check return value here as we want to allow boards
702 	 * which have not been converted to use cpu uclass driver to boot.
703 	 */
704 	uclass_first_device(UCLASS_CPU, &dev);
705 #endif
706 
707 	return 0;
708 }
709 
710 int cpu_init_r(void)
711 {
712 	if (ll_boot_init())
713 		return x86_init_cpus();
714 
715 	return 0;
716 }
717