xref: /openbmc/u-boot/arch/arm/mach-uniphier/dram/umc-pxs2.c (revision 382bee57f19b4454e2015bc19a010bc2d0ab9337)
1 /*
2  * Copyright (C) 2015-2017 Socionext Inc.
3  *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
4  *
5  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
6  * Copyright (C) 2015 Socionext Inc.
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <linux/errno.h>
13 #include <linux/io.h>
14 #include <linux/sizes.h>
15 #include <asm/processor.h>
16 
17 #include "../init.h"
18 #include "../soc-info.h"
19 #include "ddrmphy-regs.h"
20 #include "umc-regs.h"
21 
22 #define DRAM_CH_NR	3
23 
24 enum dram_freq {
25 	DRAM_FREQ_1866M,
26 	DRAM_FREQ_2133M,
27 	DRAM_FREQ_NR,
28 };
29 
30 enum dram_size {
31 	DRAM_SZ_256M,
32 	DRAM_SZ_512M,
33 	DRAM_SZ_NR,
34 };
35 
36 /* PHY */
37 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
38 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
39 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
40 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
41 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
42 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
43 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
44 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
45 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
46 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
47 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
48 
49 /* dependent on package and board design */
50 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
51 
52 /* DDR multiPHY */
53 static inline int ddrphy_get_rank(int dx)
54 {
55 	return dx / 2;
56 }
57 
58 static void ddrphy_fifo_reset(void __iomem *phy_base)
59 {
60 	u32 tmp;
61 
62 	tmp = readl(phy_base + MPHY_PGCR0);
63 	tmp &= ~MPHY_PGCR0_PHYFRST;
64 	writel(tmp, phy_base + MPHY_PGCR0);
65 
66 	udelay(1);
67 
68 	tmp |= MPHY_PGCR0_PHYFRST;
69 	writel(tmp, phy_base + MPHY_PGCR0);
70 
71 	udelay(1);
72 }
73 
74 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
75 {
76 	u32 tmp;
77 
78 	tmp = readl(phy_base + MPHY_PGCR1);
79 
80 	if (enable)
81 		tmp &= ~MPHY_PGCR1_INHVT;
82 	else
83 		tmp |= MPHY_PGCR1_INHVT;
84 
85 	writel(tmp, phy_base + MPHY_PGCR1);
86 
87 	if (!enable) {
88 		while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP))
89 			cpu_relax();
90 	}
91 }
92 
93 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
94 {
95 	int dx;
96 	u32 lcdlr1, rdqsd;
97 	void __iomem *dx_base = phy_base + MPHY_DX_BASE;
98 
99 	ddrphy_vt_ctrl(phy_base, 0);
100 
101 	for (dx = 0; dx < nr_dx; dx++) {
102 		lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1);
103 		rdqsd = (lcdlr1 >> 8) & 0xff;
104 		rdqsd = clamp(rdqsd + step, 0U, 0xffU);
105 		lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
106 		writel(lcdlr1, dx_base + MPHY_DX_LCDLR1);
107 		readl(dx_base + MPHY_DX_LCDLR1); /* relax */
108 		dx_base += MPHY_DX_STRIDE;
109 	}
110 
111 	ddrphy_vt_ctrl(phy_base, 1);
112 }
113 
114 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
115 {
116 	void __iomem *dx_base = phy_base + MPHY_DX_BASE;
117 	const int nr_dx = width / 8;
118 	int dx, rank;
119 	u32 gtr;
120 	int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
121 
122 	for (dx = 0; dx < nr_dx; dx++) {
123 		gtr = readl(dx_base + MPHY_DX_GTR);
124 		for (rank = 0; rank < 4; rank++) {
125 			dgsl = gtr & 0x7;
126 			/* if dgsl is zero, this rank was not trained. skip. */
127 			if (dgsl) {
128 				dgsl_min = min(dgsl_min, dgsl);
129 				dgsl_max = max(dgsl_max, dgsl);
130 			}
131 			gtr >>= 3;
132 		}
133 		dx_base += MPHY_DX_STRIDE;
134 	}
135 
136 	if (dgsl_min != dgsl_max)
137 		printf("DQS Gateing System Latencies are not all leveled.\n");
138 
139 	return dgsl_max;
140 }
141 
142 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
143 			int ch)
144 {
145 	u32 tmp;
146 	void __iomem *zq_base, *dx_base;
147 	int zq, dx;
148 	int nr_dx;
149 
150 	nr_dx = width / 8;
151 
152 	writel(MPHY_PIR_ZCALBYP,        phy_base + MPHY_PIR);
153 	/*
154 	 * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
155 	 * to avoid read error issue.
156 	 */
157 	writel(0x07d81e37, phy_base + MPHY_PGCR0);
158 	writel(0x0200c4e0, phy_base + MPHY_PGCR1);
159 
160 	tmp = ddrphy_pgcr2[freq];
161 	if (width >= 32)
162 		tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC;
163 	writel(tmp, phy_base + MPHY_PGCR2);
164 
165 	writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0);
166 	writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1);
167 	writel(0x00083def, phy_base + MPHY_PTR2);
168 	writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3);
169 	writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4);
170 
171 	writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0);
172 
173 	writel(0x55555555, phy_base + MPHY_ACIOCR1);
174 	writel(0x00000000, phy_base + MPHY_ACIOCR2);
175 	writel(0x55555555, phy_base + MPHY_ACIOCR3);
176 	writel(0x00000000, phy_base + MPHY_ACIOCR4);
177 	writel(0x00000055, phy_base + MPHY_ACIOCR5);
178 	writel(0x00181aa4, phy_base + MPHY_DXCCR);
179 
180 	writel(0x0024641e, phy_base + MPHY_DSGCR);
181 	writel(0x0000040b, phy_base + MPHY_DCR);
182 	writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0);
183 	writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1);
184 	writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2);
185 	writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3);
186 	writel(ddrphy_mr0[freq], phy_base + MPHY_MR0);
187 	writel(0x00000006, phy_base + MPHY_MR1);
188 	writel(ddrphy_mr2[freq], phy_base + MPHY_MR2);
189 	writel(0x00000000, phy_base + MPHY_MR3);
190 
191 	tmp = 0;
192 	for (dx = 0; dx < nr_dx; dx++)
193 		tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
194 	writel(0x90003087 | tmp, phy_base + MPHY_DTCR);
195 
196 	writel(0x00000000, phy_base + MPHY_DTAR0);
197 	writel(0x00000008, phy_base + MPHY_DTAR1);
198 	writel(0x00000010, phy_base + MPHY_DTAR2);
199 	writel(0x00000018, phy_base + MPHY_DTAR3);
200 	writel(0xdd22ee11, phy_base + MPHY_DTDR0);
201 	writel(0x7788bb44, phy_base + MPHY_DTDR1);
202 
203 	/* impedance control settings */
204 	writel(0x04048900, phy_base + MPHY_ZQCR);
205 
206 	zq_base = phy_base + MPHY_ZQ_BASE;
207 	for (zq = 0; zq < 4; zq++) {
208 		/*
209 		 * board-dependent
210 		 * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
211 		 */
212 		writel(0x0007BB5D, zq_base + MPHY_ZQ_PR);
213 		zq_base += MPHY_ZQ_STRIDE;
214 	}
215 
216 	/* DATX8 settings */
217 	dx_base = phy_base + MPHY_DX_BASE;
218 	for (dx = 0; dx < 4; dx++) {
219 		tmp = readl(dx_base + MPHY_DX_GCR0);
220 		tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK;
221 		tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
222 						MPHY_DX_GCR0_WLRKEN_MASK;
223 		writel(tmp, dx_base + MPHY_DX_GCR0);
224 
225 		writel(0x00000000, dx_base + MPHY_DX_GCR1);
226 		writel(0x00000000, dx_base + MPHY_DX_GCR2);
227 		writel(0x00000000, dx_base + MPHY_DX_GCR3);
228 		dx_base += MPHY_DX_STRIDE;
229 	}
230 
231 	while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE))
232 		cpu_relax();
233 
234 	ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
235 }
236 
237 struct ddrphy_init_sequence {
238 	char *description;
239 	u32 init_flag;
240 	u32 done_flag;
241 	u32 err_flag;
242 };
243 
244 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
245 	{
246 		"Impedance Calibration",
247 		MPHY_PIR_ZCAL,
248 		MPHY_PGSR0_ZCDONE,
249 		MPHY_PGSR0_ZCERR,
250 	},
251 	{ /* sentinel */ }
252 };
253 
254 static const struct ddrphy_init_sequence dram_init_sequence[] = {
255 	{
256 		"DRAM Initialization",
257 		MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT,
258 		MPHY_PGSR0_DIDONE,
259 		0,
260 	},
261 	{ /* sentinel */ }
262 };
263 
264 static const struct ddrphy_init_sequence training_sequence[] = {
265 	{
266 		"Write Leveling",
267 		MPHY_PIR_WL,
268 		MPHY_PGSR0_WLDONE,
269 		MPHY_PGSR0_WLERR,
270 	},
271 	{
272 		"Read DQS Gate Training",
273 		MPHY_PIR_QSGATE,
274 		MPHY_PGSR0_QSGDONE,
275 		MPHY_PGSR0_QSGERR,
276 	},
277 	{
278 		"Write Leveling Adjustment",
279 		MPHY_PIR_WLADJ,
280 		MPHY_PGSR0_WLADONE,
281 		MPHY_PGSR0_WLAERR,
282 	},
283 	{
284 		"Read Bit Deskew",
285 		MPHY_PIR_RDDSKW,
286 		MPHY_PGSR0_RDDONE,
287 		MPHY_PGSR0_RDERR,
288 	},
289 	{
290 		"Write Bit Deskew",
291 		MPHY_PIR_WRDSKW,
292 		MPHY_PGSR0_WDDONE,
293 		MPHY_PGSR0_WDERR,
294 	},
295 	{
296 		"Read Eye Training",
297 		MPHY_PIR_RDEYE,
298 		MPHY_PGSR0_REDONE,
299 		MPHY_PGSR0_REERR,
300 	},
301 	{
302 		"Write Eye Training",
303 		MPHY_PIR_WREYE,
304 		MPHY_PGSR0_WEDONE,
305 		MPHY_PGSR0_WEERR,
306 	},
307 	{ /* sentinel */ }
308 };
309 
310 static int __ddrphy_training(void __iomem *phy_base,
311 			     const struct ddrphy_init_sequence *seq)
312 {
313 	const struct ddrphy_init_sequence *s;
314 	u32 pgsr0;
315 	u32 init_flag = MPHY_PIR_INIT;
316 	u32 done_flag = MPHY_PGSR0_IDONE;
317 	int timeout = 50000; /* 50 msec is long enough */
318 #ifdef DISPLAY_ELAPSED_TIME
319 	ulong start = get_timer(0);
320 #endif
321 
322 	for (s = seq; s->description; s++) {
323 		init_flag |= s->init_flag;
324 		done_flag |= s->done_flag;
325 	}
326 
327 	writel(init_flag, phy_base + MPHY_PIR);
328 
329 	do {
330 		if (--timeout < 0) {
331 			pr_err("%s: error: timeout during DDR training\n",
332 			       __func__);
333 			return -ETIMEDOUT;
334 		}
335 		udelay(1);
336 		pgsr0 = readl(phy_base + MPHY_PGSR0);
337 	} while ((pgsr0 & done_flag) != done_flag);
338 
339 	for (s = seq; s->description; s++) {
340 		if (pgsr0 & s->err_flag) {
341 			pr_err("%s: error: %s failed\n", __func__,
342 			       s->description);
343 			return -EIO;
344 		}
345 	}
346 
347 #ifdef DISPLAY_ELAPSED_TIME
348 	printf("%s: info: elapsed time %ld msec\n", get_timer(start));
349 #endif
350 
351 	return 0;
352 }
353 
354 static int ddrphy_impedance_calibration(void __iomem *phy_base)
355 {
356 	int ret;
357 	u32 tmp;
358 
359 	ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
360 	if (ret)
361 		return ret;
362 
363 	/*
364 	 * Because of a hardware bug, IDONE flag is set when the first ZQ block
365 	 * is calibrated.  The flag does not guarantee the completion for all
366 	 * the ZQ blocks.  Wait a little more just in case.
367 	 */
368 	udelay(1);
369 
370 	/* reflect ZQ settings and enable average algorithm*/
371 	tmp = readl(phy_base + MPHY_ZQCR);
372 	tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
373 	writel(tmp, phy_base + MPHY_ZQCR);
374 	tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
375 	tmp |= MPHY_ZQCR_AVGEN;
376 	writel(tmp, phy_base + MPHY_ZQCR);
377 
378 	return 0;
379 }
380 
381 static int ddrphy_dram_init(void __iomem *phy_base)
382 {
383 	return __ddrphy_training(phy_base, dram_init_sequence);
384 }
385 
386 static int ddrphy_training(void __iomem *phy_base)
387 {
388 	return __ddrphy_training(phy_base, training_sequence);
389 }
390 
391 /* UMC */
392 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
393 /*
394  * The ch2 is a different generation UMC core.
395  * The register spec is different, unfortunately.
396  */
397 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
398 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
399 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
400 	{0x004A071D, 0x0078071D},
401 	{0x0055081E, 0x0089081E},
402 };
403 
404 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
405 /* The ch2 is different for some reason only hardware guys know... */
406 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
407 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
408 
409 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
410 {
411 	u32 val;
412 	int latency;
413 
414 	val = readl(dc_base + UMC_RDATACTL_D0);
415 	latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
416 	latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
417 						UMC_RDATACTL_RAD2LTY_SHIFT;
418 	/*
419 	 * UMC works at the half clock rate of the PHY.
420 	 * The LSB of latency is ignored
421 	 */
422 	latency += phy_latency & ~1;
423 
424 	val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
425 	if (latency > 0xf) {
426 		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
427 		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
428 	} else {
429 		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
430 	}
431 
432 	writel(val, dc_base + UMC_RDATACTL_D0);
433 	writel(val, dc_base + UMC_RDATACTL_D1);
434 
435 	readl(dc_base + UMC_RDATACTL_D1); /* relax */
436 }
437 
438 /* enable/disable auto refresh */
439 static void umc_refresh_ctrl(void __iomem *dc_base, int enable)
440 {
441 	u32 tmp;
442 
443 	tmp = readl(dc_base + UMC_SPCSETB);
444 	tmp &= ~UMC_SPCSETB_AREFMD_MASK;
445 
446 	if (enable)
447 		tmp |= UMC_SPCSETB_AREFMD_ARB;
448 	else
449 		tmp |= UMC_SPCSETB_AREFMD_REG;
450 
451 	writel(tmp, dc_base + UMC_SPCSETB);
452 	udelay(1);
453 }
454 
455 static void umc_ud_init(void __iomem *umc_base, int ch)
456 {
457 	writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
458 
459 	if (ch == 2)
460 		writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
461 }
462 
463 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
464 		       unsigned long size, int width, int ch)
465 {
466 	enum dram_size size_e;
467 	int latency;
468 	u32 val;
469 
470 	switch (size) {
471 	case 0:
472 		return 0;
473 	case SZ_256M:
474 		size_e = DRAM_SZ_256M;
475 		break;
476 	case SZ_512M:
477 		size_e = DRAM_SZ_512M;
478 		break;
479 	default:
480 		pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
481 		       size, ch);
482 		return -EINVAL;
483 	}
484 
485 	writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
486 
487 	writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
488 	       dc_base + UMC_CMDCTLB);
489 
490 	writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
491 	writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
492 
493 	val = 0x000e000e;
494 	latency = 12;
495 	/* ES2 inserted one more FF to the logic. */
496 	if (uniphier_get_soc_model() >= 2)
497 		latency += 2;
498 
499 	if (latency > 0xf) {
500 		val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
501 		val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
502 	} else {
503 		val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
504 	}
505 
506 	writel(val, dc_base + UMC_RDATACTL_D0);
507 	if (width >= 32)
508 		writel(val, dc_base + UMC_RDATACTL_D1);
509 
510 	writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
511 	if (width >= 32)
512 		writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
513 	writel(0x04000000, dc_base + UMC_DATASET);
514 	writel(0x00400020, dc_base + UMC_DCCGCTL);
515 	writel(0x00000084, dc_base + UMC_FLOWCTLG);
516 	writel(0x00000000, dc_base + UMC_ACSSETA);
517 
518 	writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
519 	       dc_base + UMC_FLOWCTLA);
520 
521 	writel(0x00004400, dc_base + UMC_FLOWCTLC);
522 	writel(0x200A0A00, dc_base + UMC_SPCSETB);
523 	writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
524 	writel(0x0000000D, dc_base + UMC_RESPCTL);
525 
526 	if (ch != 2) {
527 		writel(0x00202000, dc_base + UMC_FLOWCTLB);
528 		writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
529 		writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
530 		writel(0x00080700, dc_base + UMC_BSICMAPSET);
531 	} else {
532 		writel(0x00200000, dc_base + UMC_FLOWCTLB);
533 		writel(0x00000000, dc_base + UMC_BSICMAPSET);
534 	}
535 
536 	writel(0x00000000, dc_base + UMC_ERRMASKA);
537 	writel(0x00000000, dc_base + UMC_ERRMASKB);
538 
539 	return 0;
540 }
541 
542 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
543 		       unsigned long size, unsigned int width, int ch)
544 {
545 	void __iomem *dc_base = umc_ch_base + 0x00011000;
546 	void __iomem *phy_base = umc_ch_base + 0x00030000;
547 	int ret;
548 
549 	writel(0x00000002, dc_base + UMC_INITSET);
550 	while (readl(dc_base + UMC_INITSTAT) & BIT(2))
551 		cpu_relax();
552 
553 	/* deassert PHY reset signals */
554 	writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
555 	       dc_base + UMC_DIOCTLA);
556 
557 	ddrphy_init(phy_base, freq, width, ch);
558 
559 	ret = ddrphy_impedance_calibration(phy_base);
560 	if (ret)
561 		return ret;
562 
563 	ddrphy_dram_init(phy_base);
564 	if (ret)
565 		return ret;
566 
567 	ret = umc_dc_init(dc_base, freq, size, width, ch);
568 	if (ret)
569 		return ret;
570 
571 	umc_ud_init(umc_ch_base, ch);
572 
573 	ret = ddrphy_training(phy_base);
574 	if (ret)
575 		return ret;
576 
577 	udelay(1);
578 
579 	/* match the system latency between UMC and PHY */
580 	umc_set_system_latency(dc_base,
581 			       ddrphy_get_system_latency(phy_base, width));
582 
583 	udelay(1);
584 
585 	/* stop auto refresh before clearing FIFO in PHY */
586 	umc_refresh_ctrl(dc_base, 0);
587 	ddrphy_fifo_reset(phy_base);
588 	umc_refresh_ctrl(dc_base, 1);
589 
590 	udelay(10);
591 
592 	return 0;
593 }
594 
595 static void um_init(void __iomem *um_base)
596 {
597 	writel(0x000000ff, um_base + UMC_MBUS0);
598 	writel(0x000000ff, um_base + UMC_MBUS1);
599 	writel(0x000000ff, um_base + UMC_MBUS2);
600 	writel(0x000000ff, um_base + UMC_MBUS3);
601 }
602 
603 int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
604 {
605 	void __iomem *um_base = (void __iomem *)0x5b600000;
606 	void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
607 	enum dram_freq freq;
608 	int ch, ret;
609 
610 	switch (bd->dram_freq) {
611 	case 1866:
612 		freq = DRAM_FREQ_1866M;
613 		break;
614 	case 2133:
615 		freq = DRAM_FREQ_2133M;
616 		break;
617 	default:
618 		pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
619 		return -EINVAL;
620 	}
621 
622 	for (ch = 0; ch < DRAM_CH_NR; ch++) {
623 		unsigned long size = bd->dram_ch[ch].size;
624 		unsigned int width = bd->dram_ch[ch].width;
625 
626 		if (size) {
627 			ret = umc_ch_init(umc_ch_base, freq,
628 					  size / (width / 16), width, ch);
629 			if (ret) {
630 				pr_err("failed to initialize UMC ch%d\n", ch);
631 				return ret;
632 			}
633 		}
634 
635 		umc_ch_base += 0x00200000;
636 	}
637 
638 	um_init(um_base);
639 
640 	return 0;
641 }
642