1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2013-2015 4 * NVIDIA Corporation <www.nvidia.com> 5 */ 6 7 /* Tegra210 Clock control functions */ 8 9 #include <common.h> 10 #include <errno.h> 11 #include <asm/io.h> 12 #include <asm/arch/clock.h> 13 #include <asm/arch/sysctr.h> 14 #include <asm/arch/tegra.h> 15 #include <asm/arch-tegra/clk_rst.h> 16 #include <asm/arch-tegra/timer.h> 17 #include <div64.h> 18 #include <fdtdec.h> 19 20 /* 21 * Clock types that we can use as a source. The Tegra210 has muxes for the 22 * peripheral clocks, and in most cases there are four options for the clock 23 * source. This gives us a clock 'type' and exploits what commonality exists 24 * in the device. 25 * 26 * Letters are obvious, except for T which means CLK_M, and S which means the 27 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the 28 * datasheet) and PLL_M are different things. The former is the basic 29 * clock supplied to the SOC from an external oscillator. The latter is the 30 * memory clock PLL. 31 * 32 * See definitions in clock_id in the header file. 33 */ 34 enum clock_type_id { 35 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */ 36 CLOCK_TYPE_MCPA, /* and so on */ 37 CLOCK_TYPE_MCPT, 38 CLOCK_TYPE_PCM, 39 CLOCK_TYPE_PCMT, 40 CLOCK_TYPE_PDCT, 41 CLOCK_TYPE_ACPT, 42 CLOCK_TYPE_ASPTE, 43 CLOCK_TYPE_PMDACD2T, 44 CLOCK_TYPE_PCST, 45 CLOCK_TYPE_DP, 46 47 CLOCK_TYPE_PC2CC3M, 48 CLOCK_TYPE_PC2CC3S_T, 49 CLOCK_TYPE_PC2CC3M_T, 50 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */ 51 CLOCK_TYPE_MC2CC3P_A, 52 CLOCK_TYPE_M, 53 CLOCK_TYPE_MCPTM2C2C3, 54 CLOCK_TYPE_PC2CC3T_S, 55 CLOCK_TYPE_AC2CC3P_TS2, 56 CLOCK_TYPE_PC01C00_C42C41TC40, 57 58 CLOCK_TYPE_COUNT, 59 CLOCK_TYPE_NONE = -1, /* invalid clock type */ 60 }; 61 62 enum { 63 CLOCK_MAX_MUX = 8 /* number of source options for each clock */ 64 }; 65 66 /* 67 * Clock source mux for each clock type. This just converts our enum into 68 * a list of mux sources for use by the code. 69 * 70 * Note: 71 * The extra column in each clock source array is used to store the mask 72 * bits in its register for the source. 73 */ 74 #define CLK(x) CLOCK_ID_ ## x 75 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = { 76 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC), 77 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 78 MASK_BITS_31_30}, 79 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO), 80 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 81 MASK_BITS_31_30}, 82 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC), 83 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 84 MASK_BITS_31_30}, 85 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE), 86 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 87 MASK_BITS_31_30}, 88 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC), 89 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 90 MASK_BITS_31_30}, 91 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC), 92 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 93 MASK_BITS_31_30}, 94 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC), 95 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 96 MASK_BITS_31_30}, 97 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC), 98 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE), 99 MASK_BITS_31_29}, 100 { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO), 101 CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE), 102 MASK_BITS_31_29}, 103 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC), 104 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 105 MASK_BITS_31_28}, 106 /* CLOCK_TYPE_DP */ 107 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 108 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 109 MASK_BITS_31_28}, 110 111 /* Additional clock types on Tegra114+ */ 112 /* CLOCK_TYPE_PC2CC3M */ 113 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 114 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE), 115 MASK_BITS_31_29}, 116 /* CLOCK_TYPE_PC2CC3S_T */ 117 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 118 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE), 119 MASK_BITS_31_29}, 120 /* CLOCK_TYPE_PC2CC3M_T */ 121 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 122 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE), 123 MASK_BITS_31_29}, 124 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */ 125 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 126 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE), 127 MASK_BITS_31_29}, 128 /* CLOCK_TYPE_MC2CC3P_A */ 129 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 130 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE), 131 MASK_BITS_31_29}, 132 /* CLOCK_TYPE_M */ 133 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE), 134 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 135 MASK_BITS_31_30}, 136 /* CLOCK_TYPE_MCPTM2C2C3 */ 137 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC), 138 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE), 139 MASK_BITS_31_29}, 140 /* CLOCK_TYPE_PC2CC3T_S */ 141 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 142 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE), 143 MASK_BITS_31_29}, 144 /* CLOCK_TYPE_AC2CC3P_TS2 */ 145 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 146 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2), 147 MASK_BITS_31_29}, 148 /* CLOCK_TYPE_PC01C00_C42C41TC40 */ 149 { CLK(PERIPH), CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE), 150 CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0), 151 MASK_BITS_31_29}, 152 }; 153 154 /* 155 * Clock type for each peripheral clock source. We put the name in each 156 * record just so it is easy to match things up 157 */ 158 #define TYPE(name, type) type 159 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = { 160 /* 0x00 */ 161 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT), 162 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT), 163 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT), 164 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M), 165 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T), 166 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE), 167 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T), 168 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T), 169 170 /* 0x08 */ 171 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE), 172 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16), 173 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16), 174 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE), 175 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE), 176 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T), 177 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T), 178 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T), 179 180 /* 0x10 */ 181 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE), 182 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE), 183 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A), 184 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE), 185 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T), 186 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T), 187 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE), 188 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE), 189 190 /* 0x18 */ 191 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE), 192 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T), 193 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T), 194 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE), 195 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE), 196 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T), 197 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T), 198 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T), 199 200 /* 0x20 */ 201 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A), 202 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE), 203 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE), 204 TYPE(PERIPHC_23h, CLOCK_TYPE_NONE), 205 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE), 206 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE), 207 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16), 208 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3), 209 210 /* 0x28 */ 211 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T), 212 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE), 213 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A), 214 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE), 215 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE), 216 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T), 217 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16), 218 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T), 219 220 /* 0x30 */ 221 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T), 222 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T), 223 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T), 224 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T), 225 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T), 226 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T), 227 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT), 228 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE), 229 230 /* 0x38 */ 231 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE), 232 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE), 233 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE), 234 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE), 235 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A), 236 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T), 237 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE), 238 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE), 239 240 /* 0x40 */ 241 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */ 242 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T), 243 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S), 244 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT), 245 TYPE(PERIPHC_I2S5, CLOCK_TYPE_AXPT), 246 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16), 247 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T), 248 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T), 249 250 /* 0x48 */ 251 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2), 252 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE), 253 TYPE(PERIPHC_4ah, CLOCK_TYPE_NONE), 254 TYPE(PERIPHC_4bh, CLOCK_TYPE_NONE), 255 TYPE(PERIPHC_4ch, CLOCK_TYPE_NONE), 256 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T), 257 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T), 258 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE), 259 260 /* 0x50 */ 261 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE), 262 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE), 263 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE), 264 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T), 265 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE), 266 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE), 267 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE), 268 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE), 269 270 /* 0x58 */ 271 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE), 272 TYPE(PERIPHC_59h, CLOCK_TYPE_NONE), 273 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE), 274 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE), 275 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), 276 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT), 277 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T), 278 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE), 279 280 /* 0x60 */ 281 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE), 282 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE), 283 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE), 284 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE), 285 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE), 286 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE), 287 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE), 288 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE), 289 290 /* 0x68 */ 291 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE), 292 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE), 293 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE), 294 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE), 295 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE), 296 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE), 297 TYPE(PERIPHC_6eh, CLOCK_TYPE_NONE), 298 TYPE(PERIPHC_6fh, CLOCK_TYPE_NONE), 299 300 /* 0x70 */ 301 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE), 302 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE), 303 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE), 304 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE), 305 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE), 306 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE), 307 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE), 308 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16), 309 310 /* 0x78 */ 311 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE), 312 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3), 313 TYPE(PERIPHC_7ah, CLOCK_TYPE_NONE), 314 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE), 315 TYPE(PERIPHC_7ch, CLOCK_TYPE_NONE), 316 TYPE(PERIPHC_7dh, CLOCK_TYPE_NONE), 317 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE), 318 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE), 319 320 /* 0x80 */ 321 TYPE(PERIPHC_SDMMC_LEGACY_TM, CLOCK_TYPE_NONE), 322 TYPE(PERIPHC_NVDEC, CLOCK_TYPE_NONE), 323 TYPE(PERIPHC_NVJPG, CLOCK_TYPE_NONE), 324 TYPE(PERIPHC_NVENC, CLOCK_TYPE_NONE), 325 TYPE(PERIPHC_84h, CLOCK_TYPE_NONE), 326 TYPE(PERIPHC_85h, CLOCK_TYPE_NONE), 327 TYPE(PERIPHC_86h, CLOCK_TYPE_NONE), 328 TYPE(PERIPHC_87h, CLOCK_TYPE_NONE), 329 330 /* 0x88 */ 331 TYPE(PERIPHC_88h, CLOCK_TYPE_NONE), 332 TYPE(PERIPHC_89h, CLOCK_TYPE_NONE), 333 TYPE(PERIPHC_DMIC3, CLOCK_TYPE_NONE), 334 TYPE(PERIPHC_APE, CLOCK_TYPE_NONE), 335 TYPE(PERIPHC_QSPI, CLOCK_TYPE_PC01C00_C42C41TC40), 336 TYPE(PERIPHC_VI_I2C, CLOCK_TYPE_NONE), 337 TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE), 338 TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE), 339 340 /* 0x90 */ 341 TYPE(PERIPHC_MAUD, CLOCK_TYPE_NONE), 342 TYPE(PERIPHC_TSECB, CLOCK_TYPE_NONE), 343 }; 344 345 /* 346 * This array translates a periph_id to a periphc_internal_id 347 * 348 * Not present/matched up: 349 * uint vi_sensor; _VI_SENSOR_0, 0x1A8 350 * SPDIF - which is both 0x08 and 0x0c 351 * 352 */ 353 #define NONE(name) (-1) 354 #define OFFSET(name, value) PERIPHC_ ## name 355 #define INTERNAL_ID(id) (id & 0x000000ff) 356 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = { 357 /* Low word: 31:0 */ 358 NONE(CPU), 359 NONE(COP), 360 NONE(TRIGSYS), 361 NONE(ISPB), 362 NONE(RESERVED4), 363 NONE(TMR), 364 PERIPHC_UART1, 365 PERIPHC_UART2, /* and vfir 0x68 */ 366 367 /* 8 */ 368 NONE(GPIO), 369 PERIPHC_SDMMC2, 370 PERIPHC_SPDIF_IN, 371 PERIPHC_I2S2, 372 PERIPHC_I2C1, 373 NONE(RESERVED13), 374 PERIPHC_SDMMC1, 375 PERIPHC_SDMMC4, 376 377 /* 16 */ 378 NONE(TCW), 379 PERIPHC_PWM, 380 PERIPHC_I2S3, 381 NONE(RESERVED19), 382 PERIPHC_VI, 383 NONE(RESERVED21), 384 NONE(USBD), 385 NONE(ISP), 386 387 /* 24 */ 388 NONE(RESERVED24), 389 NONE(RESERVED25), 390 PERIPHC_DISP2, 391 PERIPHC_DISP1, 392 PERIPHC_HOST1X, 393 NONE(VCP), 394 PERIPHC_I2S1, 395 NONE(CACHE2), 396 397 /* Middle word: 63:32 */ 398 NONE(MEM), 399 NONE(AHBDMA), 400 NONE(APBDMA), 401 NONE(RESERVED35), 402 NONE(RESERVED36), 403 NONE(STAT_MON), 404 NONE(RESERVED38), 405 NONE(FUSE), 406 407 /* 40 */ 408 NONE(KFUSE), 409 PERIPHC_SBC1, /* SBCx = SPIx */ 410 PERIPHC_NOR, 411 NONE(RESERVED43), 412 PERIPHC_SBC2, 413 NONE(XIO), 414 PERIPHC_SBC3, 415 PERIPHC_I2C5, 416 417 /* 48 */ 418 NONE(DSI), 419 NONE(RESERVED49), 420 PERIPHC_HSI, 421 NONE(RESERVED51), 422 NONE(CSI), 423 NONE(RESERVED53), 424 PERIPHC_I2C2, 425 PERIPHC_UART3, 426 427 /* 56 */ 428 NONE(MIPI_CAL), 429 PERIPHC_EMC, 430 NONE(USB2), 431 NONE(USB3), 432 NONE(RESERVED60), 433 PERIPHC_VDE, 434 NONE(BSEA), 435 NONE(BSEV), 436 437 /* Upper word 95:64 */ 438 NONE(RESERVED64), 439 PERIPHC_UART4, 440 PERIPHC_UART5, 441 PERIPHC_I2C3, 442 PERIPHC_SBC4, 443 PERIPHC_SDMMC3, 444 NONE(PCIE), 445 PERIPHC_OWR, 446 447 /* 72 */ 448 NONE(AFI), 449 PERIPHC_CSITE, 450 NONE(PCIEXCLK), 451 NONE(AVPUCQ), 452 NONE(LA), 453 NONE(TRACECLKIN), 454 NONE(SOC_THERM), 455 NONE(DTV), 456 457 /* 80 */ 458 NONE(RESERVED80), 459 PERIPHC_I2CSLOW, 460 NONE(DSIB), 461 PERIPHC_TSEC, 462 NONE(RESERVED84), 463 NONE(RESERVED85), 464 NONE(RESERVED86), 465 NONE(EMUCIF), 466 467 /* 88 */ 468 NONE(RESERVED88), 469 NONE(XUSB_HOST), 470 NONE(RESERVED90), 471 PERIPHC_MSENC, 472 NONE(RESERVED92), 473 NONE(RESERVED93), 474 NONE(RESERVED94), 475 NONE(XUSB_DEV), 476 477 /* V word: 31:0 */ 478 NONE(CPUG), 479 NONE(CPULP), 480 NONE(V_RESERVED2), 481 PERIPHC_MSELECT, 482 NONE(V_RESERVED4), 483 PERIPHC_I2S4, 484 PERIPHC_I2S5, 485 PERIPHC_I2C4, 486 487 /* 104 */ 488 PERIPHC_SBC5, 489 PERIPHC_SBC6, 490 PERIPHC_AUDIO, 491 NONE(APBIF), 492 NONE(V_RESERVED12), 493 NONE(V_RESERVED13), 494 NONE(V_RESERVED14), 495 PERIPHC_HDA2CODEC2X, 496 497 /* 112 */ 498 NONE(ATOMICS), 499 NONE(V_RESERVED17), 500 NONE(V_RESERVED18), 501 NONE(V_RESERVED19), 502 NONE(V_RESERVED20), 503 NONE(V_RESERVED21), 504 NONE(V_RESERVED22), 505 PERIPHC_ACTMON, 506 507 /* 120 */ 508 NONE(EXTPERIPH1), 509 NONE(EXTPERIPH2), 510 NONE(EXTPERIPH3), 511 NONE(OOB), 512 PERIPHC_SATA, 513 PERIPHC_HDA, 514 NONE(TZRAM), 515 NONE(SE), 516 517 /* W word: 31:0 */ 518 NONE(HDA2HDMICODEC), 519 NONE(SATACOLD), 520 NONE(W_RESERVED2), 521 NONE(W_RESERVED3), 522 NONE(W_RESERVED4), 523 NONE(W_RESERVED5), 524 NONE(W_RESERVED6), 525 NONE(W_RESERVED7), 526 527 /* 136 */ 528 NONE(CEC), 529 NONE(W_RESERVED9), 530 NONE(W_RESERVED10), 531 NONE(W_RESERVED11), 532 NONE(W_RESERVED12), 533 NONE(W_RESERVED13), 534 NONE(XUSB_PADCTL), 535 NONE(W_RESERVED15), 536 537 /* 144 */ 538 NONE(W_RESERVED16), 539 NONE(W_RESERVED17), 540 NONE(W_RESERVED18), 541 NONE(W_RESERVED19), 542 NONE(W_RESERVED20), 543 NONE(ENTROPY), 544 NONE(DDS), 545 NONE(W_RESERVED23), 546 547 /* 152 */ 548 NONE(W_RESERVED24), 549 NONE(W_RESERVED25), 550 NONE(W_RESERVED26), 551 NONE(DVFS), 552 NONE(XUSB_SS), 553 NONE(W_RESERVED29), 554 NONE(W_RESERVED30), 555 NONE(W_RESERVED31), 556 557 /* X word: 31:0 */ 558 NONE(SPARE), 559 NONE(X_RESERVED1), 560 NONE(X_RESERVED2), 561 NONE(X_RESERVED3), 562 NONE(CAM_MCLK), 563 NONE(CAM_MCLK2), 564 PERIPHC_I2C6, 565 NONE(X_RESERVED7), 566 567 /* 168 */ 568 NONE(X_RESERVED8), 569 NONE(X_RESERVED9), 570 NONE(X_RESERVED10), 571 NONE(VIM2_CLK), 572 NONE(X_RESERVED12), 573 NONE(X_RESERVED13), 574 NONE(EMC_DLL), 575 NONE(X_RESERVED15), 576 577 /* 176 */ 578 NONE(X_RESERVED16), 579 NONE(CLK72MHZ), 580 NONE(VIC), 581 NONE(X_RESERVED19), 582 NONE(X_RESERVED20), 583 NONE(DPAUX), 584 NONE(SOR0), 585 NONE(X_RESERVED23), 586 587 /* 184 */ 588 NONE(GPU), 589 NONE(X_RESERVED25), 590 NONE(X_RESERVED26), 591 NONE(X_RESERVED27), 592 NONE(X_RESERVED28), 593 NONE(X_RESERVED29), 594 NONE(X_RESERVED30), 595 NONE(X_RESERVED31), 596 597 /* Y: 192 (192 - 223) */ 598 NONE(Y_RESERVED0), 599 PERIPHC_SDMMC_LEGACY_TM, 600 PERIPHC_NVDEC, 601 PERIPHC_NVJPG, 602 NONE(Y_RESERVED4), 603 PERIPHC_DMIC3, /* 197 */ 604 PERIPHC_APE, /* 198 */ 605 NONE(Y_RESERVED7), 606 607 /* 200 */ 608 NONE(Y_RESERVED8), 609 NONE(Y_RESERVED9), 610 NONE(Y_RESERVED10), 611 NONE(Y_RESERVED11), 612 NONE(Y_RESERVED12), 613 NONE(Y_RESERVED13), 614 NONE(Y_RESERVED14), 615 NONE(Y_RESERVED15), 616 617 /* 208 */ 618 PERIPHC_VI_I2C, /* 208 */ 619 NONE(Y_RESERVED17), 620 NONE(Y_RESERVED18), 621 PERIPHC_QSPI, /* 211 */ 622 NONE(Y_RESERVED20), 623 NONE(Y_RESERVED21), 624 NONE(Y_RESERVED22), 625 NONE(Y_RESERVED23), 626 627 /* 216 */ 628 NONE(Y_RESERVED24), 629 NONE(Y_RESERVED25), 630 NONE(Y_RESERVED26), 631 PERIPHC_NVENC, /* 219 */ 632 NONE(Y_RESERVED28), 633 NONE(Y_RESERVED29), 634 NONE(Y_RESERVED30), 635 NONE(Y_RESERVED31), 636 }; 637 638 /* 639 * PLL divider shift/mask tables for all PLL IDs. 640 */ 641 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = { 642 /* 643 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.) 644 * If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.) 645 */ 646 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F, 647 .lock_ena = 32, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLC */ 648 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F, 649 .lock_ena = 4, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */ 650 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F, 651 .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 }, /* PLLP */ 652 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F, 653 .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLA */ 654 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F, 655 .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLU */ 656 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07, 657 .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 }, /* PLLD */ 658 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F, 659 .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLX */ 660 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0, 661 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */ 662 { .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0, 663 .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLS (gone)*/ 664 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 19, .p_mask = 0x1F, 665 .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */ 666 }; 667 668 /* 669 * Get the oscillator frequency, from the corresponding hardware configuration 670 * field. Note that Tegra30+ support 3 new higher freqs, but we map back 671 * to the old T20 freqs. Support for the higher oscillators is TBD. 672 */ 673 enum clock_osc_freq clock_get_osc_freq(void) 674 { 675 struct clk_rst_ctlr *clkrst = 676 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 677 u32 reg; 678 679 reg = readl(&clkrst->crc_osc_ctrl); 680 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT; 681 /* 682 * 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz, 683 * 8 = 12MHz, 9 = 48MHz, 12 = 26MHz 684 */ 685 if (reg == 5) { 686 debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg); 687 /* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */ 688 return 4; 689 } 690 691 /* 692 * Map to most common (T20) freqs (except 38.4, handled above): 693 * 13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3 694 */ 695 return reg >> 2; 696 } 697 698 /* Returns a pointer to the clock source register for a peripheral */ 699 u32 *get_periph_source_reg(enum periph_id periph_id) 700 { 701 struct clk_rst_ctlr *clkrst = 702 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 703 enum periphc_internal_id internal_id; 704 705 /* Coresight is a special case */ 706 if (periph_id == PERIPH_ID_CSI) 707 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1]; 708 709 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT); 710 internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]); 711 assert(internal_id != -1); 712 713 if (internal_id < PERIPHC_VW_FIRST) 714 /* L, H, U */ 715 return &clkrst->crc_clk_src[internal_id]; 716 717 if (internal_id < PERIPHC_X_FIRST) { 718 /* VW */ 719 internal_id -= PERIPHC_VW_FIRST; 720 return &clkrst->crc_clk_src_vw[internal_id]; 721 } 722 723 if (internal_id < PERIPHC_Y_FIRST) { 724 /* X */ 725 internal_id -= PERIPHC_X_FIRST; 726 return &clkrst->crc_clk_src_x[internal_id]; 727 } 728 729 /* Y */ 730 internal_id -= PERIPHC_Y_FIRST; 731 return &clkrst->crc_clk_src_y[internal_id]; 732 } 733 734 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits, 735 int *divider_bits, int *type) 736 { 737 enum periphc_internal_id internal_id; 738 739 if (!clock_periph_id_isvalid(periph_id)) 740 return -1; 741 742 internal_id = periph_id_to_internal_id[periph_id]; 743 if (!periphc_internal_id_isvalid(internal_id)) 744 return -1; 745 746 *type = clock_periph_type[internal_id]; 747 if (!clock_type_id_isvalid(*type)) 748 return -1; 749 750 *mux_bits = clock_source[*type][CLOCK_MAX_MUX]; 751 752 if (*type == CLOCK_TYPE_PC2CC3M_T16) 753 *divider_bits = 16; 754 else 755 *divider_bits = 8; 756 757 return 0; 758 } 759 760 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source) 761 { 762 enum periphc_internal_id internal_id; 763 int type; 764 765 if (!clock_periph_id_isvalid(periph_id)) 766 return CLOCK_ID_NONE; 767 768 internal_id = periph_id_to_internal_id[periph_id]; 769 if (!periphc_internal_id_isvalid(internal_id)) 770 return CLOCK_ID_NONE; 771 772 type = clock_periph_type[internal_id]; 773 if (!clock_type_id_isvalid(type)) 774 return CLOCK_ID_NONE; 775 776 return clock_source[type][source]; 777 } 778 779 /** 780 * Given a peripheral ID and the required source clock, this returns which 781 * value should be programmed into the source mux for that peripheral. 782 * 783 * There is special code here to handle the one source type with 5 sources. 784 * 785 * @param periph_id peripheral to start 786 * @param source PLL id of required parent clock 787 * @param mux_bits Set to number of bits in mux register: 2 or 4 788 * @param divider_bits Set to number of divider bits (8 or 16) 789 * @return mux value (0-4, or -1 if not found) 790 */ 791 int get_periph_clock_source(enum periph_id periph_id, 792 enum clock_id parent, int *mux_bits, int *divider_bits) 793 { 794 enum clock_type_id type; 795 int mux, err; 796 797 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type); 798 assert(!err); 799 800 for (mux = 0; mux < CLOCK_MAX_MUX; mux++) 801 if (clock_source[type][mux] == parent) 802 return mux; 803 804 /* if we get here, either us or the caller has made a mistake */ 805 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id, 806 parent); 807 return -1; 808 } 809 810 void clock_set_enable(enum periph_id periph_id, int enable) 811 { 812 struct clk_rst_ctlr *clkrst = 813 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 814 u32 *clk; 815 u32 reg; 816 817 /* Enable/disable the clock to this peripheral */ 818 assert(clock_periph_id_isvalid(periph_id)); 819 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST) 820 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)]; 821 else if ((int)periph_id < (int)PERIPH_ID_X_FIRST) 822 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)]; 823 else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST) 824 clk = &clkrst->crc_clk_out_enb_x; 825 else 826 clk = &clkrst->crc_clk_out_enb_y; 827 828 reg = readl(clk); 829 if (enable) 830 reg |= PERIPH_MASK(periph_id); 831 else 832 reg &= ~PERIPH_MASK(periph_id); 833 writel(reg, clk); 834 } 835 836 void reset_set_enable(enum periph_id periph_id, int enable) 837 { 838 struct clk_rst_ctlr *clkrst = 839 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 840 u32 *reset; 841 u32 reg; 842 843 /* Enable/disable reset to the peripheral */ 844 assert(clock_periph_id_isvalid(periph_id)); 845 if (periph_id < PERIPH_ID_VW_FIRST) 846 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)]; 847 else if ((int)periph_id < (int)PERIPH_ID_X_FIRST) 848 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)]; 849 else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST) 850 reset = &clkrst->crc_rst_devices_x; 851 else 852 reset = &clkrst->crc_rst_devices_y; 853 854 reg = readl(reset); 855 if (enable) 856 reg |= PERIPH_MASK(periph_id); 857 else 858 reg &= ~PERIPH_MASK(periph_id); 859 writel(reg, reset); 860 } 861 862 #ifdef CONFIG_OF_CONTROL 863 /* 864 * Convert a device tree clock ID to our peripheral ID. They are mostly 865 * the same but we are very cautious so we check that a valid clock ID is 866 * provided. 867 * 868 * @param clk_id Clock ID according to tegra210 device tree binding 869 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid 870 */ 871 enum periph_id clk_id_to_periph_id(int clk_id) 872 { 873 if (clk_id > PERIPH_ID_COUNT) 874 return PERIPH_ID_NONE; 875 876 switch (clk_id) { 877 case PERIPH_ID_RESERVED4: 878 case PERIPH_ID_RESERVED25: 879 case PERIPH_ID_RESERVED35: 880 case PERIPH_ID_RESERVED36: 881 case PERIPH_ID_RESERVED38: 882 case PERIPH_ID_RESERVED43: 883 case PERIPH_ID_RESERVED49: 884 case PERIPH_ID_RESERVED53: 885 case PERIPH_ID_RESERVED64: 886 case PERIPH_ID_RESERVED84: 887 case PERIPH_ID_RESERVED85: 888 case PERIPH_ID_RESERVED86: 889 case PERIPH_ID_RESERVED88: 890 case PERIPH_ID_RESERVED90: 891 case PERIPH_ID_RESERVED92: 892 case PERIPH_ID_RESERVED93: 893 case PERIPH_ID_RESERVED94: 894 case PERIPH_ID_V_RESERVED2: 895 case PERIPH_ID_V_RESERVED4: 896 case PERIPH_ID_V_RESERVED17: 897 case PERIPH_ID_V_RESERVED18: 898 case PERIPH_ID_V_RESERVED19: 899 case PERIPH_ID_V_RESERVED20: 900 case PERIPH_ID_V_RESERVED21: 901 case PERIPH_ID_V_RESERVED22: 902 case PERIPH_ID_W_RESERVED2: 903 case PERIPH_ID_W_RESERVED3: 904 case PERIPH_ID_W_RESERVED4: 905 case PERIPH_ID_W_RESERVED5: 906 case PERIPH_ID_W_RESERVED6: 907 case PERIPH_ID_W_RESERVED7: 908 case PERIPH_ID_W_RESERVED9: 909 case PERIPH_ID_W_RESERVED10: 910 case PERIPH_ID_W_RESERVED11: 911 case PERIPH_ID_W_RESERVED12: 912 case PERIPH_ID_W_RESERVED13: 913 case PERIPH_ID_W_RESERVED15: 914 case PERIPH_ID_W_RESERVED16: 915 case PERIPH_ID_W_RESERVED17: 916 case PERIPH_ID_W_RESERVED18: 917 case PERIPH_ID_W_RESERVED19: 918 case PERIPH_ID_W_RESERVED20: 919 case PERIPH_ID_W_RESERVED23: 920 case PERIPH_ID_W_RESERVED29: 921 case PERIPH_ID_W_RESERVED30: 922 case PERIPH_ID_W_RESERVED31: 923 return PERIPH_ID_NONE; 924 default: 925 return clk_id; 926 } 927 } 928 #endif /* CONFIG_OF_CONTROL */ 929 930 /* 931 * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here. 932 * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM. 933 */ 934 void tegra210_setup_pllp(void) 935 { 936 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 937 u32 reg; 938 939 /* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */ 940 941 /* OUT1 */ 942 /* Assert RSTN before enable */ 943 reg = PLLP_OUT1_RSTN_EN; 944 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 945 /* Set divisor and reenable */ 946 reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) 947 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS; 948 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 949 950 /* OUT3, 4 */ 951 /* Assert RSTN before enable */ 952 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN; 953 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 954 /* Set divisor and reenable */ 955 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) 956 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS 957 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) 958 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS; 959 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 960 961 /* 962 * NOTE: If you want to change PLLP_OUT2 away from 204MHz, 963 * you can change PLLP_BASE DIVP here. Currently defaults 964 * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz. 965 * See Table 13 in section 5.1.4 in T210 TRM for more info. 966 */ 967 } 968 969 void clock_early_init(void) 970 { 971 struct clk_rst_ctlr *clkrst = 972 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 973 struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY]; 974 u32 data; 975 976 tegra210_setup_pllp(); 977 978 /* 979 * PLLC output frequency set to 600Mhz 980 * PLLD output frequency set to 925Mhz 981 */ 982 switch (clock_get_osc_freq()) { 983 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ 984 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8); 985 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12); 986 break; 987 988 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ 989 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); 990 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12); 991 break; 992 993 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ 994 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); 995 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12); 996 break; 997 case CLOCK_OSC_FREQ_19_2: 998 clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0); 999 clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12); 1000 break; 1001 case CLOCK_OSC_FREQ_38_4: 1002 clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0); 1003 clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0); 1004 break; 1005 default: 1006 /* 1007 * These are not supported. It is too early to print a 1008 * message and the UART likely won't work anyway due to the 1009 * oscillator being wrong. 1010 */ 1011 break; 1012 } 1013 1014 /* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */ 1015 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, 1016 (1 << PLLC_IDDQ)); 1017 udelay(2); 1018 1019 /* 1020 * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps 1021 * to pll_out[1] 1022 */ 1023 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1], 1024 (1 << PLLC_RESET)); 1025 udelay(2); 1026 1027 /* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */ 1028 data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena); 1029 writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc); 1030 udelay(2); 1031 } 1032 1033 unsigned int clk_m_get_rate(unsigned parent_rate) 1034 { 1035 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 1036 u32 value, div; 1037 1038 value = readl(&clkrst->crc_spare_reg0); 1039 div = ((value >> 2) & 0x3) + 1; 1040 1041 return parent_rate / div; 1042 } 1043 1044 void arch_timer_init(void) 1045 { 1046 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE; 1047 u32 freq, val; 1048 1049 freq = clock_get_rate(CLOCK_ID_CLK_M); 1050 debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq); 1051 1052 if (current_el() == 3) 1053 asm("msr cntfrq_el0, %0\n" : : "r" (freq)); 1054 1055 /* Only Tegra114+ has the System Counter regs */ 1056 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq); 1057 writel(freq, &sysctr->cntfid0); 1058 1059 val = readl(&sysctr->cntcr); 1060 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG; 1061 writel(val, &sysctr->cntcr); 1062 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val); 1063 } 1064 1065 #define PLLREFE_MISC 0x4c8 1066 #define PLLREFE_MISC_LOCK BIT(27) 1067 #define PLLREFE_MISC_IDDQ BIT(24) 1068 1069 #define PLLREFE_BASE 0x4c4 1070 #define PLLREFE_BASE_BYPASS BIT(31) 1071 #define PLLREFE_BASE_ENABLE BIT(30) 1072 #define PLLREFE_BASE_REF_DIS BIT(29) 1073 #define PLLREFE_BASE_KCP(kcp) (((kcp) & 0x3) << 27) 1074 #define PLLREFE_BASE_KVCO BIT(26) 1075 #define PLLREFE_BASE_DIVP(p) (((p) & 0x1f) << 16) 1076 #define PLLREFE_BASE_DIVN(n) (((n) & 0xff) << 8) 1077 #define PLLREFE_BASE_DIVM(m) (((m) & 0xff) << 0) 1078 1079 static int tegra_pllref_enable(void) 1080 { 1081 u32 value; 1082 unsigned long start; 1083 1084 /* 1085 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no 1086 * Recovery Mode or Boot from USB", sub-section "PLLREFE". 1087 */ 1088 1089 value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC); 1090 value &= ~PLLREFE_MISC_IDDQ; 1091 writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC); 1092 1093 udelay(5); 1094 1095 value = PLLREFE_BASE_ENABLE | 1096 PLLREFE_BASE_KCP(0) | 1097 PLLREFE_BASE_DIVP(0) | 1098 PLLREFE_BASE_DIVN(0x41) | 1099 PLLREFE_BASE_DIVM(4); 1100 writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE); 1101 1102 debug("waiting for pllrefe lock\n"); 1103 start = get_timer(0); 1104 while (get_timer(start) < 250) { 1105 value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC); 1106 if (value & PLLREFE_MISC_LOCK) 1107 break; 1108 } 1109 if (!(value & PLLREFE_MISC_LOCK)) { 1110 debug(" timeout\n"); 1111 return -ETIMEDOUT; 1112 } 1113 debug(" done\n"); 1114 1115 return 0; 1116 } 1117 1118 #define PLLE_SS_CNTL 0x68 1119 #define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24) 1120 #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16) 1121 #define PLLE_SS_CNTL_SSCINVERT (1 << 15) 1122 #define PLLE_SS_CNTL_SSCCENTER (1 << 14) 1123 #define PLLE_SS_CNTL_SSCBYP (1 << 12) 1124 #define PLLE_SS_CNTL_INTERP_RESET (1 << 11) 1125 #define PLLE_SS_CNTL_BYPASS_SS (1 << 10) 1126 #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0) 1127 1128 #define PLLE_BASE 0x0e8 1129 #define PLLE_BASE_ENABLE (1 << 31) 1130 #define PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24) 1131 #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8) 1132 #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0) 1133 1134 #define PLLE_MISC 0x0ec 1135 #define PLLE_MISC_IDDQ_SWCTL (1 << 14) 1136 #define PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13) 1137 #define PLLE_MISC_LOCK (1 << 11) 1138 #define PLLE_PTS (1 << 8) 1139 #define PLLE_MISC_KCP(x) (((x) & 0x3) << 6) 1140 #define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2) 1141 #define PLLE_MISC_KVCO (1 << 0) 1142 1143 #define PLLE_AUX 0x48c 1144 #define PLLE_AUX_SS_SEQ_INCLUDE (1 << 31) 1145 #define PLLE_AUX_REF_SEL_PLLREFE (1 << 28) 1146 #define PLLE_AUX_SEQ_ENABLE (1 << 24) 1147 #define PLLE_AUX_SS_SWCTL (1 << 6) 1148 #define PLLE_AUX_ENABLE_SWCTL (1 << 4) 1149 #define PLLE_AUX_USE_LOCKDET (1 << 3) 1150 1151 int tegra_plle_enable(void) 1152 { 1153 u32 value; 1154 unsigned long start; 1155 1156 /* PLLREF feeds PLLE */ 1157 tegra_pllref_enable(); 1158 1159 /* 1160 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no 1161 * Recovery Mode or Boot from USB", sub-section "PLLEs". 1162 */ 1163 1164 /* 1. Select XTAL as the source */ 1165 1166 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX); 1167 value &= ~PLLE_AUX_REF_SEL_PLLREFE; 1168 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX); 1169 1170 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC); 1171 value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE; 1172 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC); 1173 1174 /* 2. Wait 5 us */ 1175 udelay(5); 1176 1177 /* 1178 * 3. Program the following registers to generate a low jitter 100MHz 1179 * clock. 1180 */ 1181 1182 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE); 1183 value &= ~PLLE_BASE_PLDIV_CML(0x1f); 1184 value &= ~PLLE_BASE_NDIV(0xff); 1185 value &= ~PLLE_BASE_MDIV(0xff); 1186 value |= PLLE_BASE_PLDIV_CML(0xe); 1187 value |= PLLE_BASE_NDIV(0x7d); 1188 value |= PLLE_BASE_MDIV(2); 1189 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE); 1190 1191 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC); 1192 value |= PLLE_PTS; 1193 value &= ~PLLE_MISC_KCP(3); 1194 value &= ~PLLE_MISC_VREG_CTRL(3); 1195 value &= ~PLLE_MISC_KVCO; 1196 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC); 1197 1198 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE); 1199 value |= PLLE_BASE_ENABLE; 1200 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE); 1201 1202 /* 4. Wait for LOCK */ 1203 1204 debug("waiting for plle lock\n"); 1205 start = get_timer(0); 1206 while (get_timer(start) < 250) { 1207 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC); 1208 if (value & PLLE_MISC_LOCK) 1209 break; 1210 } 1211 if (!(value & PLLE_MISC_LOCK)) { 1212 debug(" timeout\n"); 1213 return -ETIMEDOUT; 1214 } 1215 debug(" done\n"); 1216 1217 /* 5. Enable SSA */ 1218 1219 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 1220 value &= ~PLLE_SS_CNTL_SSCINC(0xff); 1221 value |= PLLE_SS_CNTL_SSCINC(1); 1222 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f); 1223 value |= PLLE_SS_CNTL_SSCINCINTR(0x23); 1224 value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff); 1225 value |= PLLE_SS_CNTL_SSCMAX(0x21); 1226 value &= ~PLLE_SS_CNTL_SSCINVERT; 1227 value &= ~PLLE_SS_CNTL_SSCCENTER; 1228 value &= ~PLLE_SS_CNTL_BYPASS_SS; 1229 value &= ~PLLE_SS_CNTL_SSCBYP; 1230 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 1231 1232 /* 6. Wait 300 ns */ 1233 1234 udelay(1); 1235 value &= ~PLLE_SS_CNTL_INTERP_RESET; 1236 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 1237 1238 /* 7. Enable HW power sequencer for PLLE */ 1239 1240 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC); 1241 value &= ~PLLE_MISC_IDDQ_SWCTL; 1242 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC); 1243 1244 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX); 1245 value &= ~PLLE_AUX_SS_SWCTL; 1246 value &= ~PLLE_AUX_ENABLE_SWCTL; 1247 value |= PLLE_AUX_SS_SEQ_INCLUDE; 1248 value |= PLLE_AUX_USE_LOCKDET; 1249 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX); 1250 1251 /* 8. Wait 1 us */ 1252 1253 udelay(1); 1254 value |= PLLE_AUX_SEQ_ENABLE; 1255 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX); 1256 1257 return 0; 1258 } 1259 1260 struct periph_clk_init periph_clk_init_table[] = { 1261 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH }, 1262 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH }, 1263 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH }, 1264 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH }, 1265 { PERIPH_ID_SBC5, CLOCK_ID_PERIPH }, 1266 { PERIPH_ID_SBC6, CLOCK_ID_PERIPH }, 1267 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH }, 1268 { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL }, 1269 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH }, 1270 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH }, 1271 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH }, 1272 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH }, 1273 { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ }, 1274 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH }, 1275 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH }, 1276 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH }, 1277 { PERIPH_ID_I2C4, CLOCK_ID_PERIPH }, 1278 { PERIPH_ID_I2C5, CLOCK_ID_PERIPH }, 1279 { PERIPH_ID_I2C6, CLOCK_ID_PERIPH }, 1280 { -1, }, 1281 }; 1282