1 /* 2 * (C) Copyright 2013 3 * NVIDIA Corporation <www.nvidia.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* Tegra124 Clock control functions */ 9 10 #include <common.h> 11 #include <asm/io.h> 12 #include <asm/arch/clock.h> 13 #include <asm/arch/sysctr.h> 14 #include <asm/arch/tegra.h> 15 #include <asm/arch-tegra/clk_rst.h> 16 #include <asm/arch-tegra/timer.h> 17 #include <div64.h> 18 #include <fdtdec.h> 19 20 /* 21 * Clock types that we can use as a source. The Tegra124 has muxes for the 22 * peripheral clocks, and in most cases there are four options for the clock 23 * source. This gives us a clock 'type' and exploits what commonality exists 24 * in the device. 25 * 26 * Letters are obvious, except for T which means CLK_M, and S which means the 27 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the 28 * datasheet) and PLL_M are different things. The former is the basic 29 * clock supplied to the SOC from an external oscillator. The latter is the 30 * memory clock PLL. 31 * 32 * See definitions in clock_id in the header file. 33 */ 34 enum clock_type_id { 35 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */ 36 CLOCK_TYPE_MCPA, /* and so on */ 37 CLOCK_TYPE_MCPT, 38 CLOCK_TYPE_PCM, 39 CLOCK_TYPE_PCMT, 40 CLOCK_TYPE_PDCT, 41 CLOCK_TYPE_ACPT, 42 CLOCK_TYPE_ASPTE, 43 CLOCK_TYPE_PMDACD2T, 44 CLOCK_TYPE_PCST, 45 CLOCK_TYPE_DP, 46 47 CLOCK_TYPE_PC2CC3M, 48 CLOCK_TYPE_PC2CC3S_T, 49 CLOCK_TYPE_PC2CC3M_T, 50 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */ 51 CLOCK_TYPE_MC2CC3P_A, 52 CLOCK_TYPE_M, 53 CLOCK_TYPE_MCPTM2C2C3, 54 CLOCK_TYPE_PC2CC3T_S, 55 CLOCK_TYPE_AC2CC3P_TS2, 56 57 CLOCK_TYPE_COUNT, 58 CLOCK_TYPE_NONE = -1, /* invalid clock type */ 59 }; 60 61 enum { 62 CLOCK_MAX_MUX = 8 /* number of source options for each clock */ 63 }; 64 65 /* 66 * Clock source mux for each clock type. This just converts our enum into 67 * a list of mux sources for use by the code. 68 * 69 * Note: 70 * The extra column in each clock source array is used to store the mask 71 * bits in its register for the source. 72 */ 73 #define CLK(x) CLOCK_ID_ ## x 74 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = { 75 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC), 76 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 77 MASK_BITS_31_30}, 78 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO), 79 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 80 MASK_BITS_31_30}, 81 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC), 82 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 83 MASK_BITS_31_30}, 84 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE), 85 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 86 MASK_BITS_31_30}, 87 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC), 88 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 89 MASK_BITS_31_30}, 90 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC), 91 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 92 MASK_BITS_31_30}, 93 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC), 94 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 95 MASK_BITS_31_30}, 96 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC), 97 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE), 98 MASK_BITS_31_29}, 99 { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO), 100 CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE), 101 MASK_BITS_31_29}, 102 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC), 103 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 104 MASK_BITS_31_28}, 105 /* CLOCK_TYPE_DP */ 106 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 107 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 108 MASK_BITS_31_28}, 109 110 /* Additional clock types on Tegra114+ */ 111 /* CLOCK_TYPE_PC2CC3M */ 112 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 113 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE), 114 MASK_BITS_31_29}, 115 /* CLOCK_TYPE_PC2CC3S_T */ 116 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 117 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE), 118 MASK_BITS_31_29}, 119 /* CLOCK_TYPE_PC2CC3M_T */ 120 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 121 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE), 122 MASK_BITS_31_29}, 123 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */ 124 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 125 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE), 126 MASK_BITS_31_29}, 127 /* CLOCK_TYPE_MC2CC3P_A */ 128 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 129 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE), 130 MASK_BITS_31_29}, 131 /* CLOCK_TYPE_M */ 132 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE), 133 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE), 134 MASK_BITS_31_30}, 135 /* CLOCK_TYPE_MCPTM2C2C3 */ 136 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC), 137 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE), 138 MASK_BITS_31_29}, 139 /* CLOCK_TYPE_PC2CC3T_S */ 140 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 141 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE), 142 MASK_BITS_31_29}, 143 /* CLOCK_TYPE_AC2CC3P_TS2 */ 144 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3), 145 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2), 146 MASK_BITS_31_29}, 147 }; 148 149 /* 150 * Clock type for each peripheral clock source. We put the name in each 151 * record just so it is easy to match things up 152 */ 153 #define TYPE(name, type) type 154 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = { 155 /* 0x00 */ 156 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT), 157 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT), 158 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT), 159 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M), 160 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T), 161 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE), 162 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T), 163 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T), 164 165 /* 0x08 */ 166 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE), 167 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16), 168 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16), 169 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE), 170 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE), 171 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T), 172 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T), 173 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T), 174 175 /* 0x10 */ 176 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE), 177 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE), 178 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A), 179 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE), 180 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T), 181 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T), 182 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE), 183 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE), 184 185 /* 0x18 */ 186 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE), 187 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T), 188 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T), 189 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE), 190 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE), 191 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T), 192 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T), 193 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T), 194 195 /* 0x20 */ 196 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A), 197 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE), 198 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE), 199 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T), 200 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE), 201 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE), 202 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16), 203 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3), 204 205 /* 0x28 */ 206 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T), 207 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE), 208 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A), 209 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE), 210 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE), 211 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T), 212 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16), 213 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T), 214 215 /* 0x30 */ 216 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T), 217 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T), 218 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T), 219 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T), 220 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T), 221 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T), 222 TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT), 223 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE), 224 225 /* 0x38 */ 226 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE), 227 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE), 228 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE), 229 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE), 230 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A), 231 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T), 232 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE), 233 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE), 234 235 /* 0x40 */ 236 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */ 237 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T), 238 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S), 239 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT), 240 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT), 241 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16), 242 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T), 243 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T), 244 245 /* 0x48 */ 246 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2), 247 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE), 248 TYPE(PERIPHC_DAM0, CLOCK_TYPE_AC2CC3P_TS2), 249 TYPE(PERIPHC_DAM1, CLOCK_TYPE_AC2CC3P_TS2), 250 TYPE(PERIPHC_DAM2, CLOCK_TYPE_AC2CC3P_TS2), 251 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T), 252 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T), 253 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE), 254 255 /* 0x50 */ 256 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE), 257 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE), 258 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE), 259 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T), 260 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE), 261 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE), 262 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE), 263 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE), 264 265 /* 0x58 */ 266 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE), 267 TYPE(PERIPHC_SOR, CLOCK_TYPE_NONE), 268 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE), 269 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE), 270 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), 271 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT), 272 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T), 273 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE), 274 275 /* 0x60 */ 276 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE), 277 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE), 278 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE), 279 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE), 280 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE), 281 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE), 282 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE), 283 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE), 284 285 /* 0x68 */ 286 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE), 287 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE), 288 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE), 289 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE), 290 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE), 291 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE), 292 TYPE(PERIPHC_ADX0, CLOCK_TYPE_NONE), 293 TYPE(PERIPHC_AMX0, CLOCK_TYPE_NONE), 294 295 /* 0x70 */ 296 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE), 297 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE), 298 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE), 299 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE), 300 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE), 301 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE), 302 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE), 303 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16), 304 305 /* 0x78 */ 306 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE), 307 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3), 308 TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE), 309 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE), 310 TYPE(PERIPHC_ADX1, CLOCK_TYPE_AC2CC3P_TS2), 311 TYPE(PERIPHC_AMX1, CLOCK_TYPE_AC2CC3P_TS2), 312 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE), 313 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE), 314 }; 315 316 /* 317 * This array translates a periph_id to a periphc_internal_id 318 * 319 * Not present/matched up: 320 * uint vi_sensor; _VI_SENSOR_0, 0x1A8 321 * SPDIF - which is both 0x08 and 0x0c 322 * 323 */ 324 #define NONE(name) (-1) 325 #define OFFSET(name, value) PERIPHC_ ## name 326 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = { 327 /* Low word: 31:0 */ 328 NONE(CPU), 329 NONE(COP), 330 NONE(TRIGSYS), 331 NONE(ISPB), 332 NONE(RESERVED4), 333 NONE(TMR), 334 PERIPHC_UART1, 335 PERIPHC_UART2, /* and vfir 0x68 */ 336 337 /* 8 */ 338 NONE(GPIO), 339 PERIPHC_SDMMC2, 340 PERIPHC_SPDIF_IN, 341 PERIPHC_I2S1, 342 PERIPHC_I2C1, 343 NONE(RESERVED13), 344 PERIPHC_SDMMC1, 345 PERIPHC_SDMMC4, 346 347 /* 16 */ 348 NONE(TCW), 349 PERIPHC_PWM, 350 PERIPHC_I2S2, 351 NONE(RESERVED19), 352 PERIPHC_VI, 353 NONE(RESERVED21), 354 NONE(USBD), 355 NONE(ISP), 356 357 /* 24 */ 358 NONE(RESERVED24), 359 NONE(RESERVED25), 360 PERIPHC_DISP2, 361 PERIPHC_DISP1, 362 PERIPHC_HOST1X, 363 NONE(VCP), 364 PERIPHC_I2S0, 365 NONE(CACHE2), 366 367 /* Middle word: 63:32 */ 368 NONE(MEM), 369 NONE(AHBDMA), 370 NONE(APBDMA), 371 NONE(RESERVED35), 372 NONE(RESERVED36), 373 NONE(STAT_MON), 374 NONE(RESERVED38), 375 NONE(FUSE), 376 377 /* 40 */ 378 NONE(KFUSE), 379 PERIPHC_SBC1, /* SBCx = SPIx */ 380 PERIPHC_NOR, 381 NONE(RESERVED43), 382 PERIPHC_SBC2, 383 NONE(XIO), 384 PERIPHC_SBC3, 385 PERIPHC_I2C5, 386 387 /* 48 */ 388 NONE(DSI), 389 NONE(RESERVED49), 390 PERIPHC_HSI, 391 PERIPHC_HDMI, 392 NONE(CSI), 393 NONE(RESERVED53), 394 PERIPHC_I2C2, 395 PERIPHC_UART3, 396 397 /* 56 */ 398 NONE(MIPI_CAL), 399 PERIPHC_EMC, 400 NONE(USB2), 401 NONE(USB3), 402 NONE(RESERVED60), 403 PERIPHC_VDE, 404 NONE(BSEA), 405 NONE(BSEV), 406 407 /* Upper word 95:64 */ 408 NONE(RESERVED64), 409 PERIPHC_UART4, 410 PERIPHC_UART5, 411 PERIPHC_I2C3, 412 PERIPHC_SBC4, 413 PERIPHC_SDMMC3, 414 NONE(PCIE), 415 PERIPHC_OWR, 416 417 /* 72 */ 418 NONE(AFI), 419 PERIPHC_CSITE, 420 NONE(PCIEXCLK), 421 NONE(AVPUCQ), 422 NONE(LA), 423 NONE(TRACECLKIN), 424 NONE(SOC_THERM), 425 NONE(DTV), 426 427 /* 80 */ 428 NONE(RESERVED80), 429 PERIPHC_I2CSLOW, 430 NONE(DSIB), 431 PERIPHC_TSEC, 432 NONE(RESERVED84), 433 NONE(RESERVED85), 434 NONE(RESERVED86), 435 NONE(EMUCIF), 436 437 /* 88 */ 438 NONE(RESERVED88), 439 NONE(XUSB_HOST), 440 NONE(RESERVED90), 441 PERIPHC_MSENC, 442 NONE(RESERVED92), 443 NONE(RESERVED93), 444 NONE(RESERVED94), 445 NONE(XUSB_DEV), 446 447 /* V word: 31:0 */ 448 NONE(CPUG), 449 NONE(CPULP), 450 NONE(V_RESERVED2), 451 PERIPHC_MSELECT, 452 NONE(V_RESERVED4), 453 PERIPHC_I2S3, 454 PERIPHC_I2S4, 455 PERIPHC_I2C4, 456 457 /* 104 */ 458 PERIPHC_SBC5, 459 PERIPHC_SBC6, 460 PERIPHC_AUDIO, 461 NONE(APBIF), 462 PERIPHC_DAM0, 463 PERIPHC_DAM1, 464 PERIPHC_DAM2, 465 PERIPHC_HDA2CODEC2X, 466 467 /* 112 */ 468 NONE(ATOMICS), 469 NONE(V_RESERVED17), 470 NONE(V_RESERVED18), 471 NONE(V_RESERVED19), 472 NONE(V_RESERVED20), 473 NONE(V_RESERVED21), 474 NONE(V_RESERVED22), 475 PERIPHC_ACTMON, 476 477 /* 120 */ 478 NONE(EXTPERIPH1), 479 NONE(EXTPERIPH2), 480 NONE(EXTPERIPH3), 481 NONE(OOB), 482 PERIPHC_SATA, 483 PERIPHC_HDA, 484 NONE(TZRAM), 485 NONE(SE), 486 487 /* W word: 31:0 */ 488 NONE(HDA2HDMICODEC), 489 NONE(SATACOLD), 490 NONE(W_RESERVED2), 491 NONE(W_RESERVED3), 492 NONE(W_RESERVED4), 493 NONE(W_RESERVED5), 494 NONE(W_RESERVED6), 495 NONE(W_RESERVED7), 496 497 /* 136 */ 498 NONE(CEC), 499 NONE(W_RESERVED9), 500 NONE(W_RESERVED10), 501 NONE(W_RESERVED11), 502 NONE(W_RESERVED12), 503 NONE(W_RESERVED13), 504 NONE(XUSB_PADCTL), 505 NONE(W_RESERVED15), 506 507 /* 144 */ 508 NONE(W_RESERVED16), 509 NONE(W_RESERVED17), 510 NONE(W_RESERVED18), 511 NONE(W_RESERVED19), 512 NONE(W_RESERVED20), 513 NONE(ENTROPY), 514 NONE(DDS), 515 NONE(W_RESERVED23), 516 517 /* 152 */ 518 NONE(DP2), 519 NONE(AMX0), 520 NONE(ADX0), 521 NONE(DVFS), 522 NONE(XUSB_SS), 523 NONE(W_RESERVED29), 524 NONE(W_RESERVED30), 525 NONE(W_RESERVED31), 526 527 /* X word: 31:0 */ 528 NONE(SPARE), 529 NONE(X_RESERVED1), 530 NONE(X_RESERVED2), 531 NONE(X_RESERVED3), 532 NONE(CAM_MCLK), 533 NONE(CAM_MCLK2), 534 PERIPHC_I2C6, 535 NONE(X_RESERVED7), 536 537 /* 168 */ 538 NONE(X_RESERVED8), 539 NONE(X_RESERVED9), 540 NONE(X_RESERVED10), 541 NONE(VIM2_CLK), 542 NONE(X_RESERVED12), 543 NONE(X_RESERVED13), 544 NONE(EMC_DLL), 545 NONE(X_RESERVED15), 546 547 /* 176 */ 548 NONE(HDMI_AUDIO), 549 NONE(CLK72MHZ), 550 NONE(VIC), 551 NONE(X_RESERVED19), 552 NONE(ADX1), 553 NONE(DPAUX), 554 PERIPHC_SOR, 555 NONE(X_RESERVED23), 556 557 /* 184 */ 558 NONE(GPU), 559 NONE(AMX1), 560 NONE(X_RESERVED26), 561 NONE(X_RESERVED27), 562 NONE(X_RESERVED28), 563 NONE(X_RESERVED29), 564 NONE(X_RESERVED30), 565 NONE(X_RESERVED31), 566 }; 567 568 /* 569 * Get the oscillator frequency, from the corresponding hardware configuration 570 * field. Note that Tegra30+ support 3 new higher freqs, but we map back 571 * to the old T20 freqs. Support for the higher oscillators is TBD. 572 */ 573 enum clock_osc_freq clock_get_osc_freq(void) 574 { 575 struct clk_rst_ctlr *clkrst = 576 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 577 u32 reg; 578 579 reg = readl(&clkrst->crc_osc_ctrl); 580 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT; 581 582 if (reg & 1) /* one of the newer freqs */ 583 printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg); 584 585 return reg >> 2; /* Map to most common (T20) freqs */ 586 } 587 588 /* Returns a pointer to the clock source register for a peripheral */ 589 u32 *get_periph_source_reg(enum periph_id periph_id) 590 { 591 struct clk_rst_ctlr *clkrst = 592 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 593 enum periphc_internal_id internal_id; 594 595 /* Coresight is a special case */ 596 if (periph_id == PERIPH_ID_CSI) 597 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1]; 598 599 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT); 600 internal_id = periph_id_to_internal_id[periph_id]; 601 assert(internal_id != -1); 602 if (internal_id >= PERIPHC_X_FIRST) { 603 internal_id -= PERIPHC_X_FIRST; 604 return &clkrst->crc_clk_src_x[internal_id]; 605 } else if (internal_id >= PERIPHC_VW_FIRST) { 606 internal_id -= PERIPHC_VW_FIRST; 607 return &clkrst->crc_clk_src_vw[internal_id]; 608 } else { 609 return &clkrst->crc_clk_src[internal_id]; 610 } 611 } 612 613 /** 614 * Given a peripheral ID and the required source clock, this returns which 615 * value should be programmed into the source mux for that peripheral. 616 * 617 * There is special code here to handle the one source type with 5 sources. 618 * 619 * @param periph_id peripheral to start 620 * @param source PLL id of required parent clock 621 * @param mux_bits Set to number of bits in mux register: 2 or 4 622 * @param divider_bits Set to number of divider bits (8 or 16) 623 * @return mux value (0-4, or -1 if not found) 624 */ 625 int get_periph_clock_source(enum periph_id periph_id, 626 enum clock_id parent, int *mux_bits, int *divider_bits) 627 { 628 enum clock_type_id type; 629 enum periphc_internal_id internal_id; 630 int mux; 631 632 assert(clock_periph_id_isvalid(periph_id)); 633 634 internal_id = periph_id_to_internal_id[periph_id]; 635 assert(periphc_internal_id_isvalid(internal_id)); 636 637 type = clock_periph_type[internal_id]; 638 assert(clock_type_id_isvalid(type)); 639 640 *mux_bits = clock_source[type][CLOCK_MAX_MUX]; 641 642 if (type == CLOCK_TYPE_PC2CC3M_T16) 643 *divider_bits = 16; 644 else 645 *divider_bits = 8; 646 647 for (mux = 0; mux < CLOCK_MAX_MUX; mux++) 648 if (clock_source[type][mux] == parent) 649 return mux; 650 651 /* if we get here, either us or the caller has made a mistake */ 652 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id, 653 parent); 654 return -1; 655 } 656 657 void clock_set_enable(enum periph_id periph_id, int enable) 658 { 659 struct clk_rst_ctlr *clkrst = 660 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 661 u32 *clk; 662 u32 reg; 663 664 /* Enable/disable the clock to this peripheral */ 665 assert(clock_periph_id_isvalid(periph_id)); 666 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST) 667 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)]; 668 else if ((int)periph_id < PERIPH_ID_X_FIRST) 669 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)]; 670 else 671 clk = &clkrst->crc_clk_out_enb_x; 672 reg = readl(clk); 673 if (enable) 674 reg |= PERIPH_MASK(periph_id); 675 else 676 reg &= ~PERIPH_MASK(periph_id); 677 writel(reg, clk); 678 } 679 680 void reset_set_enable(enum periph_id periph_id, int enable) 681 { 682 struct clk_rst_ctlr *clkrst = 683 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 684 u32 *reset; 685 u32 reg; 686 687 /* Enable/disable reset to the peripheral */ 688 assert(clock_periph_id_isvalid(periph_id)); 689 if (periph_id < PERIPH_ID_VW_FIRST) 690 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)]; 691 else if ((int)periph_id < PERIPH_ID_X_FIRST) 692 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)]; 693 else 694 reset = &clkrst->crc_rst_devices_x; 695 reg = readl(reset); 696 if (enable) 697 reg |= PERIPH_MASK(periph_id); 698 else 699 reg &= ~PERIPH_MASK(periph_id); 700 writel(reg, reset); 701 } 702 703 #ifdef CONFIG_OF_CONTROL 704 /* 705 * Convert a device tree clock ID to our peripheral ID. They are mostly 706 * the same but we are very cautious so we check that a valid clock ID is 707 * provided. 708 * 709 * @param clk_id Clock ID according to tegra124 device tree binding 710 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid 711 */ 712 enum periph_id clk_id_to_periph_id(int clk_id) 713 { 714 if (clk_id > PERIPH_ID_COUNT) 715 return PERIPH_ID_NONE; 716 717 switch (clk_id) { 718 case PERIPH_ID_RESERVED4: 719 case PERIPH_ID_RESERVED25: 720 case PERIPH_ID_RESERVED35: 721 case PERIPH_ID_RESERVED36: 722 case PERIPH_ID_RESERVED38: 723 case PERIPH_ID_RESERVED43: 724 case PERIPH_ID_RESERVED49: 725 case PERIPH_ID_RESERVED53: 726 case PERIPH_ID_RESERVED64: 727 case PERIPH_ID_RESERVED84: 728 case PERIPH_ID_RESERVED85: 729 case PERIPH_ID_RESERVED86: 730 case PERIPH_ID_RESERVED88: 731 case PERIPH_ID_RESERVED90: 732 case PERIPH_ID_RESERVED92: 733 case PERIPH_ID_RESERVED93: 734 case PERIPH_ID_RESERVED94: 735 case PERIPH_ID_V_RESERVED2: 736 case PERIPH_ID_V_RESERVED4: 737 case PERIPH_ID_V_RESERVED17: 738 case PERIPH_ID_V_RESERVED18: 739 case PERIPH_ID_V_RESERVED19: 740 case PERIPH_ID_V_RESERVED20: 741 case PERIPH_ID_V_RESERVED21: 742 case PERIPH_ID_V_RESERVED22: 743 case PERIPH_ID_W_RESERVED2: 744 case PERIPH_ID_W_RESERVED3: 745 case PERIPH_ID_W_RESERVED4: 746 case PERIPH_ID_W_RESERVED5: 747 case PERIPH_ID_W_RESERVED6: 748 case PERIPH_ID_W_RESERVED7: 749 case PERIPH_ID_W_RESERVED9: 750 case PERIPH_ID_W_RESERVED10: 751 case PERIPH_ID_W_RESERVED11: 752 case PERIPH_ID_W_RESERVED12: 753 case PERIPH_ID_W_RESERVED13: 754 case PERIPH_ID_W_RESERVED15: 755 case PERIPH_ID_W_RESERVED16: 756 case PERIPH_ID_W_RESERVED17: 757 case PERIPH_ID_W_RESERVED18: 758 case PERIPH_ID_W_RESERVED19: 759 case PERIPH_ID_W_RESERVED20: 760 case PERIPH_ID_W_RESERVED23: 761 case PERIPH_ID_W_RESERVED29: 762 case PERIPH_ID_W_RESERVED30: 763 case PERIPH_ID_W_RESERVED31: 764 return PERIPH_ID_NONE; 765 default: 766 return clk_id; 767 } 768 } 769 #endif /* CONFIG_OF_CONTROL */ 770 771 void clock_early_init(void) 772 { 773 struct clk_rst_ctlr *clkrst = 774 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 775 776 tegra30_set_up_pllp(); 777 778 /* 779 * PLLC output frequency set to 600Mhz 780 * PLLD output frequency set to 925Mhz 781 */ 782 switch (clock_get_osc_freq()) { 783 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ 784 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8); 785 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12); 786 break; 787 788 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ 789 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); 790 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12); 791 break; 792 793 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ 794 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); 795 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12); 796 break; 797 case CLOCK_OSC_FREQ_19_2: 798 default: 799 /* 800 * These are not supported. It is too early to print a 801 * message and the UART likely won't work anyway due to the 802 * oscillator being wrong. 803 */ 804 break; 805 } 806 807 /* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */ 808 writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]); 809 810 /* PLLC_MISC: Set LOCK_ENABLE */ 811 writel(0x01000000, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc); 812 udelay(2); 813 814 /* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1 */ 815 writel(0x40000C10, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc); 816 udelay(2); 817 } 818 819 void arch_timer_init(void) 820 { 821 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE; 822 u32 freq, val; 823 824 freq = clock_get_rate(CLOCK_ID_OSC); 825 debug("%s: osc freq is %dHz [0x%08X]\n", __func__, freq, freq); 826 827 /* ARM CNTFRQ */ 828 asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq)); 829 830 /* Only Tegra114+ has the System Counter regs */ 831 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq); 832 writel(freq, &sysctr->cntfid0); 833 834 val = readl(&sysctr->cntcr); 835 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG; 836 writel(val, &sysctr->cntcr); 837 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val); 838 } 839 840 #define PLLE_SS_CNTL 0x68 841 #define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24) 842 #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16) 843 #define PLLE_SS_CNTL_SSCINVERT (1 << 15) 844 #define PLLE_SS_CNTL_SSCCENTER (1 << 14) 845 #define PLLE_SS_CNTL_SSCBYP (1 << 12) 846 #define PLLE_SS_CNTL_INTERP_RESET (1 << 11) 847 #define PLLE_SS_CNTL_BYPASS_SS (1 << 10) 848 #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0) 849 850 #define PLLE_BASE 0x0e8 851 #define PLLE_BASE_ENABLE (1 << 30) 852 #define PLLE_BASE_LOCK_OVERRIDE (1 << 29) 853 #define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24) 854 #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8) 855 #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0) 856 857 #define PLLE_MISC 0x0ec 858 #define PLLE_MISC_IDDQ_SWCTL (1 << 14) 859 #define PLLE_MISC_IDDQ_OVERRIDE (1 << 13) 860 #define PLLE_MISC_LOCK_ENABLE (1 << 9) 861 #define PLLE_MISC_PTS (1 << 8) 862 #define PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4) 863 #define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2) 864 865 #define PLLE_AUX 0x48c 866 #define PLLE_AUX_SEQ_ENABLE (1 << 24) 867 #define PLLE_AUX_ENABLE_SWCTL (1 << 4) 868 869 int tegra_plle_enable(void) 870 { 871 unsigned int m = 1, n = 200, cpcon = 13; 872 u32 value; 873 874 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE); 875 value &= ~PLLE_BASE_LOCK_OVERRIDE; 876 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE); 877 878 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX); 879 value |= PLLE_AUX_ENABLE_SWCTL; 880 value &= ~PLLE_AUX_SEQ_ENABLE; 881 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX); 882 883 udelay(1); 884 885 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC); 886 value |= PLLE_MISC_IDDQ_SWCTL; 887 value &= ~PLLE_MISC_IDDQ_OVERRIDE; 888 value |= PLLE_MISC_LOCK_ENABLE; 889 value |= PLLE_MISC_PTS; 890 value |= PLLE_MISC_VREG_BG_CTRL(3); 891 value |= PLLE_MISC_VREG_CTRL(2); 892 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC); 893 894 udelay(5); 895 896 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 897 value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET | 898 PLLE_SS_CNTL_BYPASS_SS; 899 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 900 901 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE); 902 value &= ~PLLE_BASE_PLDIV_CML(0xf); 903 value &= ~PLLE_BASE_NDIV(0xff); 904 value &= ~PLLE_BASE_MDIV(0xff); 905 value |= PLLE_BASE_PLDIV_CML(cpcon); 906 value |= PLLE_BASE_NDIV(n); 907 value |= PLLE_BASE_MDIV(m); 908 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE); 909 910 udelay(1); 911 912 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE); 913 value |= PLLE_BASE_ENABLE; 914 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE); 915 916 /* wait for lock */ 917 udelay(300); 918 919 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 920 value &= ~PLLE_SS_CNTL_SSCINVERT; 921 value &= ~PLLE_SS_CNTL_SSCCENTER; 922 923 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f); 924 value &= ~PLLE_SS_CNTL_SSCINC(0xff); 925 value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff); 926 927 value |= PLLE_SS_CNTL_SSCINCINTR(0x20); 928 value |= PLLE_SS_CNTL_SSCINC(0x01); 929 value |= PLLE_SS_CNTL_SSCMAX(0x25); 930 931 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 932 933 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 934 value &= ~PLLE_SS_CNTL_SSCBYP; 935 value &= ~PLLE_SS_CNTL_BYPASS_SS; 936 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 937 938 udelay(1); 939 940 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 941 value &= ~PLLE_SS_CNTL_INTERP_RESET; 942 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL); 943 944 udelay(1); 945 946 return 0; 947 } 948 949 void clock_sor_enable_edp_clock(void) 950 { 951 u32 *reg; 952 953 /* uses PLLP, has a non-standard bit layout. */ 954 reg = get_periph_source_reg(PERIPH_ID_SOR0); 955 setbits_le32(reg, SOR0_CLK_SEL0); 956 } 957 958 u32 clock_set_display_rate(u32 frequency) 959 { 960 /** 961 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz 962 * = (cf * n) >> p, where 1MHz < cf < 6MHz 963 * = ((ref / m) * n) >> p 964 * 965 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum 966 * safe vco, then find best (m, n). since m has only 5 bits, we can 967 * iterate all possible values. Note Tegra 124 supports 11 bits for n, 968 * but our pll_fields has only 10 bits for n. 969 * 970 * Note values undershoot or overshoot target output frequency may not 971 * work if the values are not in "safe" range by panel specification. 972 */ 973 u32 ref = clock_get_rate(CLOCK_ID_OSC); 974 u32 divm, divn, divp, cpcon; 975 u32 cf, vco, rounded_rate = frequency; 976 u32 diff, best_diff, best_m = 0, best_n = 0, best_p; 977 const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3, 978 mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz, 979 min_cf = 1 * mhz, max_cf = 6 * mhz; 980 int mux_bits, divider_bits, source; 981 982 for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++) 983 vco <<= 1; 984 985 if (vco < min_vco || vco > max_vco) { 986 printf("%s: Cannot find out a supported VCO for Frequency (%u)\n", 987 __func__, frequency); 988 return 0; 989 } 990 991 best_p = divp; 992 best_diff = vco; 993 994 for (divm = 1; divm < max_m && best_diff; divm++) { 995 cf = ref / divm; 996 if (cf < min_cf) 997 break; 998 if (cf > max_cf) 999 continue; 1000 1001 divn = vco / cf; 1002 if (divn >= max_n) 1003 continue; 1004 1005 diff = vco - divn * cf; 1006 if (divn + 1 < max_n && diff > cf / 2) { 1007 divn++; 1008 diff = cf - diff; 1009 } 1010 1011 if (diff >= best_diff) 1012 continue; 1013 1014 best_diff = diff; 1015 best_m = divm; 1016 best_n = divn; 1017 } 1018 1019 if (best_n < 50) 1020 cpcon = 2; 1021 else if (best_n < 300) 1022 cpcon = 3; 1023 else if (best_n < 600) 1024 cpcon = 8; 1025 else 1026 cpcon = 12; 1027 1028 if (best_diff) { 1029 printf("%s: Failed to match output frequency %u, best difference is %u\n", 1030 __func__, frequency, best_diff); 1031 rounded_rate = (ref / best_m * best_n) >> best_p; 1032 } 1033 1034 debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n", 1035 __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon); 1036 1037 source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY, 1038 &mux_bits, ÷r_bits); 1039 clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source); 1040 clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon); 1041 1042 return rounded_rate; 1043 } 1044 1045 void clock_set_up_plldp(void) 1046 { 1047 struct clk_rst_ctlr *clkrst = 1048 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 1049 u32 value; 1050 1051 value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER; 1052 writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg); 1053 clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0); 1054 writel(value, &clkrst->crc_plldp_ss_cfg); 1055 } 1056 1057 struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid) 1058 { 1059 struct clk_rst_ctlr *clkrst = 1060 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 1061 1062 if (clkid == CLOCK_ID_DP) 1063 return &clkrst->plldp; 1064 1065 return NULL; 1066 } 1067