xref: /openbmc/u-boot/arch/arm/mach-tegra/tegra30/clock.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * (C) Copyright 2010-2015
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7 
8 /* Tegra30 Clock control functions */
9 
10 #include <common.h>
11 #include <errno.h>
12 #include <asm/io.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/timer.h>
17 #include <div64.h>
18 #include <fdtdec.h>
19 
20 /*
21  * Clock types that we can use as a source. The Tegra30 has muxes for the
22  * peripheral clocks, and in most cases there are four options for the clock
23  * source. This gives us a clock 'type' and exploits what commonality exists
24  * in the device.
25  *
26  * Letters are obvious, except for T which means CLK_M, and S which means the
27  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28  * datasheet) and PLL_M are different things. The former is the basic
29  * clock supplied to the SOC from an external oscillator. The latter is the
30  * memory clock PLL.
31  *
32  * See definitions in clock_id in the header file.
33  */
34 enum clock_type_id {
35 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
36 	CLOCK_TYPE_MCPA,	/* and so on */
37 	CLOCK_TYPE_MCPT,
38 	CLOCK_TYPE_PCM,
39 	CLOCK_TYPE_PCMT,
40 	CLOCK_TYPE_PCMT16,
41 	CLOCK_TYPE_PDCT,
42 	CLOCK_TYPE_ACPT,
43 	CLOCK_TYPE_ASPTE,
44 	CLOCK_TYPE_PMDACD2T,
45 	CLOCK_TYPE_PCST,
46 
47 	CLOCK_TYPE_COUNT,
48 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
49 };
50 
51 enum {
52 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
53 };
54 
55 /*
56  * Clock source mux for each clock type. This just converts our enum into
57  * a list of mux sources for use by the code.
58  *
59  * Note:
60  *  The extra column in each clock source array is used to store the mask
61  *  bits in its register for the source.
62  */
63 #define CLK(x) CLOCK_ID_ ## x
64 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
65 	{ CLK(AUDIO),   CLK(XCPU),      CLK(PERIPH),    CLK(OSC),
66 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
67 		MASK_BITS_31_30},
68 	{ CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(AUDIO),
69 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
70 		MASK_BITS_31_30},
71 	{ CLK(MEMORY),  CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
72 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
73 		MASK_BITS_31_30},
74 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(NONE),
75 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
76 		MASK_BITS_31_30},
77 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
78 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
79 		MASK_BITS_31_30},
80 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(MEMORY),    CLK(OSC),
81 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
82 		MASK_BITS_31_30},
83 	{ CLK(PERIPH),  CLK(DISPLAY),   CLK(CGENERAL),  CLK(OSC),
84 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
85 		MASK_BITS_31_30},
86 	{ CLK(AUDIO),   CLK(CGENERAL),  CLK(PERIPH),    CLK(OSC),
87 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
88 		MASK_BITS_31_30},
89 	{ CLK(AUDIO),   CLK(SFROM32KHZ),	CLK(PERIPH),   CLK(OSC),
90 		CLK(EPCI),      CLK(NONE),      CLK(NONE),      CLK(NONE),
91 		MASK_BITS_31_29},
92 	{ CLK(PERIPH),  CLK(MEMORY),    CLK(DISPLAY),   CLK(AUDIO),
93 		CLK(CGENERAL),  CLK(DISPLAY2),  CLK(OSC),       CLK(NONE),
94 		MASK_BITS_31_29},
95 	{ CLK(PERIPH),  CLK(CGENERAL),  CLK(SFROM32KHZ), CLK(OSC),
96 		CLK(NONE),      CLK(NONE),      CLK(NONE),      CLK(NONE),
97 		MASK_BITS_31_28}
98 };
99 
100 /*
101  * Clock type for each peripheral clock source. We put the name in each
102  * record just so it is easy to match things up
103  */
104 #define TYPE(name, type) type
105 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
106 	/* 0x00 */
107 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
108 	TYPE(PERIPHC_I2S2,      CLOCK_TYPE_AXPT),
109 	TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
110 	TYPE(PERIPHC_SPDIF_IN,  CLOCK_TYPE_PCM),
111 	TYPE(PERIPHC_PWM,       CLOCK_TYPE_PCST),  /* only PWM uses b29:28 */
112 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
113 	TYPE(PERIPHC_SBC2,      CLOCK_TYPE_PCMT),
114 	TYPE(PERIPHC_SBC3,      CLOCK_TYPE_PCMT),
115 
116 	/* 0x08 */
117 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
118 	TYPE(PERIPHC_I2C1,      CLOCK_TYPE_PCMT16),
119 	TYPE(PERIPHC_DVC_I2C,   CLOCK_TYPE_PCMT16),
120 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
121 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
122 	TYPE(PERIPHC_SBC1,      CLOCK_TYPE_PCMT),
123 	TYPE(PERIPHC_DISP1,     CLOCK_TYPE_PMDACD2T),
124 	TYPE(PERIPHC_DISP2,     CLOCK_TYPE_PMDACD2T),
125 
126 	/* 0x10 */
127 	TYPE(PERIPHC_CVE,       CLOCK_TYPE_PDCT),
128 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
129 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
130 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
131 	TYPE(PERIPHC_SDMMC1,    CLOCK_TYPE_PCMT),
132 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PCMT),
133 	TYPE(PERIPHC_G3D,	CLOCK_TYPE_MCPA),
134 	TYPE(PERIPHC_G2D,	CLOCK_TYPE_MCPA),
135 
136 	/* 0x18 */
137 	TYPE(PERIPHC_NDFLASH,	CLOCK_TYPE_PCMT),
138 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PCMT),
139 	TYPE(PERIPHC_VFIR,      CLOCK_TYPE_PCMT),
140 	TYPE(PERIPHC_EPP,       CLOCK_TYPE_MCPA),
141 	TYPE(PERIPHC_MPE,       CLOCK_TYPE_MCPA),
142 	TYPE(PERIPHC_MIPI,      CLOCK_TYPE_PCMT),       /* MIPI base-band HSI */
143 	TYPE(PERIPHC_UART1,     CLOCK_TYPE_PCMT),
144 	TYPE(PERIPHC_UART2,     CLOCK_TYPE_PCMT),
145 
146 	/* 0x20 */
147 	TYPE(PERIPHC_HOST1X,    CLOCK_TYPE_MCPA),
148 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
149 	TYPE(PERIPHC_TVO,       CLOCK_TYPE_PDCT),
150 	TYPE(PERIPHC_HDMI,      CLOCK_TYPE_PMDACD2T),
151 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
152 	TYPE(PERIPHC_TVDAC,     CLOCK_TYPE_PDCT),
153 	TYPE(PERIPHC_I2C2,      CLOCK_TYPE_PCMT16),
154 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPT),
155 
156 	/* 0x28 */
157 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PCMT),
158 	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
159 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
160 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
161 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
162 	TYPE(PERIPHC_SBC4,      CLOCK_TYPE_PCMT),
163 	TYPE(PERIPHC_I2C3,      CLOCK_TYPE_PCMT16),
164 	TYPE(PERIPHC_SDMMC3,    CLOCK_TYPE_PCMT),
165 
166 	/* 0x30 */
167 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PCMT),
168 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PCMT),
169 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PCMT),
170 	TYPE(PERIPHC_OWR,       CLOCK_TYPE_PCMT),
171 	TYPE(PERIPHC_NOR,       CLOCK_TYPE_PCMT),
172 	TYPE(PERIPHC_CSITE,     CLOCK_TYPE_PCMT),
173 	TYPE(PERIPHC_I2S0,      CLOCK_TYPE_AXPT),
174 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
175 
176 	/* 0x38h */	     /* Jumps to reg offset 0x3B0h - new for T30 */
177 	TYPE(PERIPHC_G3D2,      CLOCK_TYPE_MCPA),
178 	TYPE(PERIPHC_MSELECT,   CLOCK_TYPE_PCMT),
179 	TYPE(PERIPHC_TSENSOR,   CLOCK_TYPE_PCST),       /* s/b PCTS */
180 	TYPE(PERIPHC_I2S3,      CLOCK_TYPE_AXPT),
181 	TYPE(PERIPHC_I2S4,      CLOCK_TYPE_AXPT),
182 	TYPE(PERIPHC_I2C4,      CLOCK_TYPE_PCMT16),
183 	TYPE(PERIPHC_SBC5,      CLOCK_TYPE_PCMT),
184 	TYPE(PERIPHC_SBC6,      CLOCK_TYPE_PCMT),
185 
186 	/* 0x40 */
187 	TYPE(PERIPHC_AUDIO,     CLOCK_TYPE_ACPT),
188 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
189 	TYPE(PERIPHC_DAM0,      CLOCK_TYPE_ACPT),
190 	TYPE(PERIPHC_DAM1,      CLOCK_TYPE_ACPT),
191 	TYPE(PERIPHC_DAM2,      CLOCK_TYPE_ACPT),
192 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
193 	TYPE(PERIPHC_ACTMON,    CLOCK_TYPE_PCST),       /* MASK 31:30 */
194 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
195 
196 	/* 0x48 */
197 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
198 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
199 	TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
200 	TYPE(PERIPHC_I2CSLOW,   CLOCK_TYPE_PCST),       /* MASK 31:30 */
201 	TYPE(PERIPHC_SYS,       CLOCK_TYPE_NONE),
202 	TYPE(PERIPHC_SPEEDO,    CLOCK_TYPE_PCMT),
203 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
204 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
205 
206 	/* 0x50 */
207 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
208 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
209 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
210 	TYPE(PERIPHC_NONE,      CLOCK_TYPE_NONE),
211 	TYPE(PERIPHC_SATAOOB,   CLOCK_TYPE_PCMT),       /* offset 0x420h */
212 	TYPE(PERIPHC_SATA,      CLOCK_TYPE_PCMT),
213 	TYPE(PERIPHC_HDA,       CLOCK_TYPE_PCMT),
214 };
215 
216 /*
217  * This array translates a periph_id to a periphc_internal_id
218  *
219  * Not present/matched up:
220  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
221  *	SPDIF - which is both 0x08 and 0x0c
222  *
223  */
224 #define NONE(name) (-1)
225 #define OFFSET(name, value) PERIPHC_ ## name
226 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
227 	/* Low word: 31:0 */
228 	NONE(CPU),
229 	NONE(COP),
230 	NONE(TRIGSYS),
231 	NONE(RESERVED3),
232 	NONE(RESERVED4),
233 	NONE(TMR),
234 	PERIPHC_UART1,
235 	PERIPHC_UART2,  /* and vfir 0x68 */
236 
237 	/* 8 */
238 	NONE(GPIO),
239 	PERIPHC_SDMMC2,
240 	NONE(SPDIF),	    /* 0x08 and 0x0c, unclear which to use */
241 	PERIPHC_I2S1,
242 	PERIPHC_I2C1,
243 	PERIPHC_NDFLASH,
244 	PERIPHC_SDMMC1,
245 	PERIPHC_SDMMC4,
246 
247 	/* 16 */
248 	NONE(RESERVED16),
249 	PERIPHC_PWM,
250 	PERIPHC_I2S2,
251 	PERIPHC_EPP,
252 	PERIPHC_VI,
253 	PERIPHC_G2D,
254 	NONE(USBD),
255 	NONE(ISP),
256 
257 	/* 24 */
258 	PERIPHC_G3D,
259 	NONE(RESERVED25),
260 	PERIPHC_DISP2,
261 	PERIPHC_DISP1,
262 	PERIPHC_HOST1X,
263 	NONE(VCP),
264 	PERIPHC_I2S0,
265 	NONE(CACHE2),
266 
267 	/* Middle word: 63:32 */
268 	NONE(MEM),
269 	NONE(AHBDMA),
270 	NONE(APBDMA),
271 	NONE(RESERVED35),
272 	NONE(RESERVED36),
273 	NONE(STAT_MON),
274 	NONE(RESERVED38),
275 	NONE(RESERVED39),
276 
277 	/* 40 */
278 	NONE(KFUSE),
279 	PERIPHC_SBC1,
280 	PERIPHC_NOR,
281 	NONE(RESERVED43),
282 	PERIPHC_SBC2,
283 	NONE(RESERVED45),
284 	PERIPHC_SBC3,
285 	PERIPHC_DVC_I2C,
286 
287 	/* 48 */
288 	NONE(DSI),
289 	PERIPHC_TVO,    /* also CVE 0x40 */
290 	PERIPHC_MIPI,
291 	PERIPHC_HDMI,
292 	NONE(CSI),
293 	PERIPHC_TVDAC,
294 	PERIPHC_I2C2,
295 	PERIPHC_UART3,
296 
297 	/* 56 */
298 	NONE(RESERVED56),
299 	PERIPHC_EMC,
300 	NONE(USB2),
301 	NONE(USB3),
302 	PERIPHC_MPE,
303 	PERIPHC_VDE,
304 	NONE(BSEA),
305 	NONE(BSEV),
306 
307 	/* Upper word 95:64 */
308 	PERIPHC_SPEEDO,
309 	PERIPHC_UART4,
310 	PERIPHC_UART5,
311 	PERIPHC_I2C3,
312 	PERIPHC_SBC4,
313 	PERIPHC_SDMMC3,
314 	NONE(PCIE),
315 	PERIPHC_OWR,
316 
317 	/* 72 */
318 	NONE(AFI),
319 	PERIPHC_CSITE,
320 	NONE(PCIEXCLK),
321 	NONE(AVPUCQ),
322 	NONE(RESERVED76),
323 	NONE(RESERVED77),
324 	NONE(RESERVED78),
325 	NONE(DTV),
326 
327 	/* 80 */
328 	PERIPHC_NANDSPEED,
329 	PERIPHC_I2CSLOW,
330 	NONE(DSIB),
331 	NONE(RESERVED83),
332 	NONE(IRAMA),
333 	NONE(IRAMB),
334 	NONE(IRAMC),
335 	NONE(IRAMD),
336 
337 	/* 88 */
338 	NONE(CRAM2),
339 	NONE(RESERVED89),
340 	NONE(MDOUBLER),
341 	NONE(RESERVED91),
342 	NONE(SUSOUT),
343 	NONE(RESERVED93),
344 	NONE(RESERVED94),
345 	NONE(RESERVED95),
346 
347 	/* V word: 31:0 */
348 	NONE(CPUG),
349 	NONE(CPULP),
350 	PERIPHC_G3D2,
351 	PERIPHC_MSELECT,
352 	PERIPHC_TSENSOR,
353 	PERIPHC_I2S3,
354 	PERIPHC_I2S4,
355 	PERIPHC_I2C4,
356 
357 	/* 08 */
358 	PERIPHC_SBC5,
359 	PERIPHC_SBC6,
360 	PERIPHC_AUDIO,
361 	NONE(APBIF),
362 	PERIPHC_DAM0,
363 	PERIPHC_DAM1,
364 	PERIPHC_DAM2,
365 	PERIPHC_HDA2CODEC2X,
366 
367 	/* 16 */
368 	NONE(ATOMICS),
369 	NONE(RESERVED17),
370 	NONE(RESERVED18),
371 	NONE(RESERVED19),
372 	NONE(RESERVED20),
373 	NONE(RESERVED21),
374 	NONE(RESERVED22),
375 	PERIPHC_ACTMON,
376 
377 	/* 24 */
378 	NONE(RESERVED24),
379 	NONE(RESERVED25),
380 	NONE(RESERVED26),
381 	NONE(RESERVED27),
382 	PERIPHC_SATA,
383 	PERIPHC_HDA,
384 	NONE(RESERVED30),
385 	NONE(RESERVED31),
386 
387 	/* W word: 31:0 */
388 	NONE(HDA2HDMICODEC),
389 	NONE(SATACOLD),
390 	NONE(RESERVED0_PCIERX0),
391 	NONE(RESERVED1_PCIERX1),
392 	NONE(RESERVED2_PCIERX2),
393 	NONE(RESERVED3_PCIERX3),
394 	NONE(RESERVED4_PCIERX4),
395 	NONE(RESERVED5_PCIERX5),
396 
397 	/* 40 */
398 	NONE(CEC),
399 	NONE(RESERVED6_PCIE2),
400 	NONE(RESERVED7_EMC),
401 	NONE(RESERVED8_HDMI),
402 	NONE(RESERVED9_SATA),
403 	NONE(RESERVED10_MIPI),
404 	NONE(EX_RESERVED46),
405 	NONE(EX_RESERVED47),
406 };
407 
408 /*
409  * PLL divider shift/mask tables for all PLL IDs.
410  */
411 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
412 	/*
413 	 * T30: some deviations from T2x.
414 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
415 	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
416 	 */
417 
418 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
419 	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
420 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 0,  .p_mask = 0,
421 	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
422 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
423 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
424 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
425 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
426 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
427 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
428 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
429 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
430 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
431 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
432 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
433 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
434 	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
435 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS (RESERVED) */
436 };
437 
438 /*
439  * Get the oscillator frequency, from the corresponding hardware configuration
440  * field. Note that T30 supports 3 new higher freqs, but we map back
441  * to the old T20 freqs. Support for the higher oscillators is TBD.
442  */
443 enum clock_osc_freq clock_get_osc_freq(void)
444 {
445 	struct clk_rst_ctlr *clkrst =
446 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
447 	u32 reg;
448 
449 	reg = readl(&clkrst->crc_osc_ctrl);
450 	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
451 
452 	if (reg & 1)			/* one of the newer freqs */
453 		printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
454 
455 	return reg >> 2;	/* Map to most common (T20) freqs */
456 }
457 
458 /* Returns a pointer to the clock source register for a peripheral */
459 u32 *get_periph_source_reg(enum periph_id periph_id)
460 {
461 	struct clk_rst_ctlr *clkrst =
462 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
463 	enum periphc_internal_id internal_id;
464 
465 	/* Coresight is a special case */
466 	if (periph_id == PERIPH_ID_CSI)
467 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
468 
469 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
470 	internal_id = periph_id_to_internal_id[periph_id];
471 	assert(internal_id != -1);
472 	if (internal_id >= PERIPHC_VW_FIRST) {
473 		internal_id -= PERIPHC_VW_FIRST;
474 		return &clkrst->crc_clk_src_vw[internal_id];
475 	} else
476 		return &clkrst->crc_clk_src[internal_id];
477 }
478 
479 /**
480  * Given a peripheral ID and the required source clock, this returns which
481  * value should be programmed into the source mux for that peripheral.
482  *
483  * There is special code here to handle the one source type with 5 sources.
484  *
485  * @param periph_id	peripheral to start
486  * @param source	PLL id of required parent clock
487  * @param mux_bits	Set to number of bits in mux register: 2 or 4
488  * @param divider_bits  Set to number of divider bits (8 or 16)
489  * @return mux value (0-4, or -1 if not found)
490  */
491 int get_periph_clock_source(enum periph_id periph_id,
492 	enum clock_id parent, int *mux_bits, int *divider_bits)
493 {
494 	enum clock_type_id type;
495 	enum periphc_internal_id internal_id;
496 	int mux;
497 
498 	assert(clock_periph_id_isvalid(periph_id));
499 
500 	internal_id = periph_id_to_internal_id[periph_id];
501 	assert(periphc_internal_id_isvalid(internal_id));
502 
503 	type = clock_periph_type[internal_id];
504 	assert(clock_type_id_isvalid(type));
505 
506 	*mux_bits = clock_source[type][CLOCK_MAX_MUX];
507 
508 	if (type == CLOCK_TYPE_PCMT16)
509 		*divider_bits = 16;
510 	else
511 		*divider_bits = 8;
512 
513 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
514 		if (clock_source[type][mux] == parent)
515 			return mux;
516 
517 	/* if we get here, either us or the caller has made a mistake */
518 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
519 		parent);
520 	return -1;
521 }
522 
523 void clock_set_enable(enum periph_id periph_id, int enable)
524 {
525 	struct clk_rst_ctlr *clkrst =
526 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
527 	u32 *clk;
528 	u32 reg;
529 
530 	/* Enable/disable the clock to this peripheral */
531 	assert(clock_periph_id_isvalid(periph_id));
532 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
533 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
534 	else
535 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
536 	reg = readl(clk);
537 	if (enable)
538 		reg |= PERIPH_MASK(periph_id);
539 	else
540 		reg &= ~PERIPH_MASK(periph_id);
541 	writel(reg, clk);
542 }
543 
544 void reset_set_enable(enum periph_id periph_id, int enable)
545 {
546 	struct clk_rst_ctlr *clkrst =
547 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
548 	u32 *reset;
549 	u32 reg;
550 
551 	/* Enable/disable reset to the peripheral */
552 	assert(clock_periph_id_isvalid(periph_id));
553 	if (periph_id < PERIPH_ID_VW_FIRST)
554 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
555 	else
556 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
557 	reg = readl(reset);
558 	if (enable)
559 		reg |= PERIPH_MASK(periph_id);
560 	else
561 		reg &= ~PERIPH_MASK(periph_id);
562 	writel(reg, reset);
563 }
564 
565 #if CONFIG_IS_ENABLED(OF_CONTROL)
566 /*
567  * Convert a device tree clock ID to our peripheral ID. They are mostly
568  * the same but we are very cautious so we check that a valid clock ID is
569  * provided.
570  *
571  * @param clk_id	Clock ID according to tegra30 device tree binding
572  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
573  */
574 enum periph_id clk_id_to_periph_id(int clk_id)
575 {
576 	if (clk_id > PERIPH_ID_COUNT)
577 		return PERIPH_ID_NONE;
578 
579 	switch (clk_id) {
580 	case PERIPH_ID_RESERVED3:
581 	case PERIPH_ID_RESERVED4:
582 	case PERIPH_ID_RESERVED16:
583 	case PERIPH_ID_RESERVED24:
584 	case PERIPH_ID_RESERVED35:
585 	case PERIPH_ID_RESERVED43:
586 	case PERIPH_ID_RESERVED45:
587 	case PERIPH_ID_RESERVED56:
588 	case PERIPH_ID_PCIEXCLK:
589 	case PERIPH_ID_RESERVED76:
590 	case PERIPH_ID_RESERVED77:
591 	case PERIPH_ID_RESERVED78:
592 	case PERIPH_ID_RESERVED83:
593 	case PERIPH_ID_RESERVED89:
594 	case PERIPH_ID_RESERVED91:
595 	case PERIPH_ID_RESERVED93:
596 	case PERIPH_ID_RESERVED94:
597 	case PERIPH_ID_RESERVED95:
598 		return PERIPH_ID_NONE;
599 	default:
600 		return clk_id;
601 	}
602 }
603 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
604 
605 void clock_early_init(void)
606 {
607 	tegra30_set_up_pllp();
608 }
609 
610 void arch_timer_init(void)
611 {
612 }
613 
614 #define PMC_SATA_PWRGT 0x1ac
615 #define  PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
616 #define  PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
617 
618 #define PLLE_SS_CNTL 0x68
619 #define  PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
620 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
621 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
622 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
623 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
624 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
625 
626 #define PLLE_BASE 0x0e8
627 #define  PLLE_BASE_ENABLE_CML (1 << 31)
628 #define  PLLE_BASE_ENABLE (1 << 30)
629 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
630 #define  PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
631 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
632 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
633 
634 #define PLLE_MISC 0x0ec
635 #define  PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
636 #define  PLLE_MISC_PLL_READY (1 << 15)
637 #define  PLLE_MISC_LOCK (1 << 11)
638 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
639 #define  PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
640 
641 static int tegra_plle_train(void)
642 {
643 	unsigned int timeout = 2000;
644 	unsigned long value;
645 
646 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
647 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
648 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
649 
650 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
651 	value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
652 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
653 
654 	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
655 	value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
656 	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
657 
658 	do {
659 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
660 		if (value & PLLE_MISC_PLL_READY)
661 			break;
662 
663 		udelay(100);
664 	} while (--timeout);
665 
666 	if (timeout == 0) {
667 		error("timeout waiting for PLLE to become ready");
668 		return -ETIMEDOUT;
669 	}
670 
671 	return 0;
672 }
673 
674 int tegra_plle_enable(void)
675 {
676 	unsigned int cpcon = 11, p = 18, n = 150, m = 1, timeout = 1000;
677 	u32 value;
678 	int err;
679 
680 	/* disable PLLE clock */
681 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
682 	value &= ~PLLE_BASE_ENABLE_CML;
683 	value &= ~PLLE_BASE_ENABLE;
684 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
685 
686 	/* clear lock enable and setup field */
687 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
688 	value &= ~PLLE_MISC_LOCK_ENABLE;
689 	value &= ~PLLE_MISC_SETUP_BASE(0xffff);
690 	value &= ~PLLE_MISC_SETUP_EXT(0x3);
691 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
692 
693 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
694 	if ((value & PLLE_MISC_PLL_READY) == 0) {
695 		err = tegra_plle_train();
696 		if (err < 0) {
697 			error("failed to train PLLE: %d", err);
698 			return err;
699 		}
700 	}
701 
702 	/* configure PLLE */
703 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
704 
705 	value &= ~PLLE_BASE_PLDIV_CML(0x0f);
706 	value |= PLLE_BASE_PLDIV_CML(cpcon);
707 
708 	value &= ~PLLE_BASE_PLDIV(0x3f);
709 	value |= PLLE_BASE_PLDIV(p);
710 
711 	value &= ~PLLE_BASE_NDIV(0xff);
712 	value |= PLLE_BASE_NDIV(n);
713 
714 	value &= ~PLLE_BASE_MDIV(0xff);
715 	value |= PLLE_BASE_MDIV(m);
716 
717 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
718 
719 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
720 	value |= PLLE_MISC_SETUP_BASE(0x7);
721 	value |= PLLE_MISC_LOCK_ENABLE;
722 	value |= PLLE_MISC_SETUP_EXT(0);
723 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
724 
725 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
726 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
727 		 PLLE_SS_CNTL_BYPASS_SS;
728 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
729 
730 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
731 	value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
732 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
733 
734 	do {
735 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
736 		if (value & PLLE_MISC_LOCK)
737 			break;
738 
739 		udelay(2);
740 	} while (--timeout);
741 
742 	if (timeout == 0) {
743 		error("timeout waiting for PLLE to lock");
744 		return -ETIMEDOUT;
745 	}
746 
747 	udelay(50);
748 
749 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
750 	value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
751 	value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
752 
753 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
754 	value |= PLLE_SS_CNTL_SSCINC(0x01);
755 
756 	value &= ~PLLE_SS_CNTL_SSCBYP;
757 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
758 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
759 
760 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
761 	value |= PLLE_SS_CNTL_SSCMAX(0x24);
762 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
763 
764 	return 0;
765 }
766