xref: /openbmc/u-boot/arch/microblaze/include/asm/bitops.h (revision b1ad6c696631f07b5fe109378516abcb79ded1f9)
1 #ifndef _MICROBLAZE_BITOPS_H
2 #define _MICROBLAZE_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 #include <asm/byteorder.h>	/* swab32 */
9 #include <asm/system.h>		/* save_flags */
10 #include <asm-generic/bitops/fls.h>
11 #include <asm-generic/bitops/__fls.h>
12 #include <asm-generic/bitops/fls64.h>
13 #include <asm-generic/bitops/__ffs.h>
14 
15 #ifdef __KERNEL__
16 /*
17  * The __ functions are not atomic
18  */
19 
20 /*
21  * ffz = Find First Zero in word. Undefined if no zero exists,
22  * so code should check against ~0UL first..
23  */
24 static inline unsigned long ffz(unsigned long word)
25 {
26 	unsigned long result = 0;
27 
28 	while(word & 1) {
29 		result++;
30 		word >>= 1;
31 	}
32 	return result;
33 }
34 
35 
36 static inline void set_bit(int nr, volatile void *addr)
37 {
38 	int	* a = (int *) addr;
39 	int	mask;
40 	unsigned long flags;
41 
42 	a += nr >> 5;
43 	mask = 1 << (nr & 0x1f);
44 	save_flags_cli(flags);
45 	*a |= mask;
46 	restore_flags(flags);
47 }
48 
49 static inline void __set_bit(int nr, volatile void *addr)
50 {
51 	int	* a = (int *) addr;
52 	int	mask;
53 
54 	a += nr >> 5;
55 	mask = 1 << (nr & 0x1f);
56 	*a |= mask;
57 }
58 #define PLATFORM__SET_BIT
59 
60 /*
61  * clear_bit() doesn't provide any barrier for the compiler.
62  */
63 #define smp_mb__before_clear_bit()	barrier()
64 #define smp_mb__after_clear_bit()	barrier()
65 
66 static inline void clear_bit(int nr, volatile void *addr)
67 {
68 	int	* a = (int *) addr;
69 	int	mask;
70 	unsigned long flags;
71 
72 	a += nr >> 5;
73 	mask = 1 << (nr & 0x1f);
74 	save_flags_cli(flags);
75 	*a &= ~mask;
76 	restore_flags(flags);
77 }
78 
79 #define __clear_bit(nr, addr) clear_bit(nr, addr)
80 #define PLATFORM__CLEAR_BIT
81 
82 static inline void change_bit(int nr, volatile void *addr)
83 {
84 	int mask;
85 	unsigned long flags;
86 	unsigned long *ADDR = (unsigned long *) addr;
87 
88 	ADDR += nr >> 5;
89 	mask = 1 << (nr & 31);
90 	save_flags_cli(flags);
91 	*ADDR ^= mask;
92 	restore_flags(flags);
93 }
94 
95 static inline void __change_bit(int nr, volatile void *addr)
96 {
97 	int mask;
98 	unsigned long *ADDR = (unsigned long *) addr;
99 
100 	ADDR += nr >> 5;
101 	mask = 1 << (nr & 31);
102 	*ADDR ^= mask;
103 }
104 
105 static inline int test_and_set_bit(int nr, volatile void *addr)
106 {
107 	int	mask, retval;
108 	volatile unsigned int *a = (volatile unsigned int *) addr;
109 	unsigned long flags;
110 
111 	a += nr >> 5;
112 	mask = 1 << (nr & 0x1f);
113 	save_flags_cli(flags);
114 	retval = (mask & *a) != 0;
115 	*a |= mask;
116 	restore_flags(flags);
117 
118 	return retval;
119 }
120 
121 static inline int __test_and_set_bit(int nr, volatile void *addr)
122 {
123 	int	mask, retval;
124 	volatile unsigned int *a = (volatile unsigned int *) addr;
125 
126 	a += nr >> 5;
127 	mask = 1 << (nr & 0x1f);
128 	retval = (mask & *a) != 0;
129 	*a |= mask;
130 	return retval;
131 }
132 
133 static inline int test_and_clear_bit(int nr, volatile void *addr)
134 {
135 	int	mask, retval;
136 	volatile unsigned int *a = (volatile unsigned int *) addr;
137 	unsigned long flags;
138 
139 	a += nr >> 5;
140 	mask = 1 << (nr & 0x1f);
141 	save_flags_cli(flags);
142 	retval = (mask & *a) != 0;
143 	*a &= ~mask;
144 	restore_flags(flags);
145 
146 	return retval;
147 }
148 
149 static inline int __test_and_clear_bit(int nr, volatile void *addr)
150 {
151 	int	mask, retval;
152 	volatile unsigned int *a = (volatile unsigned int *) addr;
153 
154 	a += nr >> 5;
155 	mask = 1 << (nr & 0x1f);
156 	retval = (mask & *a) != 0;
157 	*a &= ~mask;
158 	return retval;
159 }
160 
161 static inline int test_and_change_bit(int nr, volatile void *addr)
162 {
163 	int	mask, retval;
164 	volatile unsigned int *a = (volatile unsigned int *) addr;
165 	unsigned long flags;
166 
167 	a += nr >> 5;
168 	mask = 1 << (nr & 0x1f);
169 	save_flags_cli(flags);
170 	retval = (mask & *a) != 0;
171 	*a ^= mask;
172 	restore_flags(flags);
173 
174 	return retval;
175 }
176 
177 static inline int __test_and_change_bit(int nr, volatile void *addr)
178 {
179 	int	mask, retval;
180 	volatile unsigned int *a = (volatile unsigned int *) addr;
181 
182 	a += nr >> 5;
183 	mask = 1 << (nr & 0x1f);
184 	retval = (mask & *a) != 0;
185 	*a ^= mask;
186 	return retval;
187 }
188 
189 /*
190  * This routine doesn't need to be atomic.
191  */
192 static inline int __constant_test_bit(int nr, const volatile void *addr)
193 {
194 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
195 }
196 
197 static inline int __test_bit(int nr, volatile void *addr)
198 {
199 	int	* a = (int *) addr;
200 	int	mask;
201 
202 	a += nr >> 5;
203 	mask = 1 << (nr & 0x1f);
204 	return ((mask & *a) != 0);
205 }
206 
207 #define test_bit(nr,addr) \
208 (__builtin_constant_p(nr) ? \
209  __constant_test_bit((nr),(addr)) : \
210  __test_bit((nr),(addr)))
211 
212 #define find_first_zero_bit(addr, size) \
213 	find_next_zero_bit((addr), (size), 0)
214 
215 static inline int find_next_zero_bit(void *addr, int size, int offset)
216 {
217 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
218 	unsigned long result = offset & ~31UL;
219 	unsigned long tmp;
220 
221 	if (offset >= size)
222 		return size;
223 	size -= result;
224 	offset &= 31UL;
225 	if (offset) {
226 		tmp = *(p++);
227 		tmp |= ~0UL >> (32-offset);
228 		if (size < 32)
229 			goto found_first;
230 		if (~tmp)
231 			goto found_middle;
232 		size -= 32;
233 		result += 32;
234 	}
235 	while (size & ~31UL) {
236 		if (~(tmp = *(p++)))
237 			goto found_middle;
238 		result += 32;
239 		size -= 32;
240 	}
241 	if (!size)
242 		return result;
243 	tmp = *p;
244 
245 found_first:
246 	tmp |= ~0UL >> size;
247 found_middle:
248 	return result + ffz(tmp);
249 }
250 
251 /*
252  * hweightN: returns the hamming weight (i.e. the number
253  * of bits set) of a N-bit word
254  */
255 
256 #define hweight32(x) generic_hweight32(x)
257 #define hweight16(x) generic_hweight16(x)
258 #define hweight8(x) generic_hweight8(x)
259 
260 
261 static inline int ext2_set_bit(int nr, volatile void *addr)
262 {
263 	int		mask, retval;
264 	unsigned long	flags;
265 	volatile unsigned char	*ADDR = (unsigned char *) addr;
266 
267 	ADDR += nr >> 3;
268 	mask = 1 << (nr & 0x07);
269 	save_flags_cli(flags);
270 	retval = (mask & *ADDR) != 0;
271 	*ADDR |= mask;
272 	restore_flags(flags);
273 	return retval;
274 }
275 
276 static inline int ext2_clear_bit(int nr, volatile void *addr)
277 {
278 	int		mask, retval;
279 	unsigned long	flags;
280 	volatile unsigned char	*ADDR = (unsigned char *) addr;
281 
282 	ADDR += nr >> 3;
283 	mask = 1 << (nr & 0x07);
284 	save_flags_cli(flags);
285 	retval = (mask & *ADDR) != 0;
286 	*ADDR &= ~mask;
287 	restore_flags(flags);
288 	return retval;
289 }
290 
291 static inline int ext2_test_bit(int nr, const volatile void *addr)
292 {
293 	int			mask;
294 	const volatile unsigned char	*ADDR = (const unsigned char *) addr;
295 
296 	ADDR += nr >> 3;
297 	mask = 1 << (nr & 0x07);
298 	return ((mask & *ADDR) != 0);
299 }
300 
301 #define ext2_find_first_zero_bit(addr, size) \
302 	ext2_find_next_zero_bit((addr), (size), 0)
303 
304 static inline unsigned long ext2_find_next_zero_bit(void *addr,
305 				unsigned long size, unsigned long offset)
306 {
307 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
308 	unsigned long result = offset & ~31UL;
309 	unsigned long tmp;
310 
311 	if (offset >= size)
312 		return size;
313 	size -= result;
314 	offset &= 31UL;
315 	if(offset) {
316 		/* We hold the little endian value in tmp, but then the
317 		 * shift is illegal. So we could keep a big endian value
318 		 * in tmp, like this:
319 		 *
320 		 * tmp = __swab32(*(p++));
321 		 * tmp |= ~0UL >> (32-offset);
322 		 *
323 		 * but this would decrease preformance, so we change the
324 		 * shift:
325 		 */
326 		tmp = *(p++);
327 		tmp |= __swab32(~0UL >> (32-offset));
328 		if(size < 32)
329 			goto found_first;
330 		if(~tmp)
331 			goto found_middle;
332 		size -= 32;
333 		result += 32;
334 	}
335 	while(size & ~31UL) {
336 		if(~(tmp = *(p++)))
337 			goto found_middle;
338 		result += 32;
339 		size -= 32;
340 	}
341 	if(!size)
342 		return result;
343 	tmp = *p;
344 
345 found_first:
346 	/* tmp is little endian, so we would have to swab the shift,
347 	 * see above. But then we have to swab tmp below for ffz, so
348 	 * we might as well do this here.
349 	 */
350 	return result + ffz(__swab32(tmp) | (~0UL << size));
351 found_middle:
352 	return result + ffz(__swab32(tmp));
353 }
354 
355 /* Bitmap functions for the minix filesystem.  */
356 #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
357 #define minix_set_bit(nr,addr) set_bit(nr,addr)
358 #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
359 #define minix_test_bit(nr,addr) test_bit(nr,addr)
360 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
361 
362 /**
363  * hweightN - returns the hamming weight of a N-bit word
364  * @x: the word to weigh
365  *
366  * The Hamming Weight of a number is the total number of bits set in it.
367  */
368 
369 #define hweight32(x) generic_hweight32(x)
370 #define hweight16(x) generic_hweight16(x)
371 #define hweight8(x) generic_hweight8(x)
372 
373 #endif /* __KERNEL__ */
374 
375 #endif /* _MICROBLAZE_BITOPS_H */
376