xref: /openbmc/u-boot/arch/powerpc/cpu/mpc8xxx/law.c (revision b1e6c4c3d4a2b394096766d959aaa9b51a38099b)
1 /*
2  * Copyright 2008-2011 Freescale Semiconductor, Inc.
3  *
4  * (C) Copyright 2000
5  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6  *
7  * See file CREDITS for list of people who contributed to this
8  * project.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23  * MA 02111-1307 USA
24  */
25 
26 #include <common.h>
27 #include <linux/compiler.h>
28 #include <asm/fsl_law.h>
29 #include <asm/io.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 #define FSL_HW_NUM_LAWS CONFIG_SYS_FSL_NUM_LAWS
34 
35 #ifdef CONFIG_FSL_CORENET
36 #define LAW_BASE (CONFIG_SYS_FSL_CORENET_CCM_ADDR)
37 #define LAWAR_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawar)
38 #define LAWBARH_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarh)
39 #define LAWBARL_ADDR(x) (&((ccsr_local_t *)LAW_BASE)->law[x].lawbarl)
40 #define LAWBAR_SHIFT 0
41 #else
42 #define LAW_BASE (CONFIG_SYS_IMMR + 0xc08)
43 #define LAWAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x + 2)
44 #define LAWBAR_ADDR(x) ((u32 *)LAW_BASE + 8 * x)
45 #define LAWBAR_SHIFT 12
46 #endif
47 
48 
49 static inline phys_addr_t get_law_base_addr(int idx)
50 {
51 #ifdef CONFIG_FSL_CORENET
52 	return (phys_addr_t)
53 		((u64)in_be32(LAWBARH_ADDR(idx)) << 32) |
54 		in_be32(LAWBARL_ADDR(idx));
55 #else
56 	return (phys_addr_t)in_be32(LAWBAR_ADDR(idx)) << LAWBAR_SHIFT;
57 #endif
58 }
59 
60 static inline void set_law_base_addr(int idx, phys_addr_t addr)
61 {
62 #ifdef CONFIG_FSL_CORENET
63 	out_be32(LAWBARL_ADDR(idx), addr & 0xffffffff);
64 	out_be32(LAWBARH_ADDR(idx), (u64)addr >> 32);
65 #else
66 	out_be32(LAWBAR_ADDR(idx), addr >> LAWBAR_SHIFT);
67 #endif
68 }
69 
70 void set_law(u8 idx, phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
71 {
72 	gd->arch.used_laws |= (1 << idx);
73 
74 	out_be32(LAWAR_ADDR(idx), 0);
75 	set_law_base_addr(idx, addr);
76 	out_be32(LAWAR_ADDR(idx), LAW_EN | ((u32)id << 20) | (u32)sz);
77 
78 	/* Read back so that we sync the writes */
79 	in_be32(LAWAR_ADDR(idx));
80 }
81 
82 void disable_law(u8 idx)
83 {
84 	gd->arch.used_laws &= ~(1 << idx);
85 
86 	out_be32(LAWAR_ADDR(idx), 0);
87 	set_law_base_addr(idx, 0);
88 
89 	/* Read back so that we sync the writes */
90 	in_be32(LAWAR_ADDR(idx));
91 
92 	return;
93 }
94 
95 #if !defined(CONFIG_NAND_SPL) && !defined(CONFIG_SPL_BUILD)
96 static int get_law_entry(u8 i, struct law_entry *e)
97 {
98 	u32 lawar;
99 
100 	lawar = in_be32(LAWAR_ADDR(i));
101 
102 	if (!(lawar & LAW_EN))
103 		return 0;
104 
105 	e->addr = get_law_base_addr(i);
106 	e->size = lawar & 0x3f;
107 	e->trgt_id = (lawar >> 20) & 0xff;
108 
109 	return 1;
110 }
111 #endif
112 
113 int set_next_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
114 {
115 	u32 idx = ffz(gd->arch.used_laws);
116 
117 	if (idx >= FSL_HW_NUM_LAWS)
118 		return -1;
119 
120 	set_law(idx, addr, sz, id);
121 
122 	return idx;
123 }
124 
125 #if !defined(CONFIG_NAND_SPL) && !defined(CONFIG_SPL_BUILD)
126 int set_last_law(phys_addr_t addr, enum law_size sz, enum law_trgt_if id)
127 {
128 	u32 idx;
129 
130 	/* we have no LAWs free */
131 	if (gd->arch.used_laws == -1)
132 		return -1;
133 
134 	/* grab the last free law */
135 	idx = __ilog2(~(gd->arch.used_laws));
136 
137 	if (idx >= FSL_HW_NUM_LAWS)
138 		return -1;
139 
140 	set_law(idx, addr, sz, id);
141 
142 	return idx;
143 }
144 
145 struct law_entry find_law(phys_addr_t addr)
146 {
147 	struct law_entry entry;
148 	int i;
149 
150 	entry.index = -1;
151 	entry.addr = 0;
152 	entry.size = 0;
153 	entry.trgt_id = 0;
154 
155 	for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
156 		u64 upper;
157 
158 		if (!get_law_entry(i, &entry))
159 			continue;
160 
161 		upper = entry.addr + (2ull << entry.size);
162 		if ((addr >= entry.addr) && (addr < upper)) {
163 			entry.index = i;
164 			break;
165 		}
166 	}
167 
168 	return entry;
169 }
170 
171 void print_laws(void)
172 {
173 	int i;
174 	u32 lawar;
175 
176 	printf("\nLocal Access Window Configuration\n");
177 	for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
178 		lawar = in_be32(LAWAR_ADDR(i));
179 #ifdef CONFIG_FSL_CORENET
180 		printf("LAWBARH%02d: 0x%08x LAWBARL%02d: 0x%08x",
181 		       i, in_be32(LAWBARH_ADDR(i)),
182 		       i, in_be32(LAWBARL_ADDR(i)));
183 #else
184 		printf("LAWBAR%02d: 0x%08x", i, in_be32(LAWBAR_ADDR(i)));
185 #endif
186 		printf(" LAWAR%02d: 0x%08x\n", i, lawar);
187 		printf("\t(EN: %d TGT: 0x%02x SIZE: ",
188 		       (lawar & LAW_EN) ? 1 : 0, (lawar >> 20) & 0xff);
189 		print_size(lawar_size(lawar), ")\n");
190 	}
191 
192 	return;
193 }
194 
195 /* use up to 2 LAWs for DDR, used the last available LAWs */
196 int set_ddr_laws(u64 start, u64 sz, enum law_trgt_if id)
197 {
198 	u64 start_align, law_sz;
199 	int law_sz_enc;
200 
201 	if (start == 0)
202 		start_align = 1ull << (LAW_SIZE_32G + 1);
203 	else
204 		start_align = 1ull << (ffs64(start) - 1);
205 	law_sz = min(start_align, sz);
206 	law_sz_enc = __ilog2_u64(law_sz) - 1;
207 
208 	if (set_last_law(start, law_sz_enc, id) < 0)
209 		return -1;
210 
211 	/* recalculate size based on what was actually covered by the law */
212 	law_sz = 1ull << __ilog2_u64(law_sz);
213 
214 	/* do we still have anything to map */
215 	sz = sz - law_sz;
216 	if (sz) {
217 		start += law_sz;
218 
219 		start_align = 1ull << (ffs64(start) - 1);
220 		law_sz = min(start_align, sz);
221 		law_sz_enc = __ilog2_u64(law_sz) - 1;
222 
223 		if (set_last_law(start, law_sz_enc, id) < 0)
224 			return -1;
225 	} else {
226 		return 0;
227 	}
228 
229 	/* do we still have anything to map */
230 	sz = sz - law_sz;
231 	if (sz)
232 		return 1;
233 
234 	return 0;
235 }
236 #endif /* not SPL */
237 
238 void init_laws(void)
239 {
240 	int i;
241 
242 #if FSL_HW_NUM_LAWS < 32
243 	gd->arch.used_laws = ~((1 << FSL_HW_NUM_LAWS) - 1);
244 #elif FSL_HW_NUM_LAWS == 32
245 	gd->arch.used_laws = 0;
246 #else
247 #error FSL_HW_NUM_LAWS can not be greater than 32 w/o code changes
248 #endif
249 
250 	/*
251 	 * Any LAWs that were set up before we booted assume they are meant to
252 	 * be around and mark them used.
253 	 */
254 	for (i = 0; i < FSL_HW_NUM_LAWS; i++) {
255 		u32 lawar = in_be32(LAWAR_ADDR(i));
256 
257 		if (lawar & LAW_EN)
258 			gd->arch.used_laws |= (1 << i);
259 	}
260 
261 #if (defined(CONFIG_NAND_U_BOOT) && !defined(CONFIG_NAND_SPL)) || \
262 	(defined(CONFIG_SPL) && !defined(CONFIG_SPL_BUILD))
263 	/*
264 	 * in SPL boot we've already parsed the law_table and setup those LAWs
265 	 * so don't do it again.
266 	 */
267 	return;
268 #endif
269 
270 	for (i = 0; i < num_law_entries; i++) {
271 		if (law_table[i].index == -1)
272 			set_next_law(law_table[i].addr, law_table[i].size,
273 					law_table[i].trgt_id);
274 		else
275 			set_law(law_table[i].index, law_table[i].addr,
276 				law_table[i].size, law_table[i].trgt_id);
277 	}
278 
279 #ifdef CONFIG_SRIO_PCIE_BOOT_SLAVE
280 	/* check RCW to get which port is used for boot */
281 	ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
282 	u32 bootloc = in_be32(&gur->rcwsr[6]);
283 	/*
284 	 * in SRIO or PCIE boot we need to set specail LAWs for
285 	 * SRIO or PCIE interfaces.
286 	 */
287 	switch ((bootloc & FSL_CORENET_RCWSR6_BOOT_LOC) >> 23) {
288 	case 0x0: /* boot from PCIE1 */
289 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
290 				LAW_SIZE_1M,
291 				LAW_TRGT_IF_PCIE_1);
292 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
293 				LAW_SIZE_1M,
294 				LAW_TRGT_IF_PCIE_1);
295 		break;
296 	case 0x1: /* boot from PCIE2 */
297 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
298 				LAW_SIZE_1M,
299 				LAW_TRGT_IF_PCIE_2);
300 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
301 				LAW_SIZE_1M,
302 				LAW_TRGT_IF_PCIE_2);
303 		break;
304 	case 0x2: /* boot from PCIE3 */
305 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
306 				LAW_SIZE_1M,
307 				LAW_TRGT_IF_PCIE_3);
308 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
309 				LAW_SIZE_1M,
310 				LAW_TRGT_IF_PCIE_3);
311 		break;
312 	case 0x8: /* boot from SRIO1 */
313 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
314 				LAW_SIZE_1M,
315 				LAW_TRGT_IF_RIO_1);
316 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
317 				LAW_SIZE_1M,
318 				LAW_TRGT_IF_RIO_1);
319 		break;
320 	case 0x9: /* boot from SRIO2 */
321 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_SLAVE_ADDR_PHYS,
322 				LAW_SIZE_1M,
323 				LAW_TRGT_IF_RIO_2);
324 		set_next_law(CONFIG_SYS_SRIO_PCIE_BOOT_UCODE_ENV_ADDR_PHYS,
325 				LAW_SIZE_1M,
326 				LAW_TRGT_IF_RIO_2);
327 		break;
328 	default:
329 		break;
330 	}
331 #endif
332 
333 	return ;
334 }
335