xref: /openbmc/u-boot/arch/arm/mach-tegra/tegra124/clock.c (revision 48038c4acb58457210f3432f3d6f191c5bb1a9ce)
1 /*
2  * (C) Copyright 2013-2015
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7 
8 /* Tegra124 Clock control functions */
9 
10 #include <common.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/sysctr.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/timer.h>
17 #include <div64.h>
18 #include <fdtdec.h>
19 
20 /*
21  * Clock types that we can use as a source. The Tegra124 has muxes for the
22  * peripheral clocks, and in most cases there are four options for the clock
23  * source. This gives us a clock 'type' and exploits what commonality exists
24  * in the device.
25  *
26  * Letters are obvious, except for T which means CLK_M, and S which means the
27  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28  * datasheet) and PLL_M are different things. The former is the basic
29  * clock supplied to the SOC from an external oscillator. The latter is the
30  * memory clock PLL.
31  *
32  * See definitions in clock_id in the header file.
33  */
34 enum clock_type_id {
35 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
36 	CLOCK_TYPE_MCPA,	/* and so on */
37 	CLOCK_TYPE_MCPT,
38 	CLOCK_TYPE_PCM,
39 	CLOCK_TYPE_PCMT,
40 	CLOCK_TYPE_PDCT,
41 	CLOCK_TYPE_ACPT,
42 	CLOCK_TYPE_ASPTE,
43 	CLOCK_TYPE_PMDACD2T,
44 	CLOCK_TYPE_PCST,
45 	CLOCK_TYPE_DP,
46 
47 	CLOCK_TYPE_PC2CC3M,
48 	CLOCK_TYPE_PC2CC3S_T,
49 	CLOCK_TYPE_PC2CC3M_T,
50 	CLOCK_TYPE_PC2CC3M_T16,	/* PC2CC3M_T, but w/16-bit divisor (I2C) */
51 	CLOCK_TYPE_MC2CC3P_A,
52 	CLOCK_TYPE_M,
53 	CLOCK_TYPE_MCPTM2C2C3,
54 	CLOCK_TYPE_PC2CC3T_S,
55 	CLOCK_TYPE_AC2CC3P_TS2,
56 
57 	CLOCK_TYPE_COUNT,
58 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
59 };
60 
61 enum {
62 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
63 };
64 
65 /*
66  * Clock source mux for each clock type. This just converts our enum into
67  * a list of mux sources for use by the code.
68  *
69  * Note:
70  *  The extra column in each clock source array is used to store the mask
71  *  bits in its register for the source.
72  */
73 #define CLK(x) CLOCK_ID_ ## x
74 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
75 	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC),
76 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
77 		MASK_BITS_31_30},
78 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO),
79 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
80 		MASK_BITS_31_30},
81 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
82 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
83 		MASK_BITS_31_30},
84 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE),
85 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
86 		MASK_BITS_31_30},
87 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC),
88 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
89 		MASK_BITS_31_30},
90 	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC),
91 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
92 		MASK_BITS_31_30},
93 	{ CLK(AUDIO),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
94 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
95 		MASK_BITS_31_30},
96 	{ CLK(AUDIO),	CLK(SFROM32KHZ),	CLK(PERIPH),	CLK(OSC),
97 		CLK(EPCI),	CLK(NONE),	CLK(NONE),	CLK(NONE),
98 		MASK_BITS_31_29},
99 	{ CLK(PERIPH),	CLK(MEMORY),	CLK(DISPLAY),	CLK(AUDIO),
100 		CLK(CGENERAL),	CLK(DISPLAY2),	CLK(OSC),	CLK(NONE),
101 		MASK_BITS_31_29},
102 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(SFROM32KHZ),	CLK(OSC),
103 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
104 		MASK_BITS_31_28},
105 	/* CLOCK_TYPE_DP */
106 	{ CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
107 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
108 		MASK_BITS_31_28},
109 
110 	/* Additional clock types on Tegra114+ */
111 	/* CLOCK_TYPE_PC2CC3M */
112 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
113 		CLK(MEMORY),	CLK(NONE),	CLK(NONE),	CLK(NONE),
114 		MASK_BITS_31_29},
115 	/* CLOCK_TYPE_PC2CC3S_T */
116 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
117 		CLK(SFROM32KHZ), CLK(NONE),	CLK(OSC),	CLK(NONE),
118 		MASK_BITS_31_29},
119 	/* CLOCK_TYPE_PC2CC3M_T */
120 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
121 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
122 		MASK_BITS_31_29},
123 	/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
124 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
125 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
126 		MASK_BITS_31_29},
127 	/* CLOCK_TYPE_MC2CC3P_A */
128 	{ CLK(MEMORY),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
129 		CLK(PERIPH),	CLK(NONE),	CLK(AUDIO),	CLK(NONE),
130 		MASK_BITS_31_29},
131 	/* CLOCK_TYPE_M */
132 	{ CLK(MEMORY),		CLK(NONE),	CLK(NONE),	CLK(NONE),
133 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
134 		MASK_BITS_31_30},
135 	/* CLOCK_TYPE_MCPTM2C2C3 */
136 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
137 		CLK(MEMORY2),	CLK(CGENERAL2),	CLK(CGENERAL3),	CLK(NONE),
138 		MASK_BITS_31_29},
139 	/* CLOCK_TYPE_PC2CC3T_S */
140 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
141 		CLK(OSC),	CLK(NONE),	CLK(SFROM32KHZ), CLK(NONE),
142 		MASK_BITS_31_29},
143 	/* CLOCK_TYPE_AC2CC3P_TS2 */
144 	{ CLK(AUDIO),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
145 		CLK(PERIPH),	CLK(NONE),	CLK(OSC),	CLK(SRC2),
146 		MASK_BITS_31_29},
147 };
148 
149 /*
150  * Clock type for each peripheral clock source. We put the name in each
151  * record just so it is easy to match things up
152  */
153 #define TYPE(name, type) type
154 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
155 	/* 0x00 */
156 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
157 	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
158 	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
159 	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PC2CC3M),
160 	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PC2CC3S_T),
161 	TYPE(PERIPHC_05h,	CLOCK_TYPE_NONE),
162 	TYPE(PERIPHC_SBC2,	CLOCK_TYPE_PC2CC3M_T),
163 	TYPE(PERIPHC_SBC3,	CLOCK_TYPE_PC2CC3M_T),
164 
165 	/* 0x08 */
166 	TYPE(PERIPHC_08h,	CLOCK_TYPE_NONE),
167 	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PC2CC3M_T16),
168 	TYPE(PERIPHC_I2C5,	CLOCK_TYPE_PC2CC3M_T16),
169 	TYPE(PERIPHC_0bh,	CLOCK_TYPE_NONE),
170 	TYPE(PERIPHC_0ch,	CLOCK_TYPE_NONE),
171 	TYPE(PERIPHC_SBC1,	CLOCK_TYPE_PC2CC3M_T),
172 	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PMDACD2T),
173 	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PMDACD2T),
174 
175 	/* 0x10 */
176 	TYPE(PERIPHC_10h,	CLOCK_TYPE_NONE),
177 	TYPE(PERIPHC_11h,	CLOCK_TYPE_NONE),
178 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MC2CC3P_A),
179 	TYPE(PERIPHC_13h,	CLOCK_TYPE_NONE),
180 	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PC2CC3M_T),
181 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PC2CC3M_T),
182 	TYPE(PERIPHC_16h,	CLOCK_TYPE_NONE),
183 	TYPE(PERIPHC_17h,	CLOCK_TYPE_NONE),
184 
185 	/* 0x18 */
186 	TYPE(PERIPHC_18h,	CLOCK_TYPE_NONE),
187 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PC2CC3M_T),
188 	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PC2CC3M_T),
189 	TYPE(PERIPHC_1Bh,	CLOCK_TYPE_NONE),
190 	TYPE(PERIPHC_1Ch,	CLOCK_TYPE_NONE),
191 	TYPE(PERIPHC_HSI,	CLOCK_TYPE_PC2CC3M_T),
192 	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PC2CC3M_T),
193 	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PC2CC3M_T),
194 
195 	/* 0x20 */
196 	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MC2CC3P_A),
197 	TYPE(PERIPHC_21h,	CLOCK_TYPE_NONE),
198 	TYPE(PERIPHC_22h,	CLOCK_TYPE_NONE),
199 	TYPE(PERIPHC_HDMI,	CLOCK_TYPE_PMDACD2T),
200 	TYPE(PERIPHC_24h,	CLOCK_TYPE_NONE),
201 	TYPE(PERIPHC_25h,	CLOCK_TYPE_NONE),
202 	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PC2CC3M_T16),
203 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPTM2C2C3),
204 
205 	/* 0x28 */
206 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PC2CC3M_T),
207 	TYPE(PERIPHC_29h,	CLOCK_TYPE_NONE),
208 	TYPE(PERIPHC_VI_SENSOR,	CLOCK_TYPE_MC2CC3P_A),
209 	TYPE(PERIPHC_2bh,	CLOCK_TYPE_NONE),
210 	TYPE(PERIPHC_2ch,	CLOCK_TYPE_NONE),
211 	TYPE(PERIPHC_SBC4,	CLOCK_TYPE_PC2CC3M_T),
212 	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PC2CC3M_T16),
213 	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PC2CC3M_T),
214 
215 	/* 0x30 */
216 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PC2CC3M_T),
217 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PC2CC3M_T),
218 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PC2CC3M_T),
219 	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PC2CC3M_T),
220 	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PC2CC3M_T),
221 	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PC2CC3M_T),
222 	TYPE(PERIPHC_I2S0,	CLOCK_TYPE_AXPT),
223 	TYPE(PERIPHC_DTV,	CLOCK_TYPE_NONE),
224 
225 	/* 0x38 */
226 	TYPE(PERIPHC_38h,	CLOCK_TYPE_NONE),
227 	TYPE(PERIPHC_39h,	CLOCK_TYPE_NONE),
228 	TYPE(PERIPHC_3ah,	CLOCK_TYPE_NONE),
229 	TYPE(PERIPHC_3bh,	CLOCK_TYPE_NONE),
230 	TYPE(PERIPHC_MSENC,	CLOCK_TYPE_MC2CC3P_A),
231 	TYPE(PERIPHC_TSEC,	CLOCK_TYPE_PC2CC3M_T),
232 	TYPE(PERIPHC_3eh,	CLOCK_TYPE_NONE),
233 	TYPE(PERIPHC_OSC,	CLOCK_TYPE_NONE),
234 
235 	/* 0x40 */
236 	TYPE(PERIPHC_40h,	CLOCK_TYPE_NONE),	/* start with 0x3b0 */
237 	TYPE(PERIPHC_MSELECT,	CLOCK_TYPE_PC2CC3M_T),
238 	TYPE(PERIPHC_TSENSOR,	CLOCK_TYPE_PC2CC3T_S),
239 	TYPE(PERIPHC_I2S3,	CLOCK_TYPE_AXPT),
240 	TYPE(PERIPHC_I2S4,	CLOCK_TYPE_AXPT),
241 	TYPE(PERIPHC_I2C4,	CLOCK_TYPE_PC2CC3M_T16),
242 	TYPE(PERIPHC_SBC5,	CLOCK_TYPE_PC2CC3M_T),
243 	TYPE(PERIPHC_SBC6,	CLOCK_TYPE_PC2CC3M_T),
244 
245 	/* 0x48 */
246 	TYPE(PERIPHC_AUDIO,	CLOCK_TYPE_AC2CC3P_TS2),
247 	TYPE(PERIPHC_49h,	CLOCK_TYPE_NONE),
248 	TYPE(PERIPHC_DAM0,	CLOCK_TYPE_AC2CC3P_TS2),
249 	TYPE(PERIPHC_DAM1,	CLOCK_TYPE_AC2CC3P_TS2),
250 	TYPE(PERIPHC_DAM2,	CLOCK_TYPE_AC2CC3P_TS2),
251 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
252 	TYPE(PERIPHC_ACTMON,	CLOCK_TYPE_PC2CC3S_T),
253 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
254 
255 	/* 0x50 */
256 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
257 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
258 	TYPE(PERIPHC_52h,	CLOCK_TYPE_NONE),
259 	TYPE(PERIPHC_I2CSLOW,	CLOCK_TYPE_PC2CC3S_T),
260 	TYPE(PERIPHC_SYS,	CLOCK_TYPE_NONE),
261 	TYPE(PERIPHC_55h,	CLOCK_TYPE_NONE),
262 	TYPE(PERIPHC_56h,	CLOCK_TYPE_NONE),
263 	TYPE(PERIPHC_57h,	CLOCK_TYPE_NONE),
264 
265 	/* 0x58 */
266 	TYPE(PERIPHC_58h,	CLOCK_TYPE_NONE),
267 	TYPE(PERIPHC_SOR,	CLOCK_TYPE_NONE),
268 	TYPE(PERIPHC_5ah,	CLOCK_TYPE_NONE),
269 	TYPE(PERIPHC_5bh,	CLOCK_TYPE_NONE),
270 	TYPE(PERIPHC_SATAOOB,	CLOCK_TYPE_PCMT),
271 	TYPE(PERIPHC_SATA,	CLOCK_TYPE_PCMT),
272 	TYPE(PERIPHC_HDA,	CLOCK_TYPE_PC2CC3M_T),
273 	TYPE(PERIPHC_5fh,	CLOCK_TYPE_NONE),
274 
275 	/* 0x60 */
276 	TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
277 	TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
278 	TYPE(PERIPHC_XUSB_FS,	CLOCK_TYPE_NONE),
279 	TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
280 	TYPE(PERIPHC_XUSB_SS,	CLOCK_TYPE_NONE),
281 	TYPE(PERIPHC_CILAB,	CLOCK_TYPE_NONE),
282 	TYPE(PERIPHC_CILCD,	CLOCK_TYPE_NONE),
283 	TYPE(PERIPHC_CILE,	CLOCK_TYPE_NONE),
284 
285 	/* 0x68 */
286 	TYPE(PERIPHC_DSIA_LP,	CLOCK_TYPE_NONE),
287 	TYPE(PERIPHC_DSIB_LP,	CLOCK_TYPE_NONE),
288 	TYPE(PERIPHC_ENTROPY,	CLOCK_TYPE_NONE),
289 	TYPE(PERIPHC_DVFS_REF,	CLOCK_TYPE_NONE),
290 	TYPE(PERIPHC_DVFS_SOC,	CLOCK_TYPE_NONE),
291 	TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
292 	TYPE(PERIPHC_ADX0,	CLOCK_TYPE_NONE),
293 	TYPE(PERIPHC_AMX0,	CLOCK_TYPE_NONE),
294 
295 	/* 0x70 */
296 	TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
297 	TYPE(PERIPHC_SOC_THERM,	CLOCK_TYPE_NONE),
298 	TYPE(PERIPHC_72h,	CLOCK_TYPE_NONE),
299 	TYPE(PERIPHC_73h,	CLOCK_TYPE_NONE),
300 	TYPE(PERIPHC_74h,	CLOCK_TYPE_NONE),
301 	TYPE(PERIPHC_75h,	CLOCK_TYPE_NONE),
302 	TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
303 	TYPE(PERIPHC_I2C6,	CLOCK_TYPE_PC2CC3M_T16),
304 
305 	/* 0x78 */
306 	TYPE(PERIPHC_78h,	CLOCK_TYPE_NONE),
307 	TYPE(PERIPHC_EMC_DLL,	CLOCK_TYPE_MCPTM2C2C3),
308 	TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
309 	TYPE(PERIPHC_CLK72MHZ,	CLOCK_TYPE_NONE),
310 	TYPE(PERIPHC_ADX1,	CLOCK_TYPE_AC2CC3P_TS2),
311 	TYPE(PERIPHC_AMX1,	CLOCK_TYPE_AC2CC3P_TS2),
312 	TYPE(PERIPHC_VIC,	CLOCK_TYPE_NONE),
313 	TYPE(PERIPHC_7Fh,	CLOCK_TYPE_NONE),
314 };
315 
316 /*
317  * This array translates a periph_id to a periphc_internal_id
318  *
319  * Not present/matched up:
320  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
321  *	SPDIF - which is both 0x08 and 0x0c
322  *
323  */
324 #define NONE(name) (-1)
325 #define OFFSET(name, value) PERIPHC_ ## name
326 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
327 	/* Low word: 31:0 */
328 	NONE(CPU),
329 	NONE(COP),
330 	NONE(TRIGSYS),
331 	NONE(ISPB),
332 	NONE(RESERVED4),
333 	NONE(TMR),
334 	PERIPHC_UART1,
335 	PERIPHC_UART2,	/* and vfir 0x68 */
336 
337 	/* 8 */
338 	NONE(GPIO),
339 	PERIPHC_SDMMC2,
340 	PERIPHC_SPDIF_IN,
341 	PERIPHC_I2S1,
342 	PERIPHC_I2C1,
343 	NONE(RESERVED13),
344 	PERIPHC_SDMMC1,
345 	PERIPHC_SDMMC4,
346 
347 	/* 16 */
348 	NONE(TCW),
349 	PERIPHC_PWM,
350 	PERIPHC_I2S2,
351 	NONE(RESERVED19),
352 	PERIPHC_VI,
353 	NONE(RESERVED21),
354 	NONE(USBD),
355 	NONE(ISP),
356 
357 	/* 24 */
358 	NONE(RESERVED24),
359 	NONE(RESERVED25),
360 	PERIPHC_DISP2,
361 	PERIPHC_DISP1,
362 	PERIPHC_HOST1X,
363 	NONE(VCP),
364 	PERIPHC_I2S0,
365 	NONE(CACHE2),
366 
367 	/* Middle word: 63:32 */
368 	NONE(MEM),
369 	NONE(AHBDMA),
370 	NONE(APBDMA),
371 	NONE(RESERVED35),
372 	NONE(RESERVED36),
373 	NONE(STAT_MON),
374 	NONE(RESERVED38),
375 	NONE(FUSE),
376 
377 	/* 40 */
378 	NONE(KFUSE),
379 	PERIPHC_SBC1,		/* SBCx = SPIx */
380 	PERIPHC_NOR,
381 	NONE(RESERVED43),
382 	PERIPHC_SBC2,
383 	NONE(XIO),
384 	PERIPHC_SBC3,
385 	PERIPHC_I2C5,
386 
387 	/* 48 */
388 	NONE(DSI),
389 	NONE(RESERVED49),
390 	PERIPHC_HSI,
391 	PERIPHC_HDMI,
392 	NONE(CSI),
393 	NONE(RESERVED53),
394 	PERIPHC_I2C2,
395 	PERIPHC_UART3,
396 
397 	/* 56 */
398 	NONE(MIPI_CAL),
399 	PERIPHC_EMC,
400 	NONE(USB2),
401 	NONE(USB3),
402 	NONE(RESERVED60),
403 	PERIPHC_VDE,
404 	NONE(BSEA),
405 	NONE(BSEV),
406 
407 	/* Upper word 95:64 */
408 	NONE(RESERVED64),
409 	PERIPHC_UART4,
410 	PERIPHC_UART5,
411 	PERIPHC_I2C3,
412 	PERIPHC_SBC4,
413 	PERIPHC_SDMMC3,
414 	NONE(PCIE),
415 	PERIPHC_OWR,
416 
417 	/* 72 */
418 	NONE(AFI),
419 	PERIPHC_CSITE,
420 	NONE(PCIEXCLK),
421 	NONE(AVPUCQ),
422 	NONE(LA),
423 	NONE(TRACECLKIN),
424 	NONE(SOC_THERM),
425 	NONE(DTV),
426 
427 	/* 80 */
428 	NONE(RESERVED80),
429 	PERIPHC_I2CSLOW,
430 	NONE(DSIB),
431 	PERIPHC_TSEC,
432 	NONE(RESERVED84),
433 	NONE(RESERVED85),
434 	NONE(RESERVED86),
435 	NONE(EMUCIF),
436 
437 	/* 88 */
438 	NONE(RESERVED88),
439 	NONE(XUSB_HOST),
440 	NONE(RESERVED90),
441 	PERIPHC_MSENC,
442 	NONE(RESERVED92),
443 	NONE(RESERVED93),
444 	NONE(RESERVED94),
445 	NONE(XUSB_DEV),
446 
447 	/* V word: 31:0 */
448 	NONE(CPUG),
449 	NONE(CPULP),
450 	NONE(V_RESERVED2),
451 	PERIPHC_MSELECT,
452 	NONE(V_RESERVED4),
453 	PERIPHC_I2S3,
454 	PERIPHC_I2S4,
455 	PERIPHC_I2C4,
456 
457 	/* 104 */
458 	PERIPHC_SBC5,
459 	PERIPHC_SBC6,
460 	PERIPHC_AUDIO,
461 	NONE(APBIF),
462 	PERIPHC_DAM0,
463 	PERIPHC_DAM1,
464 	PERIPHC_DAM2,
465 	PERIPHC_HDA2CODEC2X,
466 
467 	/* 112 */
468 	NONE(ATOMICS),
469 	NONE(V_RESERVED17),
470 	NONE(V_RESERVED18),
471 	NONE(V_RESERVED19),
472 	NONE(V_RESERVED20),
473 	NONE(V_RESERVED21),
474 	NONE(V_RESERVED22),
475 	PERIPHC_ACTMON,
476 
477 	/* 120 */
478 	PERIPHC_EXTPERIPH1,
479 	NONE(EXTPERIPH2),
480 	NONE(EXTPERIPH3),
481 	NONE(OOB),
482 	PERIPHC_SATA,
483 	PERIPHC_HDA,
484 	NONE(TZRAM),
485 	NONE(SE),
486 
487 	/* W word: 31:0 */
488 	NONE(HDA2HDMICODEC),
489 	NONE(SATACOLD),
490 	NONE(W_RESERVED2),
491 	NONE(W_RESERVED3),
492 	NONE(W_RESERVED4),
493 	NONE(W_RESERVED5),
494 	NONE(W_RESERVED6),
495 	NONE(W_RESERVED7),
496 
497 	/* 136 */
498 	NONE(CEC),
499 	NONE(W_RESERVED9),
500 	NONE(W_RESERVED10),
501 	NONE(W_RESERVED11),
502 	NONE(W_RESERVED12),
503 	NONE(W_RESERVED13),
504 	NONE(XUSB_PADCTL),
505 	NONE(W_RESERVED15),
506 
507 	/* 144 */
508 	NONE(W_RESERVED16),
509 	NONE(W_RESERVED17),
510 	NONE(W_RESERVED18),
511 	NONE(W_RESERVED19),
512 	NONE(W_RESERVED20),
513 	NONE(ENTROPY),
514 	NONE(DDS),
515 	NONE(W_RESERVED23),
516 
517 	/* 152 */
518 	NONE(DP2),
519 	NONE(AMX0),
520 	NONE(ADX0),
521 	NONE(DVFS),
522 	NONE(XUSB_SS),
523 	NONE(W_RESERVED29),
524 	NONE(W_RESERVED30),
525 	NONE(W_RESERVED31),
526 
527 	/* X word: 31:0 */
528 	NONE(SPARE),
529 	NONE(X_RESERVED1),
530 	NONE(X_RESERVED2),
531 	NONE(X_RESERVED3),
532 	NONE(CAM_MCLK),
533 	NONE(CAM_MCLK2),
534 	PERIPHC_I2C6,
535 	NONE(X_RESERVED7),
536 
537 	/* 168 */
538 	NONE(X_RESERVED8),
539 	NONE(X_RESERVED9),
540 	NONE(X_RESERVED10),
541 	NONE(VIM2_CLK),
542 	NONE(X_RESERVED12),
543 	NONE(X_RESERVED13),
544 	NONE(EMC_DLL),
545 	NONE(X_RESERVED15),
546 
547 	/* 176 */
548 	NONE(HDMI_AUDIO),
549 	NONE(CLK72MHZ),
550 	NONE(VIC),
551 	NONE(X_RESERVED19),
552 	NONE(ADX1),
553 	NONE(DPAUX),
554 	PERIPHC_SOR,
555 	NONE(X_RESERVED23),
556 
557 	/* 184 */
558 	NONE(GPU),
559 	NONE(AMX1),
560 	NONE(X_RESERVED26),
561 	NONE(X_RESERVED27),
562 	NONE(X_RESERVED28),
563 	NONE(X_RESERVED29),
564 	NONE(X_RESERVED30),
565 	NONE(X_RESERVED31),
566 };
567 
568 /*
569  * PLL divider shift/mask tables for all PLL IDs.
570  */
571 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
572 	/*
573 	 * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
574 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
575 	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
576 	 */
577 
578 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
579 	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
580 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
581 	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
582 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
583 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
584 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
585 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
586 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
587 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
588 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
589 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
590 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
591 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
592 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
593 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
594 	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
595 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS (RESERVED) */
596 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20,  .p_mask = 0xF,
597 	  .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLDP */
598 };
599 
600 /*
601  * Get the oscillator frequency, from the corresponding hardware configuration
602  * field. Note that Tegra30+ support 3 new higher freqs, but we map back
603  * to the old T20 freqs. Support for the higher oscillators is TBD.
604  */
605 enum clock_osc_freq clock_get_osc_freq(void)
606 {
607 	struct clk_rst_ctlr *clkrst =
608 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
609 	u32 reg;
610 
611 	reg = readl(&clkrst->crc_osc_ctrl);
612 	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
613 
614 	if (reg & 1)				/* one of the newer freqs */
615 		printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
616 
617 	return reg >> 2;	/* Map to most common (T20) freqs */
618 }
619 
620 /* Returns a pointer to the clock source register for a peripheral */
621 u32 *get_periph_source_reg(enum periph_id periph_id)
622 {
623 	struct clk_rst_ctlr *clkrst =
624 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
625 	enum periphc_internal_id internal_id;
626 
627 	/* Coresight is a special case */
628 	if (periph_id == PERIPH_ID_CSI)
629 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
630 
631 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
632 	internal_id = periph_id_to_internal_id[periph_id];
633 	assert(internal_id != -1);
634 	if (internal_id >= PERIPHC_X_FIRST) {
635 		internal_id -= PERIPHC_X_FIRST;
636 		return &clkrst->crc_clk_src_x[internal_id];
637 	} else if (internal_id >= PERIPHC_VW_FIRST) {
638 		internal_id -= PERIPHC_VW_FIRST;
639 		return &clkrst->crc_clk_src_vw[internal_id];
640 	} else {
641 		return &clkrst->crc_clk_src[internal_id];
642 	}
643 }
644 
645 /**
646  * Given a peripheral ID and the required source clock, this returns which
647  * value should be programmed into the source mux for that peripheral.
648  *
649  * There is special code here to handle the one source type with 5 sources.
650  *
651  * @param periph_id	peripheral to start
652  * @param source	PLL id of required parent clock
653  * @param mux_bits	Set to number of bits in mux register: 2 or 4
654  * @param divider_bits Set to number of divider bits (8 or 16)
655  * @return mux value (0-4, or -1 if not found)
656  */
657 int get_periph_clock_source(enum periph_id periph_id,
658 	enum clock_id parent, int *mux_bits, int *divider_bits)
659 {
660 	enum clock_type_id type;
661 	enum periphc_internal_id internal_id;
662 	int mux;
663 
664 	assert(clock_periph_id_isvalid(periph_id));
665 
666 	internal_id = periph_id_to_internal_id[periph_id];
667 	assert(periphc_internal_id_isvalid(internal_id));
668 
669 	type = clock_periph_type[internal_id];
670 	assert(clock_type_id_isvalid(type));
671 
672 	*mux_bits = clock_source[type][CLOCK_MAX_MUX];
673 
674 	if (type == CLOCK_TYPE_PC2CC3M_T16)
675 		*divider_bits = 16;
676 	else
677 		*divider_bits = 8;
678 
679 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
680 		if (clock_source[type][mux] == parent)
681 			return mux;
682 
683 	/* if we get here, either us or the caller has made a mistake */
684 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
685 	       parent);
686 	return -1;
687 }
688 
689 void clock_set_enable(enum periph_id periph_id, int enable)
690 {
691 	struct clk_rst_ctlr *clkrst =
692 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
693 	u32 *clk;
694 	u32 reg;
695 
696 	/* Enable/disable the clock to this peripheral */
697 	assert(clock_periph_id_isvalid(periph_id));
698 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
699 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
700 	else if ((int)periph_id < PERIPH_ID_X_FIRST)
701 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
702 	else
703 		clk = &clkrst->crc_clk_out_enb_x;
704 	reg = readl(clk);
705 	if (enable)
706 		reg |= PERIPH_MASK(periph_id);
707 	else
708 		reg &= ~PERIPH_MASK(periph_id);
709 	writel(reg, clk);
710 }
711 
712 void reset_set_enable(enum periph_id periph_id, int enable)
713 {
714 	struct clk_rst_ctlr *clkrst =
715 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
716 	u32 *reset;
717 	u32 reg;
718 
719 	/* Enable/disable reset to the peripheral */
720 	assert(clock_periph_id_isvalid(periph_id));
721 	if (periph_id < PERIPH_ID_VW_FIRST)
722 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
723 	else if ((int)periph_id < PERIPH_ID_X_FIRST)
724 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
725 	else
726 		reset = &clkrst->crc_rst_devices_x;
727 	reg = readl(reset);
728 	if (enable)
729 		reg |= PERIPH_MASK(periph_id);
730 	else
731 		reg &= ~PERIPH_MASK(periph_id);
732 	writel(reg, reset);
733 }
734 
735 #if CONFIG_IS_ENABLED(OF_CONTROL)
736 /*
737  * Convert a device tree clock ID to our peripheral ID. They are mostly
738  * the same but we are very cautious so we check that a valid clock ID is
739  * provided.
740  *
741  * @param clk_id    Clock ID according to tegra124 device tree binding
742  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
743  */
744 enum periph_id clk_id_to_periph_id(int clk_id)
745 {
746 	if (clk_id > PERIPH_ID_COUNT)
747 		return PERIPH_ID_NONE;
748 
749 	switch (clk_id) {
750 	case PERIPH_ID_RESERVED4:
751 	case PERIPH_ID_RESERVED25:
752 	case PERIPH_ID_RESERVED35:
753 	case PERIPH_ID_RESERVED36:
754 	case PERIPH_ID_RESERVED38:
755 	case PERIPH_ID_RESERVED43:
756 	case PERIPH_ID_RESERVED49:
757 	case PERIPH_ID_RESERVED53:
758 	case PERIPH_ID_RESERVED64:
759 	case PERIPH_ID_RESERVED84:
760 	case PERIPH_ID_RESERVED85:
761 	case PERIPH_ID_RESERVED86:
762 	case PERIPH_ID_RESERVED88:
763 	case PERIPH_ID_RESERVED90:
764 	case PERIPH_ID_RESERVED92:
765 	case PERIPH_ID_RESERVED93:
766 	case PERIPH_ID_RESERVED94:
767 	case PERIPH_ID_V_RESERVED2:
768 	case PERIPH_ID_V_RESERVED4:
769 	case PERIPH_ID_V_RESERVED17:
770 	case PERIPH_ID_V_RESERVED18:
771 	case PERIPH_ID_V_RESERVED19:
772 	case PERIPH_ID_V_RESERVED20:
773 	case PERIPH_ID_V_RESERVED21:
774 	case PERIPH_ID_V_RESERVED22:
775 	case PERIPH_ID_W_RESERVED2:
776 	case PERIPH_ID_W_RESERVED3:
777 	case PERIPH_ID_W_RESERVED4:
778 	case PERIPH_ID_W_RESERVED5:
779 	case PERIPH_ID_W_RESERVED6:
780 	case PERIPH_ID_W_RESERVED7:
781 	case PERIPH_ID_W_RESERVED9:
782 	case PERIPH_ID_W_RESERVED10:
783 	case PERIPH_ID_W_RESERVED11:
784 	case PERIPH_ID_W_RESERVED12:
785 	case PERIPH_ID_W_RESERVED13:
786 	case PERIPH_ID_W_RESERVED15:
787 	case PERIPH_ID_W_RESERVED16:
788 	case PERIPH_ID_W_RESERVED17:
789 	case PERIPH_ID_W_RESERVED18:
790 	case PERIPH_ID_W_RESERVED19:
791 	case PERIPH_ID_W_RESERVED20:
792 	case PERIPH_ID_W_RESERVED23:
793 	case PERIPH_ID_W_RESERVED29:
794 	case PERIPH_ID_W_RESERVED30:
795 	case PERIPH_ID_W_RESERVED31:
796 		return PERIPH_ID_NONE;
797 	default:
798 		return clk_id;
799 	}
800 }
801 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
802 
803 void clock_early_init(void)
804 {
805 	struct clk_rst_ctlr *clkrst =
806 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
807 	struct clk_pll_info *pllinfo;
808 	u32 data;
809 
810 	tegra30_set_up_pllp();
811 
812 	/* clear IDDQ before accessing any other PLLC registers */
813 	pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
814 	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
815 	udelay(2);
816 
817 	/*
818 	 * PLLC output frequency set to 600Mhz
819 	 * PLLD output frequency set to 925Mhz
820 	 */
821 	switch (clock_get_osc_freq()) {
822 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
823 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
824 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
825 		break;
826 
827 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
828 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
829 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
830 		break;
831 
832 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
833 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
834 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
835 		break;
836 	case CLOCK_OSC_FREQ_19_2:
837 	default:
838 		/*
839 		 * These are not supported. It is too early to print a
840 		 * message and the UART likely won't work anyway due to the
841 		 * oscillator being wrong.
842 		 */
843 		break;
844 	}
845 
846 	/* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
847 	writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
848 
849 	/* PLLC_MISC: Set LOCK_ENABLE */
850 	pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
851 	setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
852 	udelay(2);
853 
854 	/* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
855 	pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
856 	data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
857 	data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
858 	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
859 	udelay(2);
860 }
861 
862 void arch_timer_init(void)
863 {
864 	struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
865 	u32 freq, val;
866 
867 	freq = clock_get_rate(CLOCK_ID_CLK_M);
868 	debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
869 
870 	/* ARM CNTFRQ */
871 	asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
872 
873 	/* Only Tegra114+ has the System Counter regs */
874 	debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
875 	writel(freq, &sysctr->cntfid0);
876 
877 	val = readl(&sysctr->cntcr);
878 	val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
879 	writel(val, &sysctr->cntcr);
880 	debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
881 }
882 
883 #define PLLE_SS_CNTL 0x68
884 #define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
885 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
886 #define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
887 #define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
888 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
889 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
890 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
891 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
892 
893 #define PLLE_BASE 0x0e8
894 #define  PLLE_BASE_ENABLE (1 << 30)
895 #define  PLLE_BASE_LOCK_OVERRIDE (1 << 29)
896 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
897 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
898 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
899 
900 #define PLLE_MISC 0x0ec
901 #define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
902 #define  PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
903 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
904 #define  PLLE_MISC_PTS (1 << 8)
905 #define  PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
906 #define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
907 
908 #define PLLE_AUX 0x48c
909 #define  PLLE_AUX_SEQ_ENABLE (1 << 24)
910 #define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
911 
912 int tegra_plle_enable(void)
913 {
914 	unsigned int m = 1, n = 200, cpcon = 13;
915 	u32 value;
916 
917 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
918 	value &= ~PLLE_BASE_LOCK_OVERRIDE;
919 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
920 
921 	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
922 	value |= PLLE_AUX_ENABLE_SWCTL;
923 	value &= ~PLLE_AUX_SEQ_ENABLE;
924 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
925 
926 	udelay(1);
927 
928 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
929 	value |= PLLE_MISC_IDDQ_SWCTL;
930 	value &= ~PLLE_MISC_IDDQ_OVERRIDE;
931 	value |= PLLE_MISC_LOCK_ENABLE;
932 	value |= PLLE_MISC_PTS;
933 	value |= PLLE_MISC_VREG_BG_CTRL(3);
934 	value |= PLLE_MISC_VREG_CTRL(2);
935 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
936 
937 	udelay(5);
938 
939 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
940 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
941 		 PLLE_SS_CNTL_BYPASS_SS;
942 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
943 
944 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
945 	value &= ~PLLE_BASE_PLDIV_CML(0xf);
946 	value &= ~PLLE_BASE_NDIV(0xff);
947 	value &= ~PLLE_BASE_MDIV(0xff);
948 	value |= PLLE_BASE_PLDIV_CML(cpcon);
949 	value |= PLLE_BASE_NDIV(n);
950 	value |= PLLE_BASE_MDIV(m);
951 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
952 
953 	udelay(1);
954 
955 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
956 	value |= PLLE_BASE_ENABLE;
957 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
958 
959 	/* wait for lock */
960 	udelay(300);
961 
962 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
963 	value &= ~PLLE_SS_CNTL_SSCINVERT;
964 	value &= ~PLLE_SS_CNTL_SSCCENTER;
965 
966 	value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
967 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
968 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
969 
970 	value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
971 	value |= PLLE_SS_CNTL_SSCINC(0x01);
972 	value |= PLLE_SS_CNTL_SSCMAX(0x25);
973 
974 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
975 
976 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
977 	value &= ~PLLE_SS_CNTL_SSCBYP;
978 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
979 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
980 
981 	udelay(1);
982 
983 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
984 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
985 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
986 
987 	udelay(1);
988 
989 	return 0;
990 }
991 
992 void clock_sor_enable_edp_clock(void)
993 {
994 	u32 *reg;
995 
996 	/* uses PLLP, has a non-standard bit layout. */
997 	reg = get_periph_source_reg(PERIPH_ID_SOR0);
998 	setbits_le32(reg, SOR0_CLK_SEL0);
999 }
1000 
1001 u32 clock_set_display_rate(u32 frequency)
1002 {
1003 	/**
1004 	 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1005 	 *           = (cf * n) >> p, where 1MHz < cf < 6MHz
1006 	 *           = ((ref / m) * n) >> p
1007 	 *
1008 	 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1009 	 * safe vco, then find best (m, n). since m has only 5 bits, we can
1010 	 * iterate all possible values.  Note Tegra 124 supports 11 bits for n,
1011 	 * but our pll_fields has only 10 bits for n.
1012 	 *
1013 	 * Note values undershoot or overshoot target output frequency may not
1014 	 * work if the values are not in "safe" range by panel specification.
1015 	 */
1016 	u32 ref = clock_get_rate(CLOCK_ID_OSC);
1017 	u32 divm, divn, divp, cpcon;
1018 	u32 cf, vco, rounded_rate = frequency;
1019 	u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1020 	const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1021 		  mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1022 		  min_cf = 1 * mhz, max_cf = 6 * mhz;
1023 	int mux_bits, divider_bits, source;
1024 
1025 	for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1026 		vco <<= 1;
1027 
1028 	if (vco < min_vco || vco > max_vco) {
1029 		printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1030 		       __func__, frequency);
1031 		return 0;
1032 	}
1033 
1034 	best_p = divp;
1035 	best_diff = vco;
1036 
1037 	for (divm = 1; divm < max_m && best_diff; divm++) {
1038 		cf = ref / divm;
1039 		if (cf < min_cf)
1040 			break;
1041 		if (cf > max_cf)
1042 			continue;
1043 
1044 		divn = vco / cf;
1045 		if (divn >= max_n)
1046 			continue;
1047 
1048 		diff = vco - divn * cf;
1049 		if (divn + 1 < max_n && diff > cf / 2) {
1050 			divn++;
1051 			diff = cf - diff;
1052 		}
1053 
1054 		if (diff >= best_diff)
1055 			continue;
1056 
1057 		best_diff = diff;
1058 		best_m = divm;
1059 		best_n = divn;
1060 	}
1061 
1062 	if (best_n < 50)
1063 		cpcon = 2;
1064 	else if (best_n < 300)
1065 		cpcon = 3;
1066 	else if (best_n < 600)
1067 		cpcon = 8;
1068 	else
1069 		cpcon = 12;
1070 
1071 	if (best_diff) {
1072 		printf("%s: Failed to match output frequency %u, best difference is %u\n",
1073 		       __func__, frequency, best_diff);
1074 		rounded_rate = (ref / best_m * best_n) >> best_p;
1075 	}
1076 
1077 	debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1078 	      __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1079 
1080 	source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1081 					 &mux_bits, &divider_bits);
1082 	clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1083 	clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1084 
1085 	return rounded_rate;
1086 }
1087 
1088 void clock_set_up_plldp(void)
1089 {
1090 	struct clk_rst_ctlr *clkrst =
1091 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1092 	u32 value;
1093 
1094 	value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1095 	writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1096 	clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1097 	writel(value, &clkrst->crc_plldp_ss_cfg);
1098 }
1099 
1100 struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1101 {
1102 	struct clk_rst_ctlr *clkrst =
1103 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1104 
1105 	if (clkid == CLOCK_ID_DP)
1106 		return &clkrst->plldp;
1107 
1108 	return NULL;
1109 }
1110