1 /*
2  * Copyright (C) 2012-2015 Panasonic Corporation
3  * Copyright (C) 2015-2017 Socionext Inc.
4  *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <fdtdec.h>
11 #include <linux/errno.h>
12 #include <linux/sizes.h>
13 
14 #include "init.h"
15 #include "sg-regs.h"
16 #include "soc-info.h"
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 struct uniphier_memif_data {
21 	unsigned int soc_id;
22 	unsigned long sparse_ch1_base;
23 	int have_ch2;
24 };
25 
26 static const struct uniphier_memif_data uniphier_memif_data[] = {
27 	{
28 		.soc_id = UNIPHIER_SLD3_ID,
29 		.sparse_ch1_base = 0xc0000000,
30 		/*
31 		 * In fact, SLD3 has DRAM ch2, but the memory regions for ch1
32 		 * and ch2 overlap, and host cannot get access to them at the
33 		 * same time.  Hide the ch2 from U-Boot.
34 		 */
35 	},
36 	{
37 		.soc_id = UNIPHIER_LD4_ID,
38 		.sparse_ch1_base = 0xc0000000,
39 	},
40 	{
41 		.soc_id = UNIPHIER_PRO4_ID,
42 		.sparse_ch1_base = 0xa0000000,
43 	},
44 	{
45 		.soc_id = UNIPHIER_SLD8_ID,
46 		.sparse_ch1_base = 0xc0000000,
47 	},
48 	{
49 		.soc_id = UNIPHIER_PRO5_ID,
50 		.sparse_ch1_base = 0xc0000000,
51 	},
52 	{
53 		.soc_id = UNIPHIER_PXS2_ID,
54 		.sparse_ch1_base = 0xc0000000,
55 		.have_ch2 = 1,
56 	},
57 	{
58 		.soc_id = UNIPHIER_LD6B_ID,
59 		.sparse_ch1_base = 0xc0000000,
60 		.have_ch2 = 1,
61 	},
62 	{
63 		.soc_id = UNIPHIER_LD11_ID,
64 		.sparse_ch1_base = 0xc0000000,
65 	},
66 	{
67 		.soc_id = UNIPHIER_LD20_ID,
68 		.sparse_ch1_base = 0xc0000000,
69 		.have_ch2 = 1,
70 	},
71 	{
72 		.soc_id = UNIPHIER_PXS3_ID,
73 		.sparse_ch1_base = 0xc0000000,
74 		.have_ch2 = 1,
75 	},
76 };
77 UNIPHIER_DEFINE_SOCDATA_FUNC(uniphier_get_memif_data, uniphier_memif_data)
78 
79 static int uniphier_memconf_decode(struct uniphier_dram_ch *dram_ch)
80 {
81 	const struct uniphier_memif_data *data;
82 	unsigned long size;
83 	u32 val;
84 
85 	data = uniphier_get_memif_data();
86 	if (!data) {
87 		pr_err("unsupported SoC\n");
88 		return -EINVAL;
89 	}
90 
91 	val = readl(SG_MEMCONF);
92 
93 	/* set up ch0 */
94 	dram_ch[0].base = CONFIG_SYS_SDRAM_BASE;
95 
96 	switch (val & SG_MEMCONF_CH0_SZ_MASK) {
97 	case SG_MEMCONF_CH0_SZ_64M:
98 		size = SZ_64M;
99 		break;
100 	case SG_MEMCONF_CH0_SZ_128M:
101 		size = SZ_128M;
102 		break;
103 	case SG_MEMCONF_CH0_SZ_256M:
104 		size = SZ_256M;
105 		break;
106 	case SG_MEMCONF_CH0_SZ_512M:
107 		size = SZ_512M;
108 		break;
109 	case SG_MEMCONF_CH0_SZ_1G:
110 		size = SZ_1G;
111 		break;
112 	default:
113 		pr_err("error: invald value is set to MEMCONF ch0 size\n");
114 		return -EINVAL;
115 	}
116 
117 	if ((val & SG_MEMCONF_CH0_NUM_MASK) == SG_MEMCONF_CH0_NUM_2)
118 		size *= 2;
119 
120 	dram_ch[0].size = size;
121 
122 	/* set up ch1 */
123 	dram_ch[1].base = dram_ch[0].base + size;
124 
125 	if (val & SG_MEMCONF_SPARSEMEM) {
126 		if (dram_ch[1].base > data->sparse_ch1_base) {
127 			pr_warn("Sparse mem is enabled, but ch0 and ch1 overlap\n");
128 			pr_warn("Only ch0 is available\n");
129 			dram_ch[1].base = 0;
130 			return 0;
131 		}
132 
133 		dram_ch[1].base = data->sparse_ch1_base;
134 	}
135 
136 	switch (val & SG_MEMCONF_CH1_SZ_MASK) {
137 	case SG_MEMCONF_CH1_SZ_64M:
138 		size = SZ_64M;
139 		break;
140 	case SG_MEMCONF_CH1_SZ_128M:
141 		size = SZ_128M;
142 		break;
143 	case SG_MEMCONF_CH1_SZ_256M:
144 		size = SZ_256M;
145 		break;
146 	case SG_MEMCONF_CH1_SZ_512M:
147 		size = SZ_512M;
148 		break;
149 	case SG_MEMCONF_CH1_SZ_1G:
150 		size = SZ_1G;
151 		break;
152 	default:
153 		pr_err("error: invald value is set to MEMCONF ch1 size\n");
154 		return -EINVAL;
155 	}
156 
157 	if ((val & SG_MEMCONF_CH1_NUM_MASK) == SG_MEMCONF_CH1_NUM_2)
158 		size *= 2;
159 
160 	dram_ch[1].size = size;
161 
162 	if (!data->have_ch2)
163 		return 0;
164 
165 	/* set up ch2 */
166 	dram_ch[2].base = dram_ch[1].base + size;
167 
168 	switch (val & SG_MEMCONF_CH2_SZ_MASK) {
169 	case SG_MEMCONF_CH2_SZ_64M:
170 		size = SZ_64M;
171 		break;
172 	case SG_MEMCONF_CH2_SZ_128M:
173 		size = SZ_128M;
174 		break;
175 	case SG_MEMCONF_CH2_SZ_256M:
176 		size = SZ_256M;
177 		break;
178 	case SG_MEMCONF_CH2_SZ_512M:
179 		size = SZ_512M;
180 		break;
181 	case SG_MEMCONF_CH2_SZ_1G:
182 		size = SZ_1G;
183 		break;
184 	default:
185 		pr_err("error: invald value is set to MEMCONF ch2 size\n");
186 		return -EINVAL;
187 	}
188 
189 	if ((val & SG_MEMCONF_CH2_NUM_MASK) == SG_MEMCONF_CH2_NUM_2)
190 		size *= 2;
191 
192 	dram_ch[2].size = size;
193 
194 	return 0;
195 }
196 
197 int dram_init(void)
198 {
199 	struct uniphier_dram_ch dram_ch[UNIPHIER_MAX_NR_DRAM_CH] = {};
200 	int ret, i;
201 
202 	gd->ram_size = 0;
203 
204 	ret = uniphier_memconf_decode(dram_ch);
205 	if (ret)
206 		return ret;
207 
208 	for (i = 0; i < ARRAY_SIZE(dram_ch); i++) {
209 
210 		if (!dram_ch[i].size)
211 			break;
212 
213 		/*
214 		 * U-Boot relocates itself to the tail of the memory region,
215 		 * but it does not expect sparse memory.  We use the first
216 		 * contiguous chunk here.
217 		 */
218 		if (i > 0 &&
219 		    dram_ch[i - 1].base + dram_ch[i - 1].size < dram_ch[i].base)
220 			break;
221 
222 		gd->ram_size += dram_ch[i].size;
223 	}
224 
225 	return 0;
226 }
227 
228 void dram_init_banksize(void)
229 {
230 	struct uniphier_dram_ch dram_ch[UNIPHIER_MAX_NR_DRAM_CH] = {};
231 	int i;
232 
233 	uniphier_memconf_decode(dram_ch);
234 
235 	for (i = 0; i < ARRAY_SIZE(dram_ch); i++) {
236 		if (i >= ARRAY_SIZE(gd->bd->bi_dram))
237 			break;
238 
239 		gd->bd->bi_dram[i].start = dram_ch[i].base;
240 		gd->bd->bi_dram[i].size = dram_ch[i].size;
241 	}
242 }
243 
244 #ifdef CONFIG_OF_BOARD_SETUP
245 /*
246  * The DRAM PHY requires 64 byte scratch area in each DRAM channel
247  * for its dynamic PHY training feature.
248  */
249 int ft_board_setup(void *fdt, bd_t *bd)
250 {
251 	unsigned long rsv_addr;
252 	const unsigned long rsv_size = 64;
253 	int i, ret;
254 
255 	if (uniphier_get_soc_id() != UNIPHIER_LD20_ID)
256 		return 0;
257 
258 	for (i = 0; i < ARRAY_SIZE(gd->bd->bi_dram); i++) {
259 		rsv_addr = gd->bd->bi_dram[i].start + gd->bd->bi_dram[i].size;
260 		rsv_addr -= rsv_size;
261 
262 		ret = fdt_add_mem_rsv(fdt, rsv_addr, rsv_size);
263 		if (ret)
264 			return -ENOSPC;
265 
266 		printf("   Reserved memory region for DRAM PHY training: addr=%lx size=%lx\n",
267 		       rsv_addr, rsv_size);
268 	}
269 
270 	return 0;
271 }
272 #endif
273