xref: /openbmc/u-boot/arch/mips/include/asm/bitops.h (revision 872cfa20cd694fdbfa76abddd3cd00b05ad5355b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 1994 - 1997, 1999, 2000  Ralf Baechle (ralf@gnu.org)
4  * Copyright (c) 2000  Silicon Graphics, Inc.
5  */
6 #ifndef _ASM_BITOPS_H
7 #define _ASM_BITOPS_H
8 
9 #include <linux/types.h>
10 #include <asm/byteorder.h>		/* sigh ... */
11 
12 #ifdef __KERNEL__
13 
14 #include <asm/sgidefs.h>
15 #include <asm/system.h>
16 
17 #include <asm-generic/bitops/fls.h>
18 #include <asm-generic/bitops/__fls.h>
19 #include <asm-generic/bitops/fls64.h>
20 #include <asm-generic/bitops/__ffs.h>
21 
22 /*
23  * clear_bit() doesn't provide any barrier for the compiler.
24  */
25 #define smp_mb__before_clear_bit()	barrier()
26 #define smp_mb__after_clear_bit()	barrier()
27 
28 /*
29  * Only disable interrupt for kernel mode stuff to keep usermode stuff
30  * that dares to use kernel include files alive.
31  */
32 #define __bi_flags unsigned long flags
33 #define __bi_cli() __cli()
34 #define __bi_save_flags(x) __save_flags(x)
35 #define __bi_save_and_cli(x) __save_and_cli(x)
36 #define __bi_restore_flags(x) __restore_flags(x)
37 #else
38 #define __bi_flags
39 #define __bi_cli()
40 #define __bi_save_flags(x)
41 #define __bi_save_and_cli(x)
42 #define __bi_restore_flags(x)
43 #endif /* __KERNEL__ */
44 
45 #ifdef CONFIG_CPU_HAS_LLSC
46 
47 #include <asm/mipsregs.h>
48 
49 /*
50  * These functions for MIPS ISA > 1 are interrupt and SMP proof and
51  * interrupt friendly
52  */
53 
54 /*
55  * set_bit - Atomically set a bit in memory
56  * @nr: the bit to set
57  * @addr: the address to start counting from
58  *
59  * This function is atomic and may not be reordered.  See __set_bit()
60  * if you do not require the atomic guarantees.
61  * Note that @nr may be almost arbitrarily large; this function is not
62  * restricted to acting on a single-word quantity.
63  */
64 static __inline__ void
65 set_bit(int nr, volatile void *addr)
66 {
67 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
68 	unsigned long temp;
69 
70 	__asm__ __volatile__(
71 		"1:\tll\t%0, %1\t\t# set_bit\n\t"
72 		"or\t%0, %2\n\t"
73 		"sc\t%0, %1\n\t"
74 		"beqz\t%0, 1b"
75 		: "=&r" (temp), "=m" (*m)
76 		: "ir" (1UL << (nr & 0x1f)), "m" (*m));
77 }
78 
79 /*
80  * __set_bit - Set a bit in memory
81  * @nr: the bit to set
82  * @addr: the address to start counting from
83  *
84  * Unlike set_bit(), this function is non-atomic and may be reordered.
85  * If it's called on the same region of memory simultaneously, the effect
86  * may be that only one operation succeeds.
87  */
88 static __inline__ void __set_bit(int nr, volatile void * addr)
89 {
90 	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
91 
92 	*m |= 1UL << (nr & 31);
93 }
94 #define PLATFORM__SET_BIT
95 
96 /*
97  * clear_bit - Clears a bit in memory
98  * @nr: Bit to clear
99  * @addr: Address to start counting from
100  *
101  * clear_bit() is atomic and may not be reordered.  However, it does
102  * not contain a memory barrier, so if it is used for locking purposes,
103  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
104  * in order to ensure changes are visible on other processors.
105  */
106 static __inline__ void
107 clear_bit(int nr, volatile void *addr)
108 {
109 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
110 	unsigned long temp;
111 
112 	__asm__ __volatile__(
113 		"1:\tll\t%0, %1\t\t# clear_bit\n\t"
114 		"and\t%0, %2\n\t"
115 		"sc\t%0, %1\n\t"
116 		"beqz\t%0, 1b\n\t"
117 		: "=&r" (temp), "=m" (*m)
118 		: "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
119 }
120 
121 /*
122  * change_bit - Toggle a bit in memory
123  * @nr: Bit to clear
124  * @addr: Address to start counting from
125  *
126  * change_bit() is atomic and may not be reordered.
127  * Note that @nr may be almost arbitrarily large; this function is not
128  * restricted to acting on a single-word quantity.
129  */
130 static __inline__ void
131 change_bit(int nr, volatile void *addr)
132 {
133 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
134 	unsigned long temp;
135 
136 	__asm__ __volatile__(
137 		"1:\tll\t%0, %1\t\t# change_bit\n\t"
138 		"xor\t%0, %2\n\t"
139 		"sc\t%0, %1\n\t"
140 		"beqz\t%0, 1b"
141 		: "=&r" (temp), "=m" (*m)
142 		: "ir" (1UL << (nr & 0x1f)), "m" (*m));
143 }
144 
145 /*
146  * __change_bit - Toggle a bit in memory
147  * @nr: the bit to set
148  * @addr: the address to start counting from
149  *
150  * Unlike change_bit(), this function is non-atomic and may be reordered.
151  * If it's called on the same region of memory simultaneously, the effect
152  * may be that only one operation succeeds.
153  */
154 static __inline__ void __change_bit(int nr, volatile void * addr)
155 {
156 	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
157 
158 	*m ^= 1UL << (nr & 31);
159 }
160 
161 /*
162  * test_and_set_bit - Set a bit and return its old value
163  * @nr: Bit to set
164  * @addr: Address to count from
165  *
166  * This operation is atomic and cannot be reordered.
167  * It also implies a memory barrier.
168  */
169 static __inline__ int
170 test_and_set_bit(int nr, volatile void *addr)
171 {
172 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
173 	unsigned long temp, res;
174 
175 	__asm__ __volatile__(
176 		".set\tnoreorder\t\t# test_and_set_bit\n"
177 		"1:\tll\t%0, %1\n\t"
178 		"or\t%2, %0, %3\n\t"
179 		"sc\t%2, %1\n\t"
180 		"beqz\t%2, 1b\n\t"
181 		" and\t%2, %0, %3\n\t"
182 		".set\treorder"
183 		: "=&r" (temp), "=m" (*m), "=&r" (res)
184 		: "r" (1UL << (nr & 0x1f)), "m" (*m)
185 		: "memory");
186 
187 	return res != 0;
188 }
189 
190 /*
191  * __test_and_set_bit - Set a bit and return its old value
192  * @nr: Bit to set
193  * @addr: Address to count from
194  *
195  * This operation is non-atomic and can be reordered.
196  * If two examples of this operation race, one can appear to succeed
197  * but actually fail.  You must protect multiple accesses with a lock.
198  */
199 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
200 {
201 	int mask, retval;
202 	volatile int *a = addr;
203 
204 	a += nr >> 5;
205 	mask = 1 << (nr & 0x1f);
206 	retval = (mask & *a) != 0;
207 	*a |= mask;
208 
209 	return retval;
210 }
211 
212 /*
213  * test_and_clear_bit - Clear a bit and return its old value
214  * @nr: Bit to set
215  * @addr: Address to count from
216  *
217  * This operation is atomic and cannot be reordered.
218  * It also implies a memory barrier.
219  */
220 static __inline__ int
221 test_and_clear_bit(int nr, volatile void *addr)
222 {
223 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
224 	unsigned long temp, res;
225 
226 	__asm__ __volatile__(
227 		".set\tnoreorder\t\t# test_and_clear_bit\n"
228 		"1:\tll\t%0, %1\n\t"
229 		"or\t%2, %0, %3\n\t"
230 		"xor\t%2, %3\n\t"
231 		"sc\t%2, %1\n\t"
232 		"beqz\t%2, 1b\n\t"
233 		" and\t%2, %0, %3\n\t"
234 		".set\treorder"
235 		: "=&r" (temp), "=m" (*m), "=&r" (res)
236 		: "r" (1UL << (nr & 0x1f)), "m" (*m)
237 		: "memory");
238 
239 	return res != 0;
240 }
241 
242 /*
243  * __test_and_clear_bit - Clear a bit and return its old value
244  * @nr: Bit to set
245  * @addr: Address to count from
246  *
247  * This operation is non-atomic and can be reordered.
248  * If two examples of this operation race, one can appear to succeed
249  * but actually fail.  You must protect multiple accesses with a lock.
250  */
251 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
252 {
253 	int	mask, retval;
254 	volatile int	*a = addr;
255 
256 	a += nr >> 5;
257 	mask = 1 << (nr & 0x1f);
258 	retval = (mask & *a) != 0;
259 	*a &= ~mask;
260 
261 	return retval;
262 }
263 
264 /*
265  * test_and_change_bit - Change a bit and return its new value
266  * @nr: Bit to set
267  * @addr: Address to count from
268  *
269  * This operation is atomic and cannot be reordered.
270  * It also implies a memory barrier.
271  */
272 static __inline__ int
273 test_and_change_bit(int nr, volatile void *addr)
274 {
275 	unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
276 	unsigned long temp, res;
277 
278 	__asm__ __volatile__(
279 		".set\tnoreorder\t\t# test_and_change_bit\n"
280 		"1:\tll\t%0, %1\n\t"
281 		"xor\t%2, %0, %3\n\t"
282 		"sc\t%2, %1\n\t"
283 		"beqz\t%2, 1b\n\t"
284 		" and\t%2, %0, %3\n\t"
285 		".set\treorder"
286 		: "=&r" (temp), "=m" (*m), "=&r" (res)
287 		: "r" (1UL << (nr & 0x1f)), "m" (*m)
288 		: "memory");
289 
290 	return res != 0;
291 }
292 
293 /*
294  * __test_and_change_bit - Change a bit and return its old value
295  * @nr: Bit to set
296  * @addr: Address to count from
297  *
298  * This operation is non-atomic and can be reordered.
299  * If two examples of this operation race, one can appear to succeed
300  * but actually fail.  You must protect multiple accesses with a lock.
301  */
302 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
303 {
304 	int	mask, retval;
305 	volatile int	*a = addr;
306 
307 	a += nr >> 5;
308 	mask = 1 << (nr & 0x1f);
309 	retval = (mask & *a) != 0;
310 	*a ^= mask;
311 
312 	return retval;
313 }
314 
315 #else /* MIPS I */
316 
317 /*
318  * set_bit - Atomically set a bit in memory
319  * @nr: the bit to set
320  * @addr: the address to start counting from
321  *
322  * This function is atomic and may not be reordered.  See __set_bit()
323  * if you do not require the atomic guarantees.
324  * Note that @nr may be almost arbitrarily large; this function is not
325  * restricted to acting on a single-word quantity.
326  */
327 static __inline__ void set_bit(int nr, volatile void * addr)
328 {
329 	int	mask;
330 	volatile int	*a = addr;
331 	__bi_flags;
332 
333 	a += nr >> 5;
334 	mask = 1 << (nr & 0x1f);
335 	__bi_save_and_cli(flags);
336 	*a |= mask;
337 	__bi_restore_flags(flags);
338 }
339 
340 /*
341  * __set_bit - Set a bit in memory
342  * @nr: the bit to set
343  * @addr: the address to start counting from
344  *
345  * Unlike set_bit(), this function is non-atomic and may be reordered.
346  * If it's called on the same region of memory simultaneously, the effect
347  * may be that only one operation succeeds.
348  */
349 static __inline__ void __set_bit(int nr, volatile void * addr)
350 {
351 	int	mask;
352 	volatile int	*a = addr;
353 
354 	a += nr >> 5;
355 	mask = 1 << (nr & 0x1f);
356 	*a |= mask;
357 }
358 
359 /*
360  * clear_bit - Clears a bit in memory
361  * @nr: Bit to clear
362  * @addr: Address to start counting from
363  *
364  * clear_bit() is atomic and may not be reordered.  However, it does
365  * not contain a memory barrier, so if it is used for locking purposes,
366  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
367  * in order to ensure changes are visible on other processors.
368  */
369 static __inline__ void clear_bit(int nr, volatile void * addr)
370 {
371 	int	mask;
372 	volatile int	*a = addr;
373 	__bi_flags;
374 
375 	a += nr >> 5;
376 	mask = 1 << (nr & 0x1f);
377 	__bi_save_and_cli(flags);
378 	*a &= ~mask;
379 	__bi_restore_flags(flags);
380 }
381 
382 /*
383  * change_bit - Toggle a bit in memory
384  * @nr: Bit to clear
385  * @addr: Address to start counting from
386  *
387  * change_bit() is atomic and may not be reordered.
388  * Note that @nr may be almost arbitrarily large; this function is not
389  * restricted to acting on a single-word quantity.
390  */
391 static __inline__ void change_bit(int nr, volatile void * addr)
392 {
393 	int	mask;
394 	volatile int	*a = addr;
395 	__bi_flags;
396 
397 	a += nr >> 5;
398 	mask = 1 << (nr & 0x1f);
399 	__bi_save_and_cli(flags);
400 	*a ^= mask;
401 	__bi_restore_flags(flags);
402 }
403 
404 /*
405  * __change_bit - Toggle a bit in memory
406  * @nr: the bit to set
407  * @addr: the address to start counting from
408  *
409  * Unlike change_bit(), this function is non-atomic and may be reordered.
410  * If it's called on the same region of memory simultaneously, the effect
411  * may be that only one operation succeeds.
412  */
413 static __inline__ void __change_bit(int nr, volatile void * addr)
414 {
415 	unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
416 
417 	*m ^= 1UL << (nr & 31);
418 }
419 
420 /*
421  * test_and_set_bit - Set a bit and return its old value
422  * @nr: Bit to set
423  * @addr: Address to count from
424  *
425  * This operation is atomic and cannot be reordered.
426  * It also implies a memory barrier.
427  */
428 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
429 {
430 	int	mask, retval;
431 	volatile int	*a = addr;
432 	__bi_flags;
433 
434 	a += nr >> 5;
435 	mask = 1 << (nr & 0x1f);
436 	__bi_save_and_cli(flags);
437 	retval = (mask & *a) != 0;
438 	*a |= mask;
439 	__bi_restore_flags(flags);
440 
441 	return retval;
442 }
443 
444 /*
445  * __test_and_set_bit - Set a bit and return its old value
446  * @nr: Bit to set
447  * @addr: Address to count from
448  *
449  * This operation is non-atomic and can be reordered.
450  * If two examples of this operation race, one can appear to succeed
451  * but actually fail.  You must protect multiple accesses with a lock.
452  */
453 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
454 {
455 	int	mask, retval;
456 	volatile int	*a = addr;
457 
458 	a += nr >> 5;
459 	mask = 1 << (nr & 0x1f);
460 	retval = (mask & *a) != 0;
461 	*a |= mask;
462 
463 	return retval;
464 }
465 
466 /*
467  * test_and_clear_bit - Clear a bit and return its old value
468  * @nr: Bit to set
469  * @addr: Address to count from
470  *
471  * This operation is atomic and cannot be reordered.
472  * It also implies a memory barrier.
473  */
474 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
475 {
476 	int	mask, retval;
477 	volatile int	*a = addr;
478 	__bi_flags;
479 
480 	a += nr >> 5;
481 	mask = 1 << (nr & 0x1f);
482 	__bi_save_and_cli(flags);
483 	retval = (mask & *a) != 0;
484 	*a &= ~mask;
485 	__bi_restore_flags(flags);
486 
487 	return retval;
488 }
489 
490 /*
491  * __test_and_clear_bit - Clear a bit and return its old value
492  * @nr: Bit to set
493  * @addr: Address to count from
494  *
495  * This operation is non-atomic and can be reordered.
496  * If two examples of this operation race, one can appear to succeed
497  * but actually fail.  You must protect multiple accesses with a lock.
498  */
499 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
500 {
501 	int	mask, retval;
502 	volatile int	*a = addr;
503 
504 	a += nr >> 5;
505 	mask = 1 << (nr & 0x1f);
506 	retval = (mask & *a) != 0;
507 	*a &= ~mask;
508 
509 	return retval;
510 }
511 
512 /*
513  * test_and_change_bit - Change a bit and return its new value
514  * @nr: Bit to set
515  * @addr: Address to count from
516  *
517  * This operation is atomic and cannot be reordered.
518  * It also implies a memory barrier.
519  */
520 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
521 {
522 	int	mask, retval;
523 	volatile int	*a = addr;
524 	__bi_flags;
525 
526 	a += nr >> 5;
527 	mask = 1 << (nr & 0x1f);
528 	__bi_save_and_cli(flags);
529 	retval = (mask & *a) != 0;
530 	*a ^= mask;
531 	__bi_restore_flags(flags);
532 
533 	return retval;
534 }
535 
536 /*
537  * __test_and_change_bit - Change a bit and return its old value
538  * @nr: Bit to set
539  * @addr: Address to count from
540  *
541  * This operation is non-atomic and can be reordered.
542  * If two examples of this operation race, one can appear to succeed
543  * but actually fail.  You must protect multiple accesses with a lock.
544  */
545 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
546 {
547 	int	mask, retval;
548 	volatile int	*a = addr;
549 
550 	a += nr >> 5;
551 	mask = 1 << (nr & 0x1f);
552 	retval = (mask & *a) != 0;
553 	*a ^= mask;
554 
555 	return retval;
556 }
557 
558 #undef __bi_flags
559 #undef __bi_cli
560 #undef __bi_save_flags
561 #undef __bi_restore_flags
562 
563 #endif /* MIPS I */
564 
565 /*
566  * test_bit - Determine whether a bit is set
567  * @nr: bit number to test
568  * @addr: Address to start counting from
569  */
570 static __inline__ int test_bit(int nr, const volatile void *addr)
571 {
572 	return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
573 }
574 
575 #ifndef __MIPSEB__
576 
577 /* Little endian versions. */
578 
579 /*
580  * find_first_zero_bit - find the first zero bit in a memory region
581  * @addr: The address to start the search at
582  * @size: The maximum size to search
583  *
584  * Returns the bit-number of the first zero bit, not the number of the byte
585  * containing a bit.
586  */
587 static __inline__ int find_first_zero_bit (void *addr, unsigned size)
588 {
589 	unsigned long dummy;
590 	int res;
591 
592 	if (!size)
593 		return 0;
594 
595 	__asm__ (".set\tnoreorder\n\t"
596 		".set\tnoat\n"
597 		"1:\tsubu\t$1,%6,%0\n\t"
598 		"blez\t$1,2f\n\t"
599 		"lw\t$1,(%5)\n\t"
600 		"addiu\t%5,4\n\t"
601 #if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \
602     (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \
603     (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
604 		"beql\t%1,$1,1b\n\t"
605 		"addiu\t%0,32\n\t"
606 #else
607 		"addiu\t%0,32\n\t"
608 		"beq\t%1,$1,1b\n\t"
609 		"nop\n\t"
610 		"subu\t%0,32\n\t"
611 #endif
612 #ifdef __MIPSEB__
613 #error "Fix this for big endian"
614 #endif /* __MIPSEB__ */
615 		"li\t%1,1\n"
616 		"1:\tand\t%2,$1,%1\n\t"
617 		"beqz\t%2,2f\n\t"
618 		"sll\t%1,%1,1\n\t"
619 		"bnez\t%1,1b\n\t"
620 		"add\t%0,%0,1\n\t"
621 		".set\tat\n\t"
622 		".set\treorder\n"
623 		"2:"
624 		: "=r" (res), "=r" (dummy), "=r" (addr)
625 		: "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
626 		  "2" (addr), "r" (size)
627 		: "$1");
628 
629 	return res;
630 }
631 
632 /*
633  * find_next_zero_bit - find the first zero bit in a memory region
634  * @addr: The address to base the search on
635  * @offset: The bitnumber to start searching at
636  * @size: The maximum size to search
637  */
638 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
639 {
640 	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
641 	int set = 0, bit = offset & 31, res;
642 	unsigned long dummy;
643 
644 	if (bit) {
645 		/*
646 		 * Look for zero in first byte
647 		 */
648 #ifdef __MIPSEB__
649 #error "Fix this for big endian byte order"
650 #endif
651 		__asm__(".set\tnoreorder\n\t"
652 			".set\tnoat\n"
653 			"1:\tand\t$1,%4,%1\n\t"
654 			"beqz\t$1,1f\n\t"
655 			"sll\t%1,%1,1\n\t"
656 			"bnez\t%1,1b\n\t"
657 			"addiu\t%0,1\n\t"
658 			".set\tat\n\t"
659 			".set\treorder\n"
660 			"1:"
661 			: "=r" (set), "=r" (dummy)
662 			: "0" (0), "1" (1 << bit), "r" (*p)
663 			: "$1");
664 		if (set < (32 - bit))
665 			return set + offset;
666 		set = 32 - bit;
667 		p++;
668 	}
669 	/*
670 	 * No zero yet, search remaining full bytes for a zero
671 	 */
672 	res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));
673 	return offset + set + res;
674 }
675 
676 #endif /* !(__MIPSEB__) */
677 
678 /*
679  * ffz - find first zero in word.
680  * @word: The word to search
681  *
682  * Undefined if no zero exists, so code should check against ~0UL first.
683  */
684 static __inline__ unsigned long ffz(unsigned long word)
685 {
686 	unsigned int	__res;
687 	unsigned int	mask = 1;
688 
689 	__asm__ (
690 		".set\tnoreorder\n\t"
691 		".set\tnoat\n\t"
692 		"move\t%0,$0\n"
693 		"1:\tand\t$1,%2,%1\n\t"
694 		"beqz\t$1,2f\n\t"
695 		"sll\t%1,1\n\t"
696 		"bnez\t%1,1b\n\t"
697 		"addiu\t%0,1\n\t"
698 		".set\tat\n\t"
699 		".set\treorder\n"
700 		"2:\n\t"
701 		: "=&r" (__res), "=r" (mask)
702 		: "r" (word), "1" (mask)
703 		: "$1");
704 
705 	return __res;
706 }
707 
708 #ifdef __KERNEL__
709 
710 /*
711  * hweightN - returns the hamming weight of a N-bit word
712  * @x: the word to weigh
713  *
714  * The Hamming Weight of a number is the total number of bits set in it.
715  */
716 
717 #define hweight32(x) generic_hweight32(x)
718 #define hweight16(x) generic_hweight16(x)
719 #define hweight8(x) generic_hweight8(x)
720 
721 #endif /* __KERNEL__ */
722 
723 #ifdef __MIPSEB__
724 /*
725  * find_next_zero_bit - find the first zero bit in a memory region
726  * @addr: The address to base the search on
727  * @offset: The bitnumber to start searching at
728  * @size: The maximum size to search
729  */
730 static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
731 {
732 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
733 	unsigned long result = offset & ~31UL;
734 	unsigned long tmp;
735 
736 	if (offset >= size)
737 		return size;
738 	size -= result;
739 	offset &= 31UL;
740 	if (offset) {
741 		tmp = *(p++);
742 		tmp |= ~0UL >> (32-offset);
743 		if (size < 32)
744 			goto found_first;
745 		if (~tmp)
746 			goto found_middle;
747 		size -= 32;
748 		result += 32;
749 	}
750 	while (size & ~31UL) {
751 		if (~(tmp = *(p++)))
752 			goto found_middle;
753 		result += 32;
754 		size -= 32;
755 	}
756 	if (!size)
757 		return result;
758 	tmp = *p;
759 
760 found_first:
761 	tmp |= ~0UL << size;
762 found_middle:
763 	return result + ffz(tmp);
764 }
765 
766 /* Linus sez that gcc can optimize the following correctly, we'll see if this
767  * holds on the Sparc as it does for the ALPHA.
768  */
769 
770 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
771 /*
772  * find_first_zero_bit - find the first zero bit in a memory region
773  * @addr: The address to start the search at
774  * @size: The maximum size to search
775  *
776  * Returns the bit-number of the first zero bit, not the number of the byte
777  * containing a bit.
778  */
779 static int find_first_zero_bit (void *addr, unsigned size);
780 #endif
781 
782 #define find_first_zero_bit(addr, size) \
783 	find_next_zero_bit((addr), (size), 0)
784 
785 #endif /* (__MIPSEB__) */
786 
787 /* Now for the ext2 filesystem bit operations and helper routines. */
788 
789 #ifdef __MIPSEB__
790 static __inline__ int ext2_set_bit(int nr, void * addr)
791 {
792 	int		mask, retval, flags;
793 	unsigned char	*ADDR = (unsigned char *) addr;
794 
795 	ADDR += nr >> 3;
796 	mask = 1 << (nr & 0x07);
797 	save_and_cli(flags);
798 	retval = (mask & *ADDR) != 0;
799 	*ADDR |= mask;
800 	restore_flags(flags);
801 	return retval;
802 }
803 
804 static __inline__ int ext2_clear_bit(int nr, void * addr)
805 {
806 	int		mask, retval, flags;
807 	unsigned char	*ADDR = (unsigned char *) addr;
808 
809 	ADDR += nr >> 3;
810 	mask = 1 << (nr & 0x07);
811 	save_and_cli(flags);
812 	retval = (mask & *ADDR) != 0;
813 	*ADDR &= ~mask;
814 	restore_flags(flags);
815 	return retval;
816 }
817 
818 static __inline__ int ext2_test_bit(int nr, const void * addr)
819 {
820 	int			mask;
821 	const unsigned char	*ADDR = (const unsigned char *) addr;
822 
823 	ADDR += nr >> 3;
824 	mask = 1 << (nr & 0x07);
825 	return ((mask & *ADDR) != 0);
826 }
827 
828 #define ext2_find_first_zero_bit(addr, size) \
829 	ext2_find_next_zero_bit((addr), (size), 0)
830 
831 static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
832 {
833 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
834 	unsigned long result = offset & ~31UL;
835 	unsigned long tmp;
836 
837 	if (offset >= size)
838 		return size;
839 	size -= result;
840 	offset &= 31UL;
841 	if(offset) {
842 		/* We hold the little endian value in tmp, but then the
843 		 * shift is illegal. So we could keep a big endian value
844 		 * in tmp, like this:
845 		 *
846 		 * tmp = __swab32(*(p++));
847 		 * tmp |= ~0UL >> (32-offset);
848 		 *
849 		 * but this would decrease preformance, so we change the
850 		 * shift:
851 		 */
852 		tmp = *(p++);
853 		tmp |= __swab32(~0UL >> (32-offset));
854 		if(size < 32)
855 			goto found_first;
856 		if(~tmp)
857 			goto found_middle;
858 		size -= 32;
859 		result += 32;
860 	}
861 	while(size & ~31UL) {
862 		if(~(tmp = *(p++)))
863 			goto found_middle;
864 		result += 32;
865 		size -= 32;
866 	}
867 	if(!size)
868 		return result;
869 	tmp = *p;
870 
871 found_first:
872 	/* tmp is little endian, so we would have to swab the shift,
873 	 * see above. But then we have to swab tmp below for ffz, so
874 	 * we might as well do this here.
875 	 */
876 	return result + ffz(__swab32(tmp) | (~0UL << size));
877 found_middle:
878 	return result + ffz(__swab32(tmp));
879 }
880 #else /* !(__MIPSEB__) */
881 
882 /* Native ext2 byte ordering, just collapse using defines. */
883 #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
884 #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
885 #define ext2_test_bit(nr, addr) test_bit((nr), (addr))
886 #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
887 #define ext2_find_next_zero_bit(addr, size, offset) \
888 		find_next_zero_bit((addr), (size), (offset))
889 
890 #endif /* !(__MIPSEB__) */
891 
892 /*
893  * Bitmap functions for the minix filesystem.
894  * FIXME: These assume that Minix uses the native byte/bitorder.
895  * This limits the Minix filesystem's value for data exchange very much.
896  */
897 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
898 #define minix_set_bit(nr,addr) set_bit(nr,addr)
899 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
900 #define minix_test_bit(nr,addr) test_bit(nr,addr)
901 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
902 
903 #endif /* _ASM_BITOPS_H */
904