xref: /openbmc/u-boot/arch/arm/mach-tegra/tegra210/clock.c (revision 87a62bce28a61199f7e51a39ec7f441af5a313cc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2013-2015
4  * NVIDIA Corporation <www.nvidia.com>
5  */
6 
7 /* Tegra210 Clock control functions */
8 
9 #include <common.h>
10 #include <errno.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/sysctr.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/timer.h>
17 #include <div64.h>
18 #include <fdtdec.h>
19 
20 /*
21  * Clock types that we can use as a source. The Tegra210 has muxes for the
22  * peripheral clocks, and in most cases there are four options for the clock
23  * source. This gives us a clock 'type' and exploits what commonality exists
24  * in the device.
25  *
26  * Letters are obvious, except for T which means CLK_M, and S which means the
27  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28  * datasheet) and PLL_M are different things. The former is the basic
29  * clock supplied to the SOC from an external oscillator. The latter is the
30  * memory clock PLL.
31  *
32  * See definitions in clock_id in the header file.
33  */
34 enum clock_type_id {
35 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
36 	CLOCK_TYPE_MCPA,	/* and so on */
37 	CLOCK_TYPE_MCPT,
38 	CLOCK_TYPE_PCM,
39 	CLOCK_TYPE_PCMT,
40 	CLOCK_TYPE_PDCT,
41 	CLOCK_TYPE_ACPT,
42 	CLOCK_TYPE_ASPTE,
43 	CLOCK_TYPE_PMDACD2T,
44 	CLOCK_TYPE_PCST,
45 	CLOCK_TYPE_DP,
46 
47 	CLOCK_TYPE_PC2CC3M,
48 	CLOCK_TYPE_PC2CC3S_T,
49 	CLOCK_TYPE_PC2CC3M_T,
50 	CLOCK_TYPE_PC2CC3M_T16,	/* PC2CC3M_T, but w/16-bit divisor (I2C) */
51 	CLOCK_TYPE_MC2CC3P_A,
52 	CLOCK_TYPE_M,
53 	CLOCK_TYPE_MCPTM2C2C3,
54 	CLOCK_TYPE_PC2CC3T_S,
55 	CLOCK_TYPE_AC2CC3P_TS2,
56 	CLOCK_TYPE_PC01C00_C42C41TC40,
57 
58 	CLOCK_TYPE_COUNT,
59 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
60 };
61 
62 enum {
63 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
64 };
65 
66 /*
67  * Clock source mux for each clock type. This just converts our enum into
68  * a list of mux sources for use by the code.
69  *
70  * Note:
71  *  The extra column in each clock source array is used to store the mask
72  *  bits in its register for the source.
73  */
74 #define CLK(x) CLOCK_ID_ ## x
75 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
76 	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC),
77 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
78 		MASK_BITS_31_30},
79 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO),
80 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
81 		MASK_BITS_31_30},
82 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
83 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
84 		MASK_BITS_31_30},
85 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE),
86 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
87 		MASK_BITS_31_30},
88 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC),
89 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
90 		MASK_BITS_31_30},
91 	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC),
92 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
93 		MASK_BITS_31_30},
94 	{ CLK(AUDIO),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
95 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
96 		MASK_BITS_31_30},
97 	{ CLK(AUDIO),	CLK(SFROM32KHZ),	CLK(PERIPH),	CLK(OSC),
98 		CLK(EPCI),	CLK(NONE),	CLK(NONE),	CLK(NONE),
99 		MASK_BITS_31_29},
100 	{ CLK(PERIPH),	CLK(MEMORY),	CLK(DISPLAY),	CLK(AUDIO),
101 		CLK(CGENERAL),	CLK(DISPLAY2),	CLK(OSC),	CLK(NONE),
102 		MASK_BITS_31_29},
103 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(SFROM32KHZ),	CLK(OSC),
104 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
105 		MASK_BITS_31_28},
106 	/* CLOCK_TYPE_DP */
107 	{ CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
108 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
109 		MASK_BITS_31_28},
110 
111 	/* Additional clock types on Tegra114+ */
112 	/* CLOCK_TYPE_PC2CC3M */
113 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
114 		CLK(MEMORY),	CLK(NONE),	CLK(NONE),	CLK(NONE),
115 		MASK_BITS_31_29},
116 	/* CLOCK_TYPE_PC2CC3S_T */
117 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
118 		CLK(SFROM32KHZ), CLK(NONE),	CLK(OSC),	CLK(NONE),
119 		MASK_BITS_31_29},
120 	/* CLOCK_TYPE_PC2CC3M_T */
121 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
122 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
123 		MASK_BITS_31_29},
124 	/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
125 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
126 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
127 		MASK_BITS_31_29},
128 	/* CLOCK_TYPE_MC2CC3P_A */
129 	{ CLK(MEMORY),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
130 		CLK(PERIPH),	CLK(NONE),	CLK(AUDIO),	CLK(NONE),
131 		MASK_BITS_31_29},
132 	/* CLOCK_TYPE_M */
133 	{ CLK(MEMORY),		CLK(NONE),	CLK(NONE),	CLK(NONE),
134 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
135 		MASK_BITS_31_30},
136 	/* CLOCK_TYPE_MCPTM2C2C3 */
137 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
138 		CLK(MEMORY2),	CLK(CGENERAL2),	CLK(CGENERAL3),	CLK(NONE),
139 		MASK_BITS_31_29},
140 	/* CLOCK_TYPE_PC2CC3T_S */
141 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
142 		CLK(OSC),	CLK(NONE),	CLK(SFROM32KHZ), CLK(NONE),
143 		MASK_BITS_31_29},
144 	/* CLOCK_TYPE_AC2CC3P_TS2 */
145 	{ CLK(AUDIO),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
146 		CLK(PERIPH),	CLK(NONE),	CLK(OSC),	CLK(SRC2),
147 		MASK_BITS_31_29},
148 	/* CLOCK_TYPE_PC01C00_C42C41TC40 */
149 	{ CLK(PERIPH),	CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
150 		CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
151 		MASK_BITS_31_29},
152 };
153 
154 /*
155  * Clock type for each peripheral clock source. We put the name in each
156  * record just so it is easy to match things up
157  */
158 #define TYPE(name, type) type
159 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
160 	/* 0x00 */
161 	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
162 	TYPE(PERIPHC_I2S3,	CLOCK_TYPE_AXPT),
163 	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
164 	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PC2CC3M),
165 	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PC2CC3S_T),
166 	TYPE(PERIPHC_05h,	CLOCK_TYPE_NONE),
167 	TYPE(PERIPHC_SBC2,	CLOCK_TYPE_PC2CC3M_T),
168 	TYPE(PERIPHC_SBC3,	CLOCK_TYPE_PC2CC3M_T),
169 
170 	/* 0x08 */
171 	TYPE(PERIPHC_08h,	CLOCK_TYPE_NONE),
172 	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PC2CC3M_T16),
173 	TYPE(PERIPHC_I2C5,	CLOCK_TYPE_PC2CC3M_T16),
174 	TYPE(PERIPHC_0bh,	CLOCK_TYPE_NONE),
175 	TYPE(PERIPHC_0ch,	CLOCK_TYPE_NONE),
176 	TYPE(PERIPHC_SBC1,	CLOCK_TYPE_PC2CC3M_T),
177 	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PMDACD2T),
178 	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PMDACD2T),
179 
180 	/* 0x10 */
181 	TYPE(PERIPHC_10h,	CLOCK_TYPE_NONE),
182 	TYPE(PERIPHC_11h,	CLOCK_TYPE_NONE),
183 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MC2CC3P_A),
184 	TYPE(PERIPHC_13h,	CLOCK_TYPE_NONE),
185 	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PC2CC3M_T),
186 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PC2CC3M_T),
187 	TYPE(PERIPHC_16h,	CLOCK_TYPE_NONE),
188 	TYPE(PERIPHC_17h,	CLOCK_TYPE_NONE),
189 
190 	/* 0x18 */
191 	TYPE(PERIPHC_18h,	CLOCK_TYPE_NONE),
192 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PC2CC3M_T),
193 	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PC2CC3M_T),
194 	TYPE(PERIPHC_1Bh,	CLOCK_TYPE_NONE),
195 	TYPE(PERIPHC_1Ch,	CLOCK_TYPE_NONE),
196 	TYPE(PERIPHC_HSI,	CLOCK_TYPE_PC2CC3M_T),
197 	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PC2CC3M_T),
198 	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PC2CC3M_T),
199 
200 	/* 0x20 */
201 	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MC2CC3P_A),
202 	TYPE(PERIPHC_21h,	CLOCK_TYPE_NONE),
203 	TYPE(PERIPHC_22h,	CLOCK_TYPE_NONE),
204 	TYPE(PERIPHC_23h,	CLOCK_TYPE_NONE),
205 	TYPE(PERIPHC_24h,	CLOCK_TYPE_NONE),
206 	TYPE(PERIPHC_25h,	CLOCK_TYPE_NONE),
207 	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PC2CC3M_T16),
208 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPTM2C2C3),
209 
210 	/* 0x28 */
211 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PC2CC3M_T),
212 	TYPE(PERIPHC_29h,	CLOCK_TYPE_NONE),
213 	TYPE(PERIPHC_VI_SENSOR,	CLOCK_TYPE_MC2CC3P_A),
214 	TYPE(PERIPHC_2bh,	CLOCK_TYPE_NONE),
215 	TYPE(PERIPHC_2ch,	CLOCK_TYPE_NONE),
216 	TYPE(PERIPHC_SBC4,	CLOCK_TYPE_PC2CC3M_T),
217 	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PC2CC3M_T16),
218 	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PC2CC3M_T),
219 
220 	/* 0x30 */
221 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PC2CC3M_T),
222 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PC2CC3M_T),
223 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PC2CC3M_T),
224 	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PC2CC3M_T),
225 	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PC2CC3M_T),
226 	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PC2CC3M_T),
227 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
228 	TYPE(PERIPHC_DTV,	CLOCK_TYPE_NONE),
229 
230 	/* 0x38 */
231 	TYPE(PERIPHC_38h,	CLOCK_TYPE_NONE),
232 	TYPE(PERIPHC_39h,	CLOCK_TYPE_NONE),
233 	TYPE(PERIPHC_3ah,	CLOCK_TYPE_NONE),
234 	TYPE(PERIPHC_3bh,	CLOCK_TYPE_NONE),
235 	TYPE(PERIPHC_MSENC,	CLOCK_TYPE_MC2CC3P_A),
236 	TYPE(PERIPHC_TSEC,	CLOCK_TYPE_PC2CC3M_T),
237 	TYPE(PERIPHC_3eh,	CLOCK_TYPE_NONE),
238 	TYPE(PERIPHC_OSC,	CLOCK_TYPE_NONE),
239 
240 	/* 0x40 */
241 	TYPE(PERIPHC_40h,	CLOCK_TYPE_NONE),	/* start with 0x3b0 */
242 	TYPE(PERIPHC_MSELECT,	CLOCK_TYPE_PC2CC3M_T),
243 	TYPE(PERIPHC_TSENSOR,	CLOCK_TYPE_PC2CC3T_S),
244 	TYPE(PERIPHC_I2S4,	CLOCK_TYPE_AXPT),
245 	TYPE(PERIPHC_I2S5,	CLOCK_TYPE_AXPT),
246 	TYPE(PERIPHC_I2C4,	CLOCK_TYPE_PC2CC3M_T16),
247 	TYPE(PERIPHC_SBC5,	CLOCK_TYPE_PC2CC3M_T),
248 	TYPE(PERIPHC_SBC6,	CLOCK_TYPE_PC2CC3M_T),
249 
250 	/* 0x48 */
251 	TYPE(PERIPHC_AUDIO,	CLOCK_TYPE_AC2CC3P_TS2),
252 	TYPE(PERIPHC_49h,	CLOCK_TYPE_NONE),
253 	TYPE(PERIPHC_4ah,	CLOCK_TYPE_NONE),
254 	TYPE(PERIPHC_4bh,	CLOCK_TYPE_NONE),
255 	TYPE(PERIPHC_4ch,	CLOCK_TYPE_NONE),
256 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
257 	TYPE(PERIPHC_ACTMON,	CLOCK_TYPE_PC2CC3S_T),
258 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
259 
260 	/* 0x50 */
261 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
262 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
263 	TYPE(PERIPHC_52h,	CLOCK_TYPE_NONE),
264 	TYPE(PERIPHC_I2CSLOW,	CLOCK_TYPE_PC2CC3S_T),
265 	TYPE(PERIPHC_SYS,	CLOCK_TYPE_NONE),
266 	TYPE(PERIPHC_55h,	CLOCK_TYPE_NONE),
267 	TYPE(PERIPHC_56h,	CLOCK_TYPE_NONE),
268 	TYPE(PERIPHC_57h,	CLOCK_TYPE_NONE),
269 
270 	/* 0x58 */
271 	TYPE(PERIPHC_58h,	CLOCK_TYPE_NONE),
272 	TYPE(PERIPHC_59h,	CLOCK_TYPE_NONE),
273 	TYPE(PERIPHC_5ah,	CLOCK_TYPE_NONE),
274 	TYPE(PERIPHC_5bh,	CLOCK_TYPE_NONE),
275 	TYPE(PERIPHC_SATAOOB,	CLOCK_TYPE_PCMT),
276 	TYPE(PERIPHC_SATA,	CLOCK_TYPE_PCMT),
277 	TYPE(PERIPHC_HDA,	CLOCK_TYPE_PC2CC3M_T),
278 	TYPE(PERIPHC_5fh,	CLOCK_TYPE_NONE),
279 
280 	/* 0x60 */
281 	TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
282 	TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
283 	TYPE(PERIPHC_XUSB_FS,	CLOCK_TYPE_NONE),
284 	TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
285 	TYPE(PERIPHC_XUSB_SS,	CLOCK_TYPE_NONE),
286 	TYPE(PERIPHC_CILAB,	CLOCK_TYPE_NONE),
287 	TYPE(PERIPHC_CILCD,	CLOCK_TYPE_NONE),
288 	TYPE(PERIPHC_CILE,	CLOCK_TYPE_NONE),
289 
290 	/* 0x68 */
291 	TYPE(PERIPHC_DSIA_LP,	CLOCK_TYPE_NONE),
292 	TYPE(PERIPHC_DSIB_LP,	CLOCK_TYPE_NONE),
293 	TYPE(PERIPHC_ENTROPY,	CLOCK_TYPE_NONE),
294 	TYPE(PERIPHC_DVFS_REF,	CLOCK_TYPE_NONE),
295 	TYPE(PERIPHC_DVFS_SOC,	CLOCK_TYPE_NONE),
296 	TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
297 	TYPE(PERIPHC_6eh,	CLOCK_TYPE_NONE),
298 	TYPE(PERIPHC_6fh,	CLOCK_TYPE_NONE),
299 
300 	/* 0x70 */
301 	TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
302 	TYPE(PERIPHC_SOC_THERM,	CLOCK_TYPE_NONE),
303 	TYPE(PERIPHC_72h,	CLOCK_TYPE_NONE),
304 	TYPE(PERIPHC_73h,	CLOCK_TYPE_NONE),
305 	TYPE(PERIPHC_74h,	CLOCK_TYPE_NONE),
306 	TYPE(PERIPHC_75h,	CLOCK_TYPE_NONE),
307 	TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
308 	TYPE(PERIPHC_I2C6,	CLOCK_TYPE_PC2CC3M_T16),
309 
310 	/* 0x78 */
311 	TYPE(PERIPHC_78h,	CLOCK_TYPE_NONE),
312 	TYPE(PERIPHC_EMC_DLL,	CLOCK_TYPE_MCPTM2C2C3),
313 	TYPE(PERIPHC_7ah,	CLOCK_TYPE_NONE),
314 	TYPE(PERIPHC_CLK72MHZ,	CLOCK_TYPE_NONE),
315 	TYPE(PERIPHC_7ch,	CLOCK_TYPE_NONE),
316 	TYPE(PERIPHC_7dh,	CLOCK_TYPE_NONE),
317 	TYPE(PERIPHC_VIC,	CLOCK_TYPE_NONE),
318 	TYPE(PERIPHC_7Fh,	CLOCK_TYPE_NONE),
319 
320 	/* 0x80 */
321 	TYPE(PERIPHC_SDMMC_LEGACY_TM,	CLOCK_TYPE_NONE),
322 	TYPE(PERIPHC_NVDEC,	CLOCK_TYPE_NONE),
323 	TYPE(PERIPHC_NVJPG,	CLOCK_TYPE_NONE),
324 	TYPE(PERIPHC_NVENC,	CLOCK_TYPE_NONE),
325 	TYPE(PERIPHC_84h,	CLOCK_TYPE_NONE),
326 	TYPE(PERIPHC_85h,	CLOCK_TYPE_NONE),
327 	TYPE(PERIPHC_86h,	CLOCK_TYPE_NONE),
328 	TYPE(PERIPHC_87h,	CLOCK_TYPE_NONE),
329 
330 	/* 0x88 */
331 	TYPE(PERIPHC_88h,	CLOCK_TYPE_NONE),
332 	TYPE(PERIPHC_89h,	CLOCK_TYPE_NONE),
333 	TYPE(PERIPHC_DMIC3,	CLOCK_TYPE_NONE),
334 	TYPE(PERIPHC_APE,	CLOCK_TYPE_NONE),
335 	TYPE(PERIPHC_QSPI,	CLOCK_TYPE_PC01C00_C42C41TC40),
336 	TYPE(PERIPHC_VI_I2C,	CLOCK_TYPE_NONE),
337 	TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
338 	TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
339 
340 	/* 0x90 */
341 	TYPE(PERIPHC_MAUD,	CLOCK_TYPE_NONE),
342 	TYPE(PERIPHC_TSECB,	CLOCK_TYPE_NONE),
343 };
344 
345 /*
346  * This array translates a periph_id to a periphc_internal_id
347  *
348  * Not present/matched up:
349  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
350  *	SPDIF - which is both 0x08 and 0x0c
351  *
352  */
353 #define NONE(name) (-1)
354 #define OFFSET(name, value) PERIPHC_ ## name
355 #define INTERNAL_ID(id) (id & 0x000000ff)
356 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
357 	/* Low word: 31:0 */
358 	NONE(CPU),
359 	NONE(COP),
360 	NONE(TRIGSYS),
361 	NONE(ISPB),
362 	NONE(RESERVED4),
363 	NONE(TMR),
364 	PERIPHC_UART1,
365 	PERIPHC_UART2,	/* and vfir 0x68 */
366 
367 	/* 8 */
368 	NONE(GPIO),
369 	PERIPHC_SDMMC2,
370 	PERIPHC_SPDIF_IN,
371 	PERIPHC_I2S2,
372 	PERIPHC_I2C1,
373 	NONE(RESERVED13),
374 	PERIPHC_SDMMC1,
375 	PERIPHC_SDMMC4,
376 
377 	/* 16 */
378 	NONE(TCW),
379 	PERIPHC_PWM,
380 	PERIPHC_I2S3,
381 	NONE(RESERVED19),
382 	PERIPHC_VI,
383 	NONE(RESERVED21),
384 	NONE(USBD),
385 	NONE(ISP),
386 
387 	/* 24 */
388 	NONE(RESERVED24),
389 	NONE(RESERVED25),
390 	PERIPHC_DISP2,
391 	PERIPHC_DISP1,
392 	PERIPHC_HOST1X,
393 	NONE(VCP),
394 	PERIPHC_I2S1,
395 	NONE(CACHE2),
396 
397 	/* Middle word: 63:32 */
398 	NONE(MEM),
399 	NONE(AHBDMA),
400 	NONE(APBDMA),
401 	NONE(RESERVED35),
402 	NONE(RESERVED36),
403 	NONE(STAT_MON),
404 	NONE(RESERVED38),
405 	NONE(FUSE),
406 
407 	/* 40 */
408 	NONE(KFUSE),
409 	PERIPHC_SBC1,		/* SBCx = SPIx */
410 	PERIPHC_NOR,
411 	NONE(RESERVED43),
412 	PERIPHC_SBC2,
413 	NONE(XIO),
414 	PERIPHC_SBC3,
415 	PERIPHC_I2C5,
416 
417 	/* 48 */
418 	NONE(DSI),
419 	NONE(RESERVED49),
420 	PERIPHC_HSI,
421 	NONE(RESERVED51),
422 	NONE(CSI),
423 	NONE(RESERVED53),
424 	PERIPHC_I2C2,
425 	PERIPHC_UART3,
426 
427 	/* 56 */
428 	NONE(MIPI_CAL),
429 	PERIPHC_EMC,
430 	NONE(USB2),
431 	NONE(USB3),
432 	NONE(RESERVED60),
433 	PERIPHC_VDE,
434 	NONE(BSEA),
435 	NONE(BSEV),
436 
437 	/* Upper word 95:64 */
438 	NONE(RESERVED64),
439 	PERIPHC_UART4,
440 	PERIPHC_UART5,
441 	PERIPHC_I2C3,
442 	PERIPHC_SBC4,
443 	PERIPHC_SDMMC3,
444 	NONE(PCIE),
445 	PERIPHC_OWR,
446 
447 	/* 72 */
448 	NONE(AFI),
449 	PERIPHC_CSITE,
450 	NONE(PCIEXCLK),
451 	NONE(AVPUCQ),
452 	NONE(LA),
453 	NONE(TRACECLKIN),
454 	NONE(SOC_THERM),
455 	NONE(DTV),
456 
457 	/* 80 */
458 	NONE(RESERVED80),
459 	PERIPHC_I2CSLOW,
460 	NONE(DSIB),
461 	PERIPHC_TSEC,
462 	NONE(RESERVED84),
463 	NONE(RESERVED85),
464 	NONE(RESERVED86),
465 	NONE(EMUCIF),
466 
467 	/* 88 */
468 	NONE(RESERVED88),
469 	NONE(XUSB_HOST),
470 	NONE(RESERVED90),
471 	PERIPHC_MSENC,
472 	NONE(RESERVED92),
473 	NONE(RESERVED93),
474 	NONE(RESERVED94),
475 	NONE(XUSB_DEV),
476 
477 	/* V word: 31:0 */
478 	NONE(CPUG),
479 	NONE(CPULP),
480 	NONE(V_RESERVED2),
481 	PERIPHC_MSELECT,
482 	NONE(V_RESERVED4),
483 	PERIPHC_I2S4,
484 	PERIPHC_I2S5,
485 	PERIPHC_I2C4,
486 
487 	/* 104 */
488 	PERIPHC_SBC5,
489 	PERIPHC_SBC6,
490 	PERIPHC_AUDIO,
491 	NONE(APBIF),
492 	NONE(V_RESERVED12),
493 	NONE(V_RESERVED13),
494 	NONE(V_RESERVED14),
495 	PERIPHC_HDA2CODEC2X,
496 
497 	/* 112 */
498 	NONE(ATOMICS),
499 	NONE(V_RESERVED17),
500 	NONE(V_RESERVED18),
501 	NONE(V_RESERVED19),
502 	NONE(V_RESERVED20),
503 	NONE(V_RESERVED21),
504 	NONE(V_RESERVED22),
505 	PERIPHC_ACTMON,
506 
507 	/* 120 */
508 	NONE(EXTPERIPH1),
509 	NONE(EXTPERIPH2),
510 	NONE(EXTPERIPH3),
511 	NONE(OOB),
512 	PERIPHC_SATA,
513 	PERIPHC_HDA,
514 	NONE(TZRAM),
515 	NONE(SE),
516 
517 	/* W word: 31:0 */
518 	NONE(HDA2HDMICODEC),
519 	NONE(SATACOLD),
520 	NONE(W_RESERVED2),
521 	NONE(W_RESERVED3),
522 	NONE(W_RESERVED4),
523 	NONE(W_RESERVED5),
524 	NONE(W_RESERVED6),
525 	NONE(W_RESERVED7),
526 
527 	/* 136 */
528 	NONE(CEC),
529 	NONE(W_RESERVED9),
530 	NONE(W_RESERVED10),
531 	NONE(W_RESERVED11),
532 	NONE(W_RESERVED12),
533 	NONE(W_RESERVED13),
534 	NONE(XUSB_PADCTL),
535 	NONE(W_RESERVED15),
536 
537 	/* 144 */
538 	NONE(W_RESERVED16),
539 	NONE(W_RESERVED17),
540 	NONE(W_RESERVED18),
541 	NONE(W_RESERVED19),
542 	NONE(W_RESERVED20),
543 	NONE(ENTROPY),
544 	NONE(DDS),
545 	NONE(W_RESERVED23),
546 
547 	/* 152 */
548 	NONE(W_RESERVED24),
549 	NONE(W_RESERVED25),
550 	NONE(W_RESERVED26),
551 	NONE(DVFS),
552 	NONE(XUSB_SS),
553 	NONE(W_RESERVED29),
554 	NONE(W_RESERVED30),
555 	NONE(W_RESERVED31),
556 
557 	/* X word: 31:0 */
558 	NONE(SPARE),
559 	NONE(X_RESERVED1),
560 	NONE(X_RESERVED2),
561 	NONE(X_RESERVED3),
562 	NONE(CAM_MCLK),
563 	NONE(CAM_MCLK2),
564 	PERIPHC_I2C6,
565 	NONE(X_RESERVED7),
566 
567 	/* 168 */
568 	NONE(X_RESERVED8),
569 	NONE(X_RESERVED9),
570 	NONE(X_RESERVED10),
571 	NONE(VIM2_CLK),
572 	NONE(X_RESERVED12),
573 	NONE(X_RESERVED13),
574 	NONE(EMC_DLL),
575 	NONE(X_RESERVED15),
576 
577 	/* 176 */
578 	NONE(X_RESERVED16),
579 	NONE(CLK72MHZ),
580 	NONE(VIC),
581 	NONE(X_RESERVED19),
582 	NONE(X_RESERVED20),
583 	NONE(DPAUX),
584 	NONE(SOR0),
585 	NONE(X_RESERVED23),
586 
587 	/* 184 */
588 	NONE(GPU),
589 	NONE(X_RESERVED25),
590 	NONE(X_RESERVED26),
591 	NONE(X_RESERVED27),
592 	NONE(X_RESERVED28),
593 	NONE(X_RESERVED29),
594 	NONE(X_RESERVED30),
595 	NONE(X_RESERVED31),
596 
597 	/* Y: 192 (192 - 223) */
598 	NONE(Y_RESERVED0),
599 	PERIPHC_SDMMC_LEGACY_TM,
600 	PERIPHC_NVDEC,
601 	PERIPHC_NVJPG,
602 	NONE(Y_RESERVED4),
603 	PERIPHC_DMIC3,		/* 197 */
604 	PERIPHC_APE,		/* 198 */
605 	NONE(Y_RESERVED7),
606 
607 	/* 200 */
608 	NONE(Y_RESERVED8),
609 	NONE(Y_RESERVED9),
610 	NONE(Y_RESERVED10),
611 	NONE(Y_RESERVED11),
612 	NONE(Y_RESERVED12),
613 	NONE(Y_RESERVED13),
614 	NONE(Y_RESERVED14),
615 	NONE(Y_RESERVED15),
616 
617 	/* 208 */
618 	PERIPHC_VI_I2C,		/* 208 */
619 	NONE(Y_RESERVED17),
620 	NONE(Y_RESERVED18),
621 	PERIPHC_QSPI,		/* 211 */
622 	NONE(Y_RESERVED20),
623 	NONE(Y_RESERVED21),
624 	NONE(Y_RESERVED22),
625 	NONE(Y_RESERVED23),
626 
627 	/* 216 */
628 	NONE(Y_RESERVED24),
629 	NONE(Y_RESERVED25),
630 	NONE(Y_RESERVED26),
631 	PERIPHC_NVENC,		/* 219 */
632 	NONE(Y_RESERVED28),
633 	NONE(Y_RESERVED29),
634 	NONE(Y_RESERVED30),
635 	NONE(Y_RESERVED31),
636 };
637 
638 /*
639  * PLL divider shift/mask tables for all PLL IDs.
640  */
641 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
642 	/*
643 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
644 	 *       If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
645 	 */
646 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
647 	  .lock_ena = 32,  .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLC */
648 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
649 	  .lock_ena = 4,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
650 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
651 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 },	/* PLLP */
652 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
653 	  .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLA */
654 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
655 	  .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLU */
656 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
657 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 },	/* PLLD */
658 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
659 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLX */
660 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 0,  .p_mask = 0,
661 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
662 	{ .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
663 	  .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLS (gone)*/
664 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 19,  .p_mask = 0x1F,
665 	  .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLDP */
666 };
667 
668 /*
669  * Get the oscillator frequency, from the corresponding hardware configuration
670  * field. Note that Tegra30+ support 3 new higher freqs, but we map back
671  * to the old T20 freqs. Support for the higher oscillators is TBD.
672  */
673 enum clock_osc_freq clock_get_osc_freq(void)
674 {
675 	struct clk_rst_ctlr *clkrst =
676 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
677 	u32 reg;
678 
679 	reg = readl(&clkrst->crc_osc_ctrl);
680 	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
681 	/*
682 	 * 0 = 13MHz, 1 = 16.8MHz, 4 = 19.2MHz, 5 = 38.4MHz,
683 	 * 8 = 12MHz, 9 = 48MHz,  12 = 26MHz
684 	 */
685 	if (reg == 5) {
686 		debug("OSC_FREQ is 38.4MHz (%d) ...\n", reg);
687 		/* Map it to the 5th CLOCK_OSC_ enum, i.e. 4 */
688 		return 4;
689 	}
690 
691 	/*
692 	 * Map to most common (T20) freqs (except 38.4, handled above):
693 	 *  13/16.8 = 0, 19.2 = 1, 12/48 = 2, 26 = 3
694 	 */
695 	return reg >> 2;
696 }
697 
698 /* Returns a pointer to the clock source register for a peripheral */
699 u32 *get_periph_source_reg(enum periph_id periph_id)
700 {
701 	struct clk_rst_ctlr *clkrst =
702 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
703 	enum periphc_internal_id internal_id;
704 
705 	/* Coresight is a special case */
706 	if (periph_id == PERIPH_ID_CSI)
707 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
708 
709 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
710 	internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
711 	assert(internal_id != -1);
712 
713 	if (internal_id < PERIPHC_VW_FIRST)
714 		/* L, H, U */
715 		return &clkrst->crc_clk_src[internal_id];
716 
717 	if (internal_id < PERIPHC_X_FIRST) {
718 		/* VW */
719 		internal_id -= PERIPHC_VW_FIRST;
720 		return &clkrst->crc_clk_src_vw[internal_id];
721 	}
722 
723 	if (internal_id < PERIPHC_Y_FIRST) {
724 		/* X */
725 		internal_id -= PERIPHC_X_FIRST;
726 		return &clkrst->crc_clk_src_x[internal_id];
727 	}
728 
729 	/* Y */
730 	internal_id -= PERIPHC_Y_FIRST;
731 	return &clkrst->crc_clk_src_y[internal_id];
732 }
733 
734 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
735 			  int *divider_bits, int *type)
736 {
737 	enum periphc_internal_id internal_id;
738 
739 	if (!clock_periph_id_isvalid(periph_id))
740 		return -1;
741 
742 	internal_id = periph_id_to_internal_id[periph_id];
743 	if (!periphc_internal_id_isvalid(internal_id))
744 		return -1;
745 
746 	*type = clock_periph_type[internal_id];
747 	if (!clock_type_id_isvalid(*type))
748 		return -1;
749 
750 	*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
751 
752 	if (*type == CLOCK_TYPE_PC2CC3M_T16)
753 		*divider_bits = 16;
754 	else
755 		*divider_bits = 8;
756 
757 	return 0;
758 }
759 
760 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
761 {
762 	enum periphc_internal_id internal_id;
763 	int type;
764 
765 	if (!clock_periph_id_isvalid(periph_id))
766 		return CLOCK_ID_NONE;
767 
768 	internal_id = periph_id_to_internal_id[periph_id];
769 	if (!periphc_internal_id_isvalid(internal_id))
770 		return CLOCK_ID_NONE;
771 
772 	type = clock_periph_type[internal_id];
773 	if (!clock_type_id_isvalid(type))
774 		return CLOCK_ID_NONE;
775 
776 	return clock_source[type][source];
777 }
778 
779 /**
780  * Given a peripheral ID and the required source clock, this returns which
781  * value should be programmed into the source mux for that peripheral.
782  *
783  * There is special code here to handle the one source type with 5 sources.
784  *
785  * @param periph_id	peripheral to start
786  * @param source	PLL id of required parent clock
787  * @param mux_bits	Set to number of bits in mux register: 2 or 4
788  * @param divider_bits Set to number of divider bits (8 or 16)
789  * @return mux value (0-4, or -1 if not found)
790  */
791 int get_periph_clock_source(enum periph_id periph_id,
792 	enum clock_id parent, int *mux_bits, int *divider_bits)
793 {
794 	enum clock_type_id type;
795 	int mux, err;
796 
797 	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
798 	assert(!err);
799 
800 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
801 		if (clock_source[type][mux] == parent)
802 			return mux;
803 
804 	/* if we get here, either us or the caller has made a mistake */
805 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
806 	       parent);
807 	return -1;
808 }
809 
810 void clock_set_enable(enum periph_id periph_id, int enable)
811 {
812 	struct clk_rst_ctlr *clkrst =
813 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
814 	u32 *clk;
815 	u32 reg;
816 
817 	/* Enable/disable the clock to this peripheral */
818 	assert(clock_periph_id_isvalid(periph_id));
819 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
820 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
821 	else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
822 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
823 	else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
824 		clk = &clkrst->crc_clk_out_enb_x;
825 	else
826 		clk = &clkrst->crc_clk_out_enb_y;
827 
828 	reg = readl(clk);
829 	if (enable)
830 		reg |= PERIPH_MASK(periph_id);
831 	else
832 		reg &= ~PERIPH_MASK(periph_id);
833 	writel(reg, clk);
834 }
835 
836 void reset_set_enable(enum periph_id periph_id, int enable)
837 {
838 	struct clk_rst_ctlr *clkrst =
839 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
840 	u32 *reset;
841 	u32 reg;
842 
843 	/* Enable/disable reset to the peripheral */
844 	assert(clock_periph_id_isvalid(periph_id));
845 	if (periph_id < PERIPH_ID_VW_FIRST)
846 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
847 	else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
848 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
849 	else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
850 		reset = &clkrst->crc_rst_devices_x;
851 	else
852 		reset = &clkrst->crc_rst_devices_y;
853 
854 	reg = readl(reset);
855 	if (enable)
856 		reg |= PERIPH_MASK(periph_id);
857 	else
858 		reg &= ~PERIPH_MASK(periph_id);
859 	writel(reg, reset);
860 }
861 
862 #ifdef CONFIG_OF_CONTROL
863 /*
864  * Convert a device tree clock ID to our peripheral ID. They are mostly
865  * the same but we are very cautious so we check that a valid clock ID is
866  * provided.
867  *
868  * @param clk_id    Clock ID according to tegra210 device tree binding
869  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
870  */
871 enum periph_id clk_id_to_periph_id(int clk_id)
872 {
873 	if (clk_id > PERIPH_ID_COUNT)
874 		return PERIPH_ID_NONE;
875 
876 	switch (clk_id) {
877 	case PERIPH_ID_RESERVED4:
878 	case PERIPH_ID_RESERVED25:
879 	case PERIPH_ID_RESERVED35:
880 	case PERIPH_ID_RESERVED36:
881 	case PERIPH_ID_RESERVED38:
882 	case PERIPH_ID_RESERVED43:
883 	case PERIPH_ID_RESERVED49:
884 	case PERIPH_ID_RESERVED53:
885 	case PERIPH_ID_RESERVED64:
886 	case PERIPH_ID_RESERVED84:
887 	case PERIPH_ID_RESERVED85:
888 	case PERIPH_ID_RESERVED86:
889 	case PERIPH_ID_RESERVED88:
890 	case PERIPH_ID_RESERVED90:
891 	case PERIPH_ID_RESERVED92:
892 	case PERIPH_ID_RESERVED93:
893 	case PERIPH_ID_RESERVED94:
894 	case PERIPH_ID_V_RESERVED2:
895 	case PERIPH_ID_V_RESERVED4:
896 	case PERIPH_ID_V_RESERVED17:
897 	case PERIPH_ID_V_RESERVED18:
898 	case PERIPH_ID_V_RESERVED19:
899 	case PERIPH_ID_V_RESERVED20:
900 	case PERIPH_ID_V_RESERVED21:
901 	case PERIPH_ID_V_RESERVED22:
902 	case PERIPH_ID_W_RESERVED2:
903 	case PERIPH_ID_W_RESERVED3:
904 	case PERIPH_ID_W_RESERVED4:
905 	case PERIPH_ID_W_RESERVED5:
906 	case PERIPH_ID_W_RESERVED6:
907 	case PERIPH_ID_W_RESERVED7:
908 	case PERIPH_ID_W_RESERVED9:
909 	case PERIPH_ID_W_RESERVED10:
910 	case PERIPH_ID_W_RESERVED11:
911 	case PERIPH_ID_W_RESERVED12:
912 	case PERIPH_ID_W_RESERVED13:
913 	case PERIPH_ID_W_RESERVED15:
914 	case PERIPH_ID_W_RESERVED16:
915 	case PERIPH_ID_W_RESERVED17:
916 	case PERIPH_ID_W_RESERVED18:
917 	case PERIPH_ID_W_RESERVED19:
918 	case PERIPH_ID_W_RESERVED20:
919 	case PERIPH_ID_W_RESERVED23:
920 	case PERIPH_ID_W_RESERVED29:
921 	case PERIPH_ID_W_RESERVED30:
922 	case PERIPH_ID_W_RESERVED31:
923 		return PERIPH_ID_NONE;
924 	default:
925 		return clk_id;
926 	}
927 }
928 #endif /* CONFIG_OF_CONTROL */
929 
930 /*
931  * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
932  * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
933  */
934 void tegra210_setup_pllp(void)
935 {
936 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
937 	u32 reg;
938 
939 	/* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
940 
941 	/* OUT1 */
942 	/* Assert RSTN before enable */
943 	reg = PLLP_OUT1_RSTN_EN;
944 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
945 	/* Set divisor and reenable */
946 	reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
947 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
948 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
949 
950 	/* OUT3, 4 */
951 	/* Assert RSTN before enable */
952 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
953 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
954 	/* Set divisor and reenable */
955 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
956 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
957 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
958 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
959 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
960 
961 	/*
962 	 * NOTE: If you want to change PLLP_OUT2 away from 204MHz,
963 	 * you can change PLLP_BASE DIVP here. Currently defaults
964 	 * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
965 	 * See Table 13 in section 5.1.4 in T210 TRM for more info.
966 	 */
967 }
968 
969 void clock_early_init(void)
970 {
971 	struct clk_rst_ctlr *clkrst =
972 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
973 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
974 	u32 data;
975 
976 	tegra210_setup_pllp();
977 
978 	/*
979 	 * PLLC output frequency set to 600Mhz
980 	 * PLLD output frequency set to 925Mhz
981 	 */
982 	switch (clock_get_osc_freq()) {
983 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
984 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
985 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
986 		break;
987 
988 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
989 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
990 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
991 		break;
992 
993 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
994 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
995 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
996 		break;
997 	case CLOCK_OSC_FREQ_19_2:
998 		clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
999 		clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
1000 		break;
1001 	case CLOCK_OSC_FREQ_38_4:
1002 		clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
1003 		clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
1004 		break;
1005 	default:
1006 		/*
1007 		 * These are not supported. It is too early to print a
1008 		 * message and the UART likely won't work anyway due to the
1009 		 * oscillator being wrong.
1010 		 */
1011 		break;
1012 	}
1013 
1014 	/* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
1015 	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
1016 		     (1 << PLLC_IDDQ));
1017 	udelay(2);
1018 
1019 	/*
1020 	 * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
1021 	 * to pll_out[1]
1022 	 */
1023 	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
1024 		     (1 << PLLC_RESET));
1025 	udelay(2);
1026 
1027 	/* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
1028 	data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
1029 	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
1030 	udelay(2);
1031 }
1032 
1033 unsigned int clk_m_get_rate(unsigned parent_rate)
1034 {
1035 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1036 	u32 value, div;
1037 
1038 	value = readl(&clkrst->crc_spare_reg0);
1039 	div = ((value >> 2) & 0x3) + 1;
1040 
1041 	return parent_rate / div;
1042 }
1043 
1044 void arch_timer_init(void)
1045 {
1046 	struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
1047 	u32 freq, val;
1048 
1049 	freq = clock_get_rate(CLOCK_ID_CLK_M);
1050 	debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
1051 
1052 	if (current_el() == 3)
1053 		asm("msr cntfrq_el0, %0\n" : : "r" (freq));
1054 
1055 	/* Only Tegra114+ has the System Counter regs */
1056 	debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
1057 	writel(freq, &sysctr->cntfid0);
1058 
1059 	val = readl(&sysctr->cntcr);
1060 	val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
1061 	writel(val, &sysctr->cntcr);
1062 	debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
1063 }
1064 
1065 #define PLLREFE_MISC			0x4c8
1066 #define  PLLREFE_MISC_LOCK		BIT(27)
1067 #define  PLLREFE_MISC_IDDQ		BIT(24)
1068 
1069 #define PLLREFE_BASE			0x4c4
1070 #define  PLLREFE_BASE_BYPASS		BIT(31)
1071 #define  PLLREFE_BASE_ENABLE		BIT(30)
1072 #define  PLLREFE_BASE_REF_DIS		BIT(29)
1073 #define  PLLREFE_BASE_KCP(kcp)		(((kcp) & 0x3) << 27)
1074 #define  PLLREFE_BASE_KVCO		BIT(26)
1075 #define  PLLREFE_BASE_DIVP(p)		(((p) & 0x1f) << 16)
1076 #define  PLLREFE_BASE_DIVN(n)		(((n) & 0xff) << 8)
1077 #define  PLLREFE_BASE_DIVM(m)		(((m) & 0xff) << 0)
1078 
1079 static int tegra_pllref_enable(void)
1080 {
1081 	u32 value;
1082 	unsigned long start;
1083 
1084 	/*
1085 	 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1086 	 * Recovery Mode or Boot from USB", sub-section "PLLREFE".
1087 	 */
1088 
1089 	value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1090 	value &= ~PLLREFE_MISC_IDDQ;
1091 	writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1092 
1093 	udelay(5);
1094 
1095 	value = PLLREFE_BASE_ENABLE |
1096 		PLLREFE_BASE_KCP(0) |
1097 		PLLREFE_BASE_DIVP(0) |
1098 		PLLREFE_BASE_DIVN(0x41) |
1099 		PLLREFE_BASE_DIVM(4);
1100 	writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
1101 
1102 	debug("waiting for pllrefe lock\n");
1103 	start = get_timer(0);
1104 	while (get_timer(start) < 250) {
1105 		value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1106 		if (value & PLLREFE_MISC_LOCK)
1107 			break;
1108 	}
1109 	if (!(value & PLLREFE_MISC_LOCK)) {
1110 		debug("  timeout\n");
1111 		return -ETIMEDOUT;
1112 	}
1113 	debug("  done\n");
1114 
1115 	return 0;
1116 }
1117 
1118 #define PLLE_SS_CNTL 0x68
1119 #define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
1120 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
1121 #define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
1122 #define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
1123 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
1124 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
1125 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
1126 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
1127 
1128 #define PLLE_BASE 0x0e8
1129 #define  PLLE_BASE_ENABLE (1 << 31)
1130 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
1131 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
1132 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
1133 
1134 #define PLLE_MISC 0x0ec
1135 #define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
1136 #define  PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
1137 #define  PLLE_MISC_LOCK (1 << 11)
1138 #define  PLLE_PTS (1 << 8)
1139 #define  PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
1140 #define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
1141 #define  PLLE_MISC_KVCO (1 << 0)
1142 
1143 #define PLLE_AUX 0x48c
1144 #define  PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
1145 #define  PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
1146 #define  PLLE_AUX_SEQ_ENABLE (1 << 24)
1147 #define  PLLE_AUX_SS_SWCTL (1 << 6)
1148 #define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
1149 #define  PLLE_AUX_USE_LOCKDET (1 << 3)
1150 
1151 int tegra_plle_enable(void)
1152 {
1153 	u32 value;
1154 	unsigned long start;
1155 
1156 	/* PLLREF feeds PLLE */
1157 	tegra_pllref_enable();
1158 
1159 	/*
1160 	 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1161 	 * Recovery Mode or Boot from USB", sub-section "PLLEs".
1162 	 */
1163 
1164 	/* 1. Select XTAL as the source */
1165 
1166 	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1167 	value &= ~PLLE_AUX_REF_SEL_PLLREFE;
1168 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1169 
1170 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1171 	value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
1172 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1173 
1174 	/* 2. Wait 5 us */
1175 	udelay(5);
1176 
1177 	/*
1178 	 * 3. Program the following registers to generate a low jitter 100MHz
1179 	 * clock.
1180 	 */
1181 
1182 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1183 	value &= ~PLLE_BASE_PLDIV_CML(0x1f);
1184 	value &= ~PLLE_BASE_NDIV(0xff);
1185 	value &= ~PLLE_BASE_MDIV(0xff);
1186 	value |= PLLE_BASE_PLDIV_CML(0xe);
1187 	value |= PLLE_BASE_NDIV(0x7d);
1188 	value |= PLLE_BASE_MDIV(2);
1189 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1190 
1191 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1192 	value |= PLLE_PTS;
1193 	value &= ~PLLE_MISC_KCP(3);
1194 	value &= ~PLLE_MISC_VREG_CTRL(3);
1195 	value &= ~PLLE_MISC_KVCO;
1196 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1197 
1198 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1199 	value |= PLLE_BASE_ENABLE;
1200 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1201 
1202 	/* 4. Wait for LOCK */
1203 
1204 	debug("waiting for plle lock\n");
1205 	start = get_timer(0);
1206 	while (get_timer(start) < 250) {
1207 		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1208 		if (value & PLLE_MISC_LOCK)
1209 			break;
1210 	}
1211 	if (!(value & PLLE_MISC_LOCK)) {
1212 		debug("  timeout\n");
1213 		return -ETIMEDOUT;
1214 	}
1215 	debug("  done\n");
1216 
1217 	/* 5. Enable SSA */
1218 
1219 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1220 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1221 	value |= PLLE_SS_CNTL_SSCINC(1);
1222 	value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1223 	value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
1224 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
1225 	value |= PLLE_SS_CNTL_SSCMAX(0x21);
1226 	value &= ~PLLE_SS_CNTL_SSCINVERT;
1227 	value &= ~PLLE_SS_CNTL_SSCCENTER;
1228 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
1229 	value &= ~PLLE_SS_CNTL_SSCBYP;
1230 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1231 
1232 	/* 6. Wait 300 ns */
1233 
1234 	udelay(1);
1235 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
1236 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1237 
1238 	/* 7. Enable HW power sequencer for PLLE */
1239 
1240 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1241 	value &= ~PLLE_MISC_IDDQ_SWCTL;
1242 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1243 
1244 	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1245 	value &= ~PLLE_AUX_SS_SWCTL;
1246 	value &= ~PLLE_AUX_ENABLE_SWCTL;
1247 	value |= PLLE_AUX_SS_SEQ_INCLUDE;
1248 	value |= PLLE_AUX_USE_LOCKDET;
1249 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1250 
1251 	/* 8. Wait 1 us */
1252 
1253 	udelay(1);
1254 	value |= PLLE_AUX_SEQ_ENABLE;
1255 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1256 
1257 	return 0;
1258 }
1259 
1260 struct periph_clk_init periph_clk_init_table[] = {
1261 	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1262 	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1263 	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1264 	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1265 	{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1266 	{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1267 	{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1268 	{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1269 	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1270 	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1271 	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1272 	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1273 	{ PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
1274 	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1275 	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1276 	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1277 	{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1278 	{ PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1279 	{ PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1280 	{ -1, },
1281 };
1282