1 /* longlong.h -- definitions for mixed size 32/64 bit arithmetic. 2 Copyright (C) 1991, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2004, 3 2005 Free Software Foundation, Inc. 4 5 This definition file is free software; you can redistribute it 6 and/or modify it under the terms of the GNU General Public 7 License as published by the Free Software Foundation; either 8 version 2, or (at your option) any later version. 9 10 This definition file is distributed in the hope that it will be 11 useful, but WITHOUT ANY WARRANTY; without even the implied 12 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 13 See the GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, write to the Free Software 17 Foundation, Inc., 51 Franklin Street, Fifth Floor, 18 Boston, MA 02110-1301, USA. */ 19 20 /* You have to define the following before including this file: 21 22 UWtype -- An unsigned type, default type for operations (typically a "word") 23 UHWtype -- An unsigned type, at least half the size of UWtype. 24 UDWtype -- An unsigned type, at least twice as large a UWtype 25 W_TYPE_SIZE -- size in bits of UWtype 26 27 UQItype -- Unsigned 8 bit type. 28 SItype, USItype -- Signed and unsigned 32 bit types. 29 DItype, UDItype -- Signed and unsigned 64 bit types. 30 31 On a 32 bit machine UWtype should typically be USItype; 32 on a 64 bit machine, UWtype should typically be UDItype. */ 33 34 #define __BITS4 (W_TYPE_SIZE / 4) 35 #define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2)) 36 #define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1)) 37 #define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2)) 38 39 #ifndef W_TYPE_SIZE 40 #define W_TYPE_SIZE 32 41 #define UWtype USItype 42 #define UHWtype USItype 43 #define UDWtype UDItype 44 #endif 45 46 extern const UQItype __clz_tab[256]; 47 48 /* Define auxiliary asm macros. 49 50 1) umul_ppmm(high_prod, low_prod, multiplier, multiplicand) multiplies two 51 UWtype integers MULTIPLIER and MULTIPLICAND, and generates a two UWtype 52 word product in HIGH_PROD and LOW_PROD. 53 54 2) __umulsidi3(a,b) multiplies two UWtype integers A and B, and returns a 55 UDWtype product. This is just a variant of umul_ppmm. 56 57 3) udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, 58 denominator) divides a UDWtype, composed by the UWtype integers 59 HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient 60 in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less 61 than DENOMINATOR for correct operation. If, in addition, the most 62 significant bit of DENOMINATOR must be 1, then the pre-processor symbol 63 UDIV_NEEDS_NORMALIZATION is defined to 1. 64 65 4) sdiv_qrnnd(quotient, remainder, high_numerator, low_numerator, 66 denominator). Like udiv_qrnnd but the numbers are signed. The quotient 67 is rounded towards 0. 68 69 5) count_leading_zeros(count, x) counts the number of zero-bits from the 70 msb to the first nonzero bit in the UWtype X. This is the number of 71 steps X needs to be shifted left to set the msb. Undefined for X == 0, 72 unless the symbol COUNT_LEADING_ZEROS_0 is defined to some value. 73 74 6) count_trailing_zeros(count, x) like count_leading_zeros, but counts 75 from the least significant end. 76 77 7) add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, 78 high_addend_2, low_addend_2) adds two UWtype integers, composed by 79 HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 80 respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow 81 (i.e. carry out) is not stored anywhere, and is lost. 82 83 8) sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, 84 high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, 85 composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and 86 LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE 87 and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, 88 and is lost. 89 90 If any of these macros are left undefined for a particular CPU, 91 C macros are used. */ 92 93 /* The CPUs come in alphabetical order below. 94 95 Please add support for more CPUs here, or improve the current support 96 for the CPUs below! 97 (E.g. WE32100, IBM360.) */ 98 99 /* Snipped per CPU support */ 100 101 /* If this machine has no inline assembler, use C macros. */ 102 103 #if !defined (add_ssaaaa) 104 #define add_ssaaaa(sh, sl, ah, al, bh, bl) \ 105 do { \ 106 UWtype __x; \ 107 __x = (al) + (bl); \ 108 (sh) = (ah) + (bh) + (__x < (al)); \ 109 (sl) = __x; \ 110 } while (0) 111 #endif 112 113 #if !defined (sub_ddmmss) 114 #define sub_ddmmss(sh, sl, ah, al, bh, bl) \ 115 do { \ 116 UWtype __x; \ 117 __x = (al) - (bl); \ 118 (sh) = (ah) - (bh) - (__x > (al)); \ 119 (sl) = __x; \ 120 } while (0) 121 #endif 122 123 /* If we lack umul_ppmm but have smul_ppmm, define umul_ppmm in terms of 124 smul_ppmm. */ 125 #if !defined (umul_ppmm) && defined (smul_ppmm) 126 #define umul_ppmm(w1, w0, u, v) \ 127 do { \ 128 UWtype __w1; \ 129 UWtype __xm0 = (u), __xm1 = (v); \ 130 smul_ppmm (__w1, w0, __xm0, __xm1); \ 131 (w1) = __w1 + (-(__xm0 >> (W_TYPE_SIZE - 1)) & __xm1) \ 132 + (-(__xm1 >> (W_TYPE_SIZE - 1)) & __xm0); \ 133 } while (0) 134 #endif 135 136 /* If we still don't have umul_ppmm, define it using plain C. */ 137 #if !defined (umul_ppmm) 138 #define umul_ppmm(w1, w0, u, v) \ 139 do { \ 140 UWtype __x0, __x1, __x2, __x3; \ 141 UHWtype __ul, __vl, __uh, __vh; \ 142 \ 143 __ul = __ll_lowpart (u); \ 144 __uh = __ll_highpart (u); \ 145 __vl = __ll_lowpart (v); \ 146 __vh = __ll_highpart (v); \ 147 \ 148 __x0 = (UWtype) __ul * __vl; \ 149 __x1 = (UWtype) __ul * __vh; \ 150 __x2 = (UWtype) __uh * __vl; \ 151 __x3 = (UWtype) __uh * __vh; \ 152 \ 153 __x1 += __ll_highpart (__x0);/* this can't give carry */ \ 154 __x1 += __x2; /* but this indeed can */ \ 155 if (__x1 < __x2) /* did we get it? */ \ 156 __x3 += __ll_B; /* yes, add it in the proper pos. */ \ 157 \ 158 (w1) = __x3 + __ll_highpart (__x1); \ 159 (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0); \ 160 } while (0) 161 #endif 162 163 #if !defined (__umulsidi3) 164 #define __umulsidi3(u, v) \ 165 ({DWunion __w; \ 166 umul_ppmm (__w.s.high, __w.s.low, u, v); \ 167 __w.ll; }) 168 #endif 169 170 /* Define this unconditionally, so it can be used for debugging. */ 171 #define __udiv_qrnnd_c(q, r, n1, n0, d) \ 172 do { \ 173 UWtype __d1, __d0, __q1, __q0; \ 174 UWtype __r1, __r0, __m; \ 175 __d1 = __ll_highpart (d); \ 176 __d0 = __ll_lowpart (d); \ 177 \ 178 __r1 = (n1) % __d1; \ 179 __q1 = (n1) / __d1; \ 180 __m = (UWtype) __q1 * __d0; \ 181 __r1 = __r1 * __ll_B | __ll_highpart (n0); \ 182 if (__r1 < __m) \ 183 { \ 184 __q1--, __r1 += (d); \ 185 if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\ 186 if (__r1 < __m) \ 187 __q1--, __r1 += (d); \ 188 } \ 189 __r1 -= __m; \ 190 \ 191 __r0 = __r1 % __d1; \ 192 __q0 = __r1 / __d1; \ 193 __m = (UWtype) __q0 * __d0; \ 194 __r0 = __r0 * __ll_B | __ll_lowpart (n0); \ 195 if (__r0 < __m) \ 196 { \ 197 __q0--, __r0 += (d); \ 198 if (__r0 >= (d)) \ 199 if (__r0 < __m) \ 200 __q0--, __r0 += (d); \ 201 } \ 202 __r0 -= __m; \ 203 \ 204 (q) = (UWtype) __q1 * __ll_B | __q0; \ 205 (r) = __r0; \ 206 } while (0) 207 208 /* If the processor has no udiv_qrnnd but sdiv_qrnnd, go through 209 __udiv_w_sdiv (defined in libgcc or elsewhere). */ 210 #if !defined (udiv_qrnnd) && defined (sdiv_qrnnd) 211 #define udiv_qrnnd(q, r, nh, nl, d) \ 212 do { \ 213 USItype __r; \ 214 (q) = __udiv_w_sdiv (&__r, nh, nl, d); \ 215 (r) = __r; \ 216 } while (0) 217 #endif 218 219 /* If udiv_qrnnd was not defined for this processor, use __udiv_qrnnd_c. */ 220 #if !defined (udiv_qrnnd) 221 #define UDIV_NEEDS_NORMALIZATION 1 222 #define udiv_qrnnd __udiv_qrnnd_c 223 #endif 224 225 #if !defined (count_leading_zeros) 226 #define count_leading_zeros(count, x) \ 227 do { \ 228 UWtype __xr = (x); \ 229 UWtype __a; \ 230 \ 231 if (W_TYPE_SIZE <= 32) \ 232 { \ 233 __a = __xr < ((UWtype)1<<2*__BITS4) \ 234 ? (__xr < ((UWtype)1<<__BITS4) ? 0 : __BITS4) \ 235 : (__xr < ((UWtype)1<<3*__BITS4) ? 2*__BITS4 : 3*__BITS4); \ 236 } \ 237 else \ 238 { \ 239 for (__a = W_TYPE_SIZE - 8; __a > 0; __a -= 8) \ 240 if (((__xr >> __a) & 0xff) != 0) \ 241 break; \ 242 } \ 243 \ 244 (count) = W_TYPE_SIZE - (__clz_tab[__xr >> __a] + __a); \ 245 } while (0) 246 #define COUNT_LEADING_ZEROS_0 W_TYPE_SIZE 247 #endif 248 249 #if !defined (count_trailing_zeros) 250 /* Define count_trailing_zeros using count_leading_zeros. The latter might be 251 defined in asm, but if it is not, the C version above is good enough. */ 252 #define count_trailing_zeros(count, x) \ 253 do { \ 254 UWtype __ctz_x = (x); \ 255 UWtype __ctz_c; \ 256 count_leading_zeros (__ctz_c, __ctz_x & -__ctz_x); \ 257 (count) = W_TYPE_SIZE - 1 - __ctz_c; \ 258 } while (0) 259 #endif 260 261 #ifndef UDIV_NEEDS_NORMALIZATION 262 #define UDIV_NEEDS_NORMALIZATION 0 263 #endif 264