xref: /openbmc/u-boot/arch/arm/mach-tegra/tegra30/clock.c (revision 9a5cb22fda01327384e8dabb775cfb2615dbbe10)
1 /*
2  * (C) Copyright 2010-2015
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7 
8 /* Tegra30 Clock control functions */
9 
10 #include <common.h>
11 #include <errno.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/timer.h>
17 #include <div64.h>
18 #include <fdtdec.h>
19 
20 /*
21  * Clock types that we can use as a source. The Tegra30 has muxes for the
22  * peripheral clocks, and in most cases there are four options for the clock
23  * source. This gives us a clock 'type' and exploits what commonality exists
24  * in the device.
25  *
26  * Letters are obvious, except for T which means CLK_M, and S which means the
27  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28  * datasheet) and PLL_M are different things. The former is the basic
29  * clock supplied to the SOC from an external oscillator. The latter is the
30  * memory clock PLL.
31  *
32  * See definitions in clock_id in the header file.
33  */
34 enum clock_type_id {
35 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
36 	CLOCK_TYPE_MCPA,	/* and so on */
37 	CLOCK_TYPE_MCPT,
38 	CLOCK_TYPE_PCM,
39 	CLOCK_TYPE_PCMT,
40 	CLOCK_TYPE_PCMT16,
41 	CLOCK_TYPE_PDCT,
42 	CLOCK_TYPE_ACPT,
43 	CLOCK_TYPE_ASPTE,
44 	CLOCK_TYPE_PMDACD2T,
45 	CLOCK_TYPE_PCST,
46 
47 	CLOCK_TYPE_COUNT,
48 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
49 };
50 
51 enum {
52 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
53 };
54 
55 /*
56  * Clock source mux for each clock type. This just converts our enum into
57  * a list of mux sources for use by the code.
58  *
59  * Note:
60  *  The extra column in each clock source array is used to store the mask
61  *  bits in its register for the source.
62  */
63 #define CLK(x) CLOCK_ID_ ## x
64 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
65 	{ CLK(AUDIO),   CLK(XCPU),      CLK(PERIPH),    CLK(OSC),
66 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
67 		MASK_BITS_31_30},
68 	{ CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(AUDIO),
69 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
70 		MASK_BITS_31_30},
71 	{ CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
72 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
73 		MASK_BITS_31_30},
74 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(NONE),
75 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
76 		MASK_BITS_31_30},
77 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
78 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
79 		MASK_BITS_31_30},
80 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
81 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
82 		MASK_BITS_31_30},
83 	{ CLK(PERIPH),  CLK(DISPLAY),   CLK(CGENERAL),  CLK(OSC),
84 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
85 		MASK_BITS_31_30},
86 	{ CLK(AUDIO),   CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
87 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
88 		MASK_BITS_31_30},
89 	{ CLK(AUDIO),   CLK(SFROM32KHZ),	CLK(PERIPH),   CLK(OSC),
90 		CLK(EPCI),      CLK(NONE),      CLK(NONE),      CLK(NONE),
91 		MASK_BITS_31_29},
92 	{ CLK(PERIPH),  CLK(MEMORY),    CLK(DISPLAY),   CLK(AUDIO),
93 		CLK(CGENERAL),  CLK(DISPLAY2),  CLK(OSC),       CLK(NONE),
94 		MASK_BITS_31_29},
95 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(SFROM32KHZ), CLK(OSC),
96 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
97 		MASK_BITS_31_28}
98 };
99 
100 /*
101  * Clock type for each peripheral clock source. We put the name in each
102  * record just so it is easy to match things up
103  */
104 #define TYPE(name, type) type
105 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
106 	/* 0x00 */
107 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
108 	TYPE(PERIPHC_I2S2,      CLOCK_TYPE_AXPT),
109 	TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
110 	TYPE(PERIPHC_SPDIF_IN,  CLOCK_TYPE_PCM),
111 	TYPE(PERIPHC_PWM,       CLOCK_TYPE_PCST),  /* only PWM uses b29:28 */
112 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
113 	TYPE(PERIPHC_SBC2,      CLOCK_TYPE_PCMT),
114 	TYPE(PERIPHC_SBC3,      CLOCK_TYPE_PCMT),
115 
116 	/* 0x08 */
117 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
118 	TYPE(PERIPHC_I2C1,      CLOCK_TYPE_PCMT16),
119 	TYPE(PERIPHC_DVC_I2C,   CLOCK_TYPE_PCMT16),
120 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
121 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
122 	TYPE(PERIPHC_SBC1,      CLOCK_TYPE_PCMT),
123 	TYPE(PERIPHC_DISP1,     CLOCK_TYPE_PMDACD2T),
124 	TYPE(PERIPHC_DISP2,     CLOCK_TYPE_PMDACD2T),
125 
126 	/* 0x10 */
127 	TYPE(PERIPHC_CVE,       CLOCK_TYPE_PDCT),
128 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
129 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
130 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
131 	TYPE(PERIPHC_SDMMC1,    CLOCK_TYPE_PCMT),
132 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PCMT),
133 	TYPE(PERIPHC_G3D,	CLOCK_TYPE_MCPA),
134 	TYPE(PERIPHC_G2D,	CLOCK_TYPE_MCPA),
135 
136 	/* 0x18 */
137 	TYPE(PERIPHC_NDFLASH,	CLOCK_TYPE_PCMT),
138 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PCMT),
139 	TYPE(PERIPHC_VFIR,      CLOCK_TYPE_PCMT),
140 	TYPE(PERIPHC_EPP,       CLOCK_TYPE_MCPA),
141 	TYPE(PERIPHC_MPE,       CLOCK_TYPE_MCPA),
142 	TYPE(PERIPHC_MIPI,      CLOCK_TYPE_PCMT),       /* MIPI base-band HSI */
143 	TYPE(PERIPHC_UART1,     CLOCK_TYPE_PCMT),
144 	TYPE(PERIPHC_UART2,     CLOCK_TYPE_PCMT),
145 
146 	/* 0x20 */
147 	TYPE(PERIPHC_HOST1X,    CLOCK_TYPE_MCPA),
148 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
149 	TYPE(PERIPHC_TVO,       CLOCK_TYPE_PDCT),
150 	TYPE(PERIPHC_HDMI,      CLOCK_TYPE_PMDACD2T),
151 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
152 	TYPE(PERIPHC_TVDAC,     CLOCK_TYPE_PDCT),
153 	TYPE(PERIPHC_I2C2,      CLOCK_TYPE_PCMT16),
154 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPT),
155 
156 	/* 0x28 */
157 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PCMT),
158 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
159 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
160 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
161 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
162 	TYPE(PERIPHC_SBC4,      CLOCK_TYPE_PCMT),
163 	TYPE(PERIPHC_I2C3,      CLOCK_TYPE_PCMT16),
164 	TYPE(PERIPHC_SDMMC3,    CLOCK_TYPE_PCMT),
165 
166 	/* 0x30 */
167 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PCMT),
168 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PCMT),
169 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PCMT),
170 	TYPE(PERIPHC_OWR,       CLOCK_TYPE_PCMT),
171 	TYPE(PERIPHC_NOR,       CLOCK_TYPE_PCMT),
172 	TYPE(PERIPHC_CSITE,     CLOCK_TYPE_PCMT),
173 	TYPE(PERIPHC_I2S0,      CLOCK_TYPE_AXPT),
174 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
175 
176 	/* 0x38h */	     /* Jumps to reg offset 0x3B0h - new for T30 */
177 	TYPE(PERIPHC_G3D2,      CLOCK_TYPE_MCPA),
178 	TYPE(PERIPHC_MSELECT,   CLOCK_TYPE_PCMT),
179 	TYPE(PERIPHC_TSENSOR,   CLOCK_TYPE_PCST),       /* s/b PCTS */
180 	TYPE(PERIPHC_I2S3,      CLOCK_TYPE_AXPT),
181 	TYPE(PERIPHC_I2S4,      CLOCK_TYPE_AXPT),
182 	TYPE(PERIPHC_I2C4,      CLOCK_TYPE_PCMT16),
183 	TYPE(PERIPHC_SBC5,      CLOCK_TYPE_PCMT),
184 	TYPE(PERIPHC_SBC6,      CLOCK_TYPE_PCMT),
185 
186 	/* 0x40 */
187 	TYPE(PERIPHC_AUDIO,     CLOCK_TYPE_ACPT),
188 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
189 	TYPE(PERIPHC_DAM0,      CLOCK_TYPE_ACPT),
190 	TYPE(PERIPHC_DAM1,      CLOCK_TYPE_ACPT),
191 	TYPE(PERIPHC_DAM2,      CLOCK_TYPE_ACPT),
192 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
193 	TYPE(PERIPHC_ACTMON,    CLOCK_TYPE_PCST),       /* MASK 31:30 */
194 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
195 
196 	/* 0x48 */
197 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
198 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
199 	TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
200 	TYPE(PERIPHC_I2CSLOW,   CLOCK_TYPE_PCST),       /* MASK 31:30 */
201 	TYPE(PERIPHC_SYS,       CLOCK_TYPE_NONE),
202 	TYPE(PERIPHC_SPEEDO,    CLOCK_TYPE_PCMT),
203 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
204 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
205 
206 	/* 0x50 */
207 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
208 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
209 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
210 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
211 	TYPE(PERIPHC_SATAOOB,   CLOCK_TYPE_PCMT),       /* offset 0x420h */
212 	TYPE(PERIPHC_SATA,      CLOCK_TYPE_PCMT),
213 	TYPE(PERIPHC_HDA,       CLOCK_TYPE_PCMT),
214 };
215 
216 /*
217  * This array translates a periph_id to a periphc_internal_id
218  *
219  * Not present/matched up:
220  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
221  *	SPDIF - which is both 0x08 and 0x0c
222  *
223  */
224 #define NONE(name) (-1)
225 #define OFFSET(name, value) PERIPHC_ ## name
226 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
227 	/* Low word: 31:0 */
228 	NONE(CPU),
229 	NONE(COP),
230 	NONE(TRIGSYS),
231 	NONE(RESERVED3),
232 	NONE(RESERVED4),
233 	NONE(TMR),
234 	PERIPHC_UART1,
235 	PERIPHC_UART2,  /* and vfir 0x68 */
236 
237 	/* 8 */
238 	NONE(GPIO),
239 	PERIPHC_SDMMC2,
240 	NONE(SPDIF),	    /* 0x08 and 0x0c, unclear which to use */
241 	PERIPHC_I2S1,
242 	PERIPHC_I2C1,
243 	PERIPHC_NDFLASH,
244 	PERIPHC_SDMMC1,
245 	PERIPHC_SDMMC4,
246 
247 	/* 16 */
248 	NONE(RESERVED16),
249 	PERIPHC_PWM,
250 	PERIPHC_I2S2,
251 	PERIPHC_EPP,
252 	PERIPHC_VI,
253 	PERIPHC_G2D,
254 	NONE(USBD),
255 	NONE(ISP),
256 
257 	/* 24 */
258 	PERIPHC_G3D,
259 	NONE(RESERVED25),
260 	PERIPHC_DISP2,
261 	PERIPHC_DISP1,
262 	PERIPHC_HOST1X,
263 	NONE(VCP),
264 	PERIPHC_I2S0,
265 	NONE(CACHE2),
266 
267 	/* Middle word: 63:32 */
268 	NONE(MEM),
269 	NONE(AHBDMA),
270 	NONE(APBDMA),
271 	NONE(RESERVED35),
272 	NONE(RESERVED36),
273 	NONE(STAT_MON),
274 	NONE(RESERVED38),
275 	NONE(RESERVED39),
276 
277 	/* 40 */
278 	NONE(KFUSE),
279 	PERIPHC_SBC1,
280 	PERIPHC_NOR,
281 	NONE(RESERVED43),
282 	PERIPHC_SBC2,
283 	NONE(RESERVED45),
284 	PERIPHC_SBC3,
285 	PERIPHC_DVC_I2C,
286 
287 	/* 48 */
288 	NONE(DSI),
289 	PERIPHC_TVO,    /* also CVE 0x40 */
290 	PERIPHC_MIPI,
291 	PERIPHC_HDMI,
292 	NONE(CSI),
293 	PERIPHC_TVDAC,
294 	PERIPHC_I2C2,
295 	PERIPHC_UART3,
296 
297 	/* 56 */
298 	NONE(RESERVED56),
299 	PERIPHC_EMC,
300 	NONE(USB2),
301 	NONE(USB3),
302 	PERIPHC_MPE,
303 	PERIPHC_VDE,
304 	NONE(BSEA),
305 	NONE(BSEV),
306 
307 	/* Upper word 95:64 */
308 	PERIPHC_SPEEDO,
309 	PERIPHC_UART4,
310 	PERIPHC_UART5,
311 	PERIPHC_I2C3,
312 	PERIPHC_SBC4,
313 	PERIPHC_SDMMC3,
314 	NONE(PCIE),
315 	PERIPHC_OWR,
316 
317 	/* 72 */
318 	NONE(AFI),
319 	PERIPHC_CSITE,
320 	NONE(PCIEXCLK),
321 	NONE(AVPUCQ),
322 	NONE(RESERVED76),
323 	NONE(RESERVED77),
324 	NONE(RESERVED78),
325 	NONE(DTV),
326 
327 	/* 80 */
328 	PERIPHC_NANDSPEED,
329 	PERIPHC_I2CSLOW,
330 	NONE(DSIB),
331 	NONE(RESERVED83),
332 	NONE(IRAMA),
333 	NONE(IRAMB),
334 	NONE(IRAMC),
335 	NONE(IRAMD),
336 
337 	/* 88 */
338 	NONE(CRAM2),
339 	NONE(RESERVED89),
340 	NONE(MDOUBLER),
341 	NONE(RESERVED91),
342 	NONE(SUSOUT),
343 	NONE(RESERVED93),
344 	NONE(RESERVED94),
345 	NONE(RESERVED95),
346 
347 	/* V word: 31:0 */
348 	NONE(CPUG),
349 	NONE(CPULP),
350 	PERIPHC_G3D2,
351 	PERIPHC_MSELECT,
352 	PERIPHC_TSENSOR,
353 	PERIPHC_I2S3,
354 	PERIPHC_I2S4,
355 	PERIPHC_I2C4,
356 
357 	/* 08 */
358 	PERIPHC_SBC5,
359 	PERIPHC_SBC6,
360 	PERIPHC_AUDIO,
361 	NONE(APBIF),
362 	PERIPHC_DAM0,
363 	PERIPHC_DAM1,
364 	PERIPHC_DAM2,
365 	PERIPHC_HDA2CODEC2X,
366 
367 	/* 16 */
368 	NONE(ATOMICS),
369 	NONE(RESERVED17),
370 	NONE(RESERVED18),
371 	NONE(RESERVED19),
372 	NONE(RESERVED20),
373 	NONE(RESERVED21),
374 	NONE(RESERVED22),
375 	PERIPHC_ACTMON,
376 
377 	/* 24 */
378 	NONE(RESERVED24),
379 	NONE(RESERVED25),
380 	NONE(RESERVED26),
381 	NONE(RESERVED27),
382 	PERIPHC_SATA,
383 	PERIPHC_HDA,
384 	NONE(RESERVED30),
385 	NONE(RESERVED31),
386 
387 	/* W word: 31:0 */
388 	NONE(HDA2HDMICODEC),
389 	NONE(SATACOLD),
390 	NONE(RESERVED0_PCIERX0),
391 	NONE(RESERVED1_PCIERX1),
392 	NONE(RESERVED2_PCIERX2),
393 	NONE(RESERVED3_PCIERX3),
394 	NONE(RESERVED4_PCIERX4),
395 	NONE(RESERVED5_PCIERX5),
396 
397 	/* 40 */
398 	NONE(CEC),
399 	NONE(RESERVED6_PCIE2),
400 	NONE(RESERVED7_EMC),
401 	NONE(RESERVED8_HDMI),
402 	NONE(RESERVED9_SATA),
403 	NONE(RESERVED10_MIPI),
404 	NONE(EX_RESERVED46),
405 	NONE(EX_RESERVED47),
406 };
407 
408 /*
409  * PLL divider shift/mask tables for all PLL IDs.
410  */
411 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
412 	/*
413 	 * T30: some deviations from T2x.
414 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
415 	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
416 	 */
417 
418 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
419 	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
420 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 0,  .p_mask = 0,
421 	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
422 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
423 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
424 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
425 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
426 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
427 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
428 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
429 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
430 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
431 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
432 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
433 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
434 	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
435 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS (RESERVED) */
436 };
437 
438 /*
439  * Get the oscillator frequency, from the corresponding hardware configuration
440  * field. Note that T30 supports 3 new higher freqs, but we map back
441  * to the old T20 freqs. Support for the higher oscillators is TBD.
442  */
443 enum clock_osc_freq clock_get_osc_freq(void)
444 {
445 	struct clk_rst_ctlr *clkrst =
446 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
447 	u32 reg;
448 
449 	reg = readl(&clkrst->crc_osc_ctrl);
450 	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
451 
452 	if (reg & 1)			/* one of the newer freqs */
453 		printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
454 
455 	return reg >> 2;	/* Map to most common (T20) freqs */
456 }
457 
458 /* Returns a pointer to the clock source register for a peripheral */
459 u32 *get_periph_source_reg(enum periph_id periph_id)
460 {
461 	struct clk_rst_ctlr *clkrst =
462 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
463 	enum periphc_internal_id internal_id;
464 
465 	/* Coresight is a special case */
466 	if (periph_id == PERIPH_ID_CSI)
467 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
468 
469 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
470 	internal_id = periph_id_to_internal_id[periph_id];
471 	assert(internal_id != -1);
472 	if (internal_id >= PERIPHC_VW_FIRST) {
473 		internal_id -= PERIPHC_VW_FIRST;
474 		return &clkrst->crc_clk_src_vw[internal_id];
475 	} else
476 		return &clkrst->crc_clk_src[internal_id];
477 }
478 
479 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
480 			  int *divider_bits, int *type)
481 {
482 	enum periphc_internal_id internal_id;
483 
484 	if (!clock_periph_id_isvalid(periph_id))
485 		return -1;
486 
487 	internal_id = periph_id_to_internal_id[periph_id];
488 	if (!periphc_internal_id_isvalid(internal_id))
489 		return -1;
490 
491 	*type = clock_periph_type[internal_id];
492 	if (!clock_type_id_isvalid(*type))
493 		return -1;
494 
495 	*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
496 
497 	if (*type == CLOCK_TYPE_PCMT16)
498 		*divider_bits = 16;
499 	else
500 		*divider_bits = 8;
501 
502 	return 0;
503 }
504 
505 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
506 {
507 	enum periphc_internal_id internal_id;
508 	int type;
509 
510 	if (!clock_periph_id_isvalid(periph_id))
511 		return CLOCK_ID_NONE;
512 
513 	internal_id = periph_id_to_internal_id[periph_id];
514 	if (!periphc_internal_id_isvalid(internal_id))
515 		return CLOCK_ID_NONE;
516 
517 	type = clock_periph_type[internal_id];
518 	if (!clock_type_id_isvalid(type))
519 		return CLOCK_ID_NONE;
520 
521 	return clock_source[type][source];
522 }
523 
524 /**
525  * Given a peripheral ID and the required source clock, this returns which
526  * value should be programmed into the source mux for that peripheral.
527  *
528  * There is special code here to handle the one source type with 5 sources.
529  *
530  * @param periph_id	peripheral to start
531  * @param source	PLL id of required parent clock
532  * @param mux_bits	Set to number of bits in mux register: 2 or 4
533  * @param divider_bits  Set to number of divider bits (8 or 16)
534  * @return mux value (0-4, or -1 if not found)
535  */
536 int get_periph_clock_source(enum periph_id periph_id,
537 	enum clock_id parent, int *mux_bits, int *divider_bits)
538 {
539 	enum clock_type_id type;
540 	int mux, err;
541 
542 	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
543 	assert(!err);
544 
545 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
546 		if (clock_source[type][mux] == parent)
547 			return mux;
548 
549 	/* if we get here, either us or the caller has made a mistake */
550 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
551 		parent);
552 	return -1;
553 }
554 
555 void clock_set_enable(enum periph_id periph_id, int enable)
556 {
557 	struct clk_rst_ctlr *clkrst =
558 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
559 	u32 *clk;
560 	u32 reg;
561 
562 	/* Enable/disable the clock to this peripheral */
563 	assert(clock_periph_id_isvalid(periph_id));
564 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
565 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
566 	else
567 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
568 	reg = readl(clk);
569 	if (enable)
570 		reg |= PERIPH_MASK(periph_id);
571 	else
572 		reg &= ~PERIPH_MASK(periph_id);
573 	writel(reg, clk);
574 }
575 
576 void reset_set_enable(enum periph_id periph_id, int enable)
577 {
578 	struct clk_rst_ctlr *clkrst =
579 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
580 	u32 *reset;
581 	u32 reg;
582 
583 	/* Enable/disable reset to the peripheral */
584 	assert(clock_periph_id_isvalid(periph_id));
585 	if (periph_id < PERIPH_ID_VW_FIRST)
586 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
587 	else
588 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
589 	reg = readl(reset);
590 	if (enable)
591 		reg |= PERIPH_MASK(periph_id);
592 	else
593 		reg &= ~PERIPH_MASK(periph_id);
594 	writel(reg, reset);
595 }
596 
597 #if CONFIG_IS_ENABLED(OF_CONTROL)
598 /*
599  * Convert a device tree clock ID to our peripheral ID. They are mostly
600  * the same but we are very cautious so we check that a valid clock ID is
601  * provided.
602  *
603  * @param clk_id	Clock ID according to tegra30 device tree binding
604  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
605  */
606 enum periph_id clk_id_to_periph_id(int clk_id)
607 {
608 	if (clk_id > PERIPH_ID_COUNT)
609 		return PERIPH_ID_NONE;
610 
611 	switch (clk_id) {
612 	case PERIPH_ID_RESERVED3:
613 	case PERIPH_ID_RESERVED4:
614 	case PERIPH_ID_RESERVED16:
615 	case PERIPH_ID_RESERVED24:
616 	case PERIPH_ID_RESERVED35:
617 	case PERIPH_ID_RESERVED43:
618 	case PERIPH_ID_RESERVED45:
619 	case PERIPH_ID_RESERVED56:
620 	case PERIPH_ID_PCIEXCLK:
621 	case PERIPH_ID_RESERVED76:
622 	case PERIPH_ID_RESERVED77:
623 	case PERIPH_ID_RESERVED78:
624 	case PERIPH_ID_RESERVED83:
625 	case PERIPH_ID_RESERVED89:
626 	case PERIPH_ID_RESERVED91:
627 	case PERIPH_ID_RESERVED93:
628 	case PERIPH_ID_RESERVED94:
629 	case PERIPH_ID_RESERVED95:
630 		return PERIPH_ID_NONE;
631 	default:
632 		return clk_id;
633 	}
634 }
635 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
636 
637 void clock_early_init(void)
638 {
639 	tegra30_set_up_pllp();
640 }
641 
642 void arch_timer_init(void)
643 {
644 }
645 
646 #define PMC_SATA_PWRGT 0x1ac
647 #define  PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
648 #define  PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
649 
650 #define PLLE_SS_CNTL 0x68
651 #define  PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
652 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
653 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
654 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
655 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
656 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
657 
658 #define PLLE_BASE 0x0e8
659 #define  PLLE_BASE_ENABLE_CML (1 << 31)
660 #define  PLLE_BASE_ENABLE (1 << 30)
661 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
662 #define  PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
663 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
664 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
665 
666 #define PLLE_MISC 0x0ec
667 #define  PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
668 #define  PLLE_MISC_PLL_READY (1 << 15)
669 #define  PLLE_MISC_LOCK (1 << 11)
670 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
671 #define  PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
672 
673 static int tegra_plle_train(void)
674 {
675 	unsigned int timeout = 2000;
676 	unsigned long value;
677 
678 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
679 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
680 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
681 
682 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
683 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
684 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
685 
686 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
687 	value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
688 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
689 
690 	do {
691 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
692 		if (value & PLLE_MISC_PLL_READY)
693 			break;
694 
695 		udelay(100);
696 	} while (--timeout);
697 
698 	if (timeout == 0) {
699 		error("timeout waiting for PLLE to become ready");
700 		return -ETIMEDOUT;
701 	}
702 
703 	return 0;
704 }
705 
706 int tegra_plle_enable(void)
707 {
708 	unsigned int cpcon = 11, p = 18, n = 150, m = 1, timeout = 1000;
709 	u32 value;
710 	int err;
711 
712 	/* disable PLLE clock */
713 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
714 	value &= ~PLLE_BASE_ENABLE_CML;
715 	value &= ~PLLE_BASE_ENABLE;
716 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
717 
718 	/* clear lock enable and setup field */
719 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
720 	value &= ~PLLE_MISC_LOCK_ENABLE;
721 	value &= ~PLLE_MISC_SETUP_BASE(0xffff);
722 	value &= ~PLLE_MISC_SETUP_EXT(0x3);
723 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
724 
725 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
726 	if ((value & PLLE_MISC_PLL_READY) == 0) {
727 		err = tegra_plle_train();
728 		if (err < 0) {
729 			error("failed to train PLLE: %d", err);
730 			return err;
731 		}
732 	}
733 
734 	/* configure PLLE */
735 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
736 
737 	value &= ~PLLE_BASE_PLDIV_CML(0x0f);
738 	value |= PLLE_BASE_PLDIV_CML(cpcon);
739 
740 	value &= ~PLLE_BASE_PLDIV(0x3f);
741 	value |= PLLE_BASE_PLDIV(p);
742 
743 	value &= ~PLLE_BASE_NDIV(0xff);
744 	value |= PLLE_BASE_NDIV(n);
745 
746 	value &= ~PLLE_BASE_MDIV(0xff);
747 	value |= PLLE_BASE_MDIV(m);
748 
749 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
750 
751 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
752 	value |= PLLE_MISC_SETUP_BASE(0x7);
753 	value |= PLLE_MISC_LOCK_ENABLE;
754 	value |= PLLE_MISC_SETUP_EXT(0);
755 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
756 
757 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
758 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
759 		 PLLE_SS_CNTL_BYPASS_SS;
760 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
761 
762 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
763 	value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
764 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
765 
766 	do {
767 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
768 		if (value & PLLE_MISC_LOCK)
769 			break;
770 
771 		udelay(2);
772 	} while (--timeout);
773 
774 	if (timeout == 0) {
775 		error("timeout waiting for PLLE to lock");
776 		return -ETIMEDOUT;
777 	}
778 
779 	udelay(50);
780 
781 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
782 	value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
783 	value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
784 
785 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
786 	value |= PLLE_SS_CNTL_SSCINC(0x01);
787 
788 	value &= ~PLLE_SS_CNTL_SSCBYP;
789 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
790 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
791 
792 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
793 	value |= PLLE_SS_CNTL_SSCMAX(0x24);
794 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
795 
796 	return 0;
797 }
798 
799 struct periph_clk_init periph_clk_init_table[] = {
800 	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
801 	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
802 	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
803 	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
804 	{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
805 	{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
806 	{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
807 	{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
808 	{ PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
809 	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
810 	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
811 	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
812 	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
813 	{ PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
814 	{ PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
815 	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
816 	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
817 	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
818 	{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
819 	{ -1, },
820 };
821