xref: /openbmc/u-boot/arch/arm/mach-tegra/tegra124/clock.c (revision 382bee57f19b4454e2015bc19a010bc2d0ab9337)
1 /*
2  * (C) Copyright 2013-2015
3  * NVIDIA Corporation <www.nvidia.com>
4  *
5  * SPDX-License-Identifier:     GPL-2.0+
6  */
7 
8 /* Tegra124 Clock control functions */
9 
10 #include <common.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/sysctr.h>
14 #include <asm/arch/tegra.h>
15 #include <asm/arch-tegra/clk_rst.h>
16 #include <asm/arch-tegra/timer.h>
17 #include <div64.h>
18 #include <fdtdec.h>
19 
20 /*
21  * Clock types that we can use as a source. The Tegra124 has muxes for the
22  * peripheral clocks, and in most cases there are four options for the clock
23  * source. This gives us a clock 'type' and exploits what commonality exists
24  * in the device.
25  *
26  * Letters are obvious, except for T which means CLK_M, and S which means the
27  * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28  * datasheet) and PLL_M are different things. The former is the basic
29  * clock supplied to the SOC from an external oscillator. The latter is the
30  * memory clock PLL.
31  *
32  * See definitions in clock_id in the header file.
33  */
34 enum clock_type_id {
35 	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
36 	CLOCK_TYPE_MCPA,	/* and so on */
37 	CLOCK_TYPE_MCPT,
38 	CLOCK_TYPE_PCM,
39 	CLOCK_TYPE_PCMT,
40 	CLOCK_TYPE_PDCT,
41 	CLOCK_TYPE_ACPT,
42 	CLOCK_TYPE_ASPTE,
43 	CLOCK_TYPE_PMDACD2T,
44 	CLOCK_TYPE_PCST,
45 	CLOCK_TYPE_DP,
46 
47 	CLOCK_TYPE_PC2CC3M,
48 	CLOCK_TYPE_PC2CC3S_T,
49 	CLOCK_TYPE_PC2CC3M_T,
50 	CLOCK_TYPE_PC2CC3M_T16,	/* PC2CC3M_T, but w/16-bit divisor (I2C) */
51 	CLOCK_TYPE_MC2CC3P_A,
52 	CLOCK_TYPE_M,
53 	CLOCK_TYPE_MCPTM2C2C3,
54 	CLOCK_TYPE_PC2CC3T_S,
55 	CLOCK_TYPE_AC2CC3P_TS2,
56 
57 	CLOCK_TYPE_COUNT,
58 	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
59 };
60 
61 enum {
62 	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
63 };
64 
65 /*
66  * Clock source mux for each clock type. This just converts our enum into
67  * a list of mux sources for use by the code.
68  *
69  * Note:
70  *  The extra column in each clock source array is used to store the mask
71  *  bits in its register for the source.
72  */
73 #define CLK(x) CLOCK_ID_ ## x
74 static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
75 	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC),
76 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
77 		MASK_BITS_31_30},
78 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO),
79 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
80 		MASK_BITS_31_30},
81 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
82 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
83 		MASK_BITS_31_30},
84 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE),
85 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
86 		MASK_BITS_31_30},
87 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC),
88 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
89 		MASK_BITS_31_30},
90 	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC),
91 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
92 		MASK_BITS_31_30},
93 	{ CLK(AUDIO),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
94 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
95 		MASK_BITS_31_30},
96 	{ CLK(AUDIO),	CLK(SFROM32KHZ),	CLK(PERIPH),	CLK(OSC),
97 		CLK(EPCI),	CLK(NONE),	CLK(NONE),	CLK(NONE),
98 		MASK_BITS_31_29},
99 	{ CLK(PERIPH),	CLK(MEMORY),	CLK(DISPLAY),	CLK(AUDIO),
100 		CLK(CGENERAL),	CLK(DISPLAY2),	CLK(OSC),	CLK(NONE),
101 		MASK_BITS_31_29},
102 	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(SFROM32KHZ),	CLK(OSC),
103 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
104 		MASK_BITS_31_28},
105 	/* CLOCK_TYPE_DP */
106 	{ CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
107 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
108 		MASK_BITS_31_28},
109 
110 	/* Additional clock types on Tegra114+ */
111 	/* CLOCK_TYPE_PC2CC3M */
112 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
113 		CLK(MEMORY),	CLK(NONE),	CLK(NONE),	CLK(NONE),
114 		MASK_BITS_31_29},
115 	/* CLOCK_TYPE_PC2CC3S_T */
116 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
117 		CLK(SFROM32KHZ), CLK(NONE),	CLK(OSC),	CLK(NONE),
118 		MASK_BITS_31_29},
119 	/* CLOCK_TYPE_PC2CC3M_T */
120 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
121 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
122 		MASK_BITS_31_29},
123 	/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
124 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
125 		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
126 		MASK_BITS_31_29},
127 	/* CLOCK_TYPE_MC2CC3P_A */
128 	{ CLK(MEMORY),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
129 		CLK(PERIPH),	CLK(NONE),	CLK(AUDIO),	CLK(NONE),
130 		MASK_BITS_31_29},
131 	/* CLOCK_TYPE_M */
132 	{ CLK(MEMORY),		CLK(NONE),	CLK(NONE),	CLK(NONE),
133 		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
134 		MASK_BITS_31_30},
135 	/* CLOCK_TYPE_MCPTM2C2C3 */
136 	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
137 		CLK(MEMORY2),	CLK(CGENERAL2),	CLK(CGENERAL3),	CLK(NONE),
138 		MASK_BITS_31_29},
139 	/* CLOCK_TYPE_PC2CC3T_S */
140 	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
141 		CLK(OSC),	CLK(NONE),	CLK(SFROM32KHZ), CLK(NONE),
142 		MASK_BITS_31_29},
143 	/* CLOCK_TYPE_AC2CC3P_TS2 */
144 	{ CLK(AUDIO),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
145 		CLK(PERIPH),	CLK(NONE),	CLK(OSC),	CLK(SRC2),
146 		MASK_BITS_31_29},
147 };
148 
149 /*
150  * Clock type for each peripheral clock source. We put the name in each
151  * record just so it is easy to match things up
152  */
153 #define TYPE(name, type) type
154 static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
155 	/* 0x00 */
156 	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
157 	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
158 	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
159 	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PC2CC3M),
160 	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PC2CC3S_T),
161 	TYPE(PERIPHC_05h,	CLOCK_TYPE_NONE),
162 	TYPE(PERIPHC_SBC2,	CLOCK_TYPE_PC2CC3M_T),
163 	TYPE(PERIPHC_SBC3,	CLOCK_TYPE_PC2CC3M_T),
164 
165 	/* 0x08 */
166 	TYPE(PERIPHC_08h,	CLOCK_TYPE_NONE),
167 	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PC2CC3M_T16),
168 	TYPE(PERIPHC_I2C5,	CLOCK_TYPE_PC2CC3M_T16),
169 	TYPE(PERIPHC_0bh,	CLOCK_TYPE_NONE),
170 	TYPE(PERIPHC_0ch,	CLOCK_TYPE_NONE),
171 	TYPE(PERIPHC_SBC1,	CLOCK_TYPE_PC2CC3M_T),
172 	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PMDACD2T),
173 	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PMDACD2T),
174 
175 	/* 0x10 */
176 	TYPE(PERIPHC_10h,	CLOCK_TYPE_NONE),
177 	TYPE(PERIPHC_11h,	CLOCK_TYPE_NONE),
178 	TYPE(PERIPHC_VI,	CLOCK_TYPE_MC2CC3P_A),
179 	TYPE(PERIPHC_13h,	CLOCK_TYPE_NONE),
180 	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PC2CC3M_T),
181 	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PC2CC3M_T),
182 	TYPE(PERIPHC_16h,	CLOCK_TYPE_NONE),
183 	TYPE(PERIPHC_17h,	CLOCK_TYPE_NONE),
184 
185 	/* 0x18 */
186 	TYPE(PERIPHC_18h,	CLOCK_TYPE_NONE),
187 	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PC2CC3M_T),
188 	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PC2CC3M_T),
189 	TYPE(PERIPHC_1Bh,	CLOCK_TYPE_NONE),
190 	TYPE(PERIPHC_1Ch,	CLOCK_TYPE_NONE),
191 	TYPE(PERIPHC_HSI,	CLOCK_TYPE_PC2CC3M_T),
192 	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PC2CC3M_T),
193 	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PC2CC3M_T),
194 
195 	/* 0x20 */
196 	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MC2CC3P_A),
197 	TYPE(PERIPHC_21h,	CLOCK_TYPE_NONE),
198 	TYPE(PERIPHC_22h,	CLOCK_TYPE_NONE),
199 	TYPE(PERIPHC_HDMI,	CLOCK_TYPE_PMDACD2T),
200 	TYPE(PERIPHC_24h,	CLOCK_TYPE_NONE),
201 	TYPE(PERIPHC_25h,	CLOCK_TYPE_NONE),
202 	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PC2CC3M_T16),
203 	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPTM2C2C3),
204 
205 	/* 0x28 */
206 	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PC2CC3M_T),
207 	TYPE(PERIPHC_29h,	CLOCK_TYPE_NONE),
208 	TYPE(PERIPHC_VI_SENSOR,	CLOCK_TYPE_MC2CC3P_A),
209 	TYPE(PERIPHC_2bh,	CLOCK_TYPE_NONE),
210 	TYPE(PERIPHC_2ch,	CLOCK_TYPE_NONE),
211 	TYPE(PERIPHC_SBC4,	CLOCK_TYPE_PC2CC3M_T),
212 	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PC2CC3M_T16),
213 	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PC2CC3M_T),
214 
215 	/* 0x30 */
216 	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PC2CC3M_T),
217 	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PC2CC3M_T),
218 	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PC2CC3M_T),
219 	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PC2CC3M_T),
220 	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PC2CC3M_T),
221 	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PC2CC3M_T),
222 	TYPE(PERIPHC_I2S0,	CLOCK_TYPE_AXPT),
223 	TYPE(PERIPHC_DTV,	CLOCK_TYPE_NONE),
224 
225 	/* 0x38 */
226 	TYPE(PERIPHC_38h,	CLOCK_TYPE_NONE),
227 	TYPE(PERIPHC_39h,	CLOCK_TYPE_NONE),
228 	TYPE(PERIPHC_3ah,	CLOCK_TYPE_NONE),
229 	TYPE(PERIPHC_3bh,	CLOCK_TYPE_NONE),
230 	TYPE(PERIPHC_MSENC,	CLOCK_TYPE_MC2CC3P_A),
231 	TYPE(PERIPHC_TSEC,	CLOCK_TYPE_PC2CC3M_T),
232 	TYPE(PERIPHC_3eh,	CLOCK_TYPE_NONE),
233 	TYPE(PERIPHC_OSC,	CLOCK_TYPE_NONE),
234 
235 	/* 0x40 */
236 	TYPE(PERIPHC_40h,	CLOCK_TYPE_NONE),	/* start with 0x3b0 */
237 	TYPE(PERIPHC_MSELECT,	CLOCK_TYPE_PC2CC3M_T),
238 	TYPE(PERIPHC_TSENSOR,	CLOCK_TYPE_PC2CC3T_S),
239 	TYPE(PERIPHC_I2S3,	CLOCK_TYPE_AXPT),
240 	TYPE(PERIPHC_I2S4,	CLOCK_TYPE_AXPT),
241 	TYPE(PERIPHC_I2C4,	CLOCK_TYPE_PC2CC3M_T16),
242 	TYPE(PERIPHC_SBC5,	CLOCK_TYPE_PC2CC3M_T),
243 	TYPE(PERIPHC_SBC6,	CLOCK_TYPE_PC2CC3M_T),
244 
245 	/* 0x48 */
246 	TYPE(PERIPHC_AUDIO,	CLOCK_TYPE_AC2CC3P_TS2),
247 	TYPE(PERIPHC_49h,	CLOCK_TYPE_NONE),
248 	TYPE(PERIPHC_DAM0,	CLOCK_TYPE_AC2CC3P_TS2),
249 	TYPE(PERIPHC_DAM1,	CLOCK_TYPE_AC2CC3P_TS2),
250 	TYPE(PERIPHC_DAM2,	CLOCK_TYPE_AC2CC3P_TS2),
251 	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
252 	TYPE(PERIPHC_ACTMON,	CLOCK_TYPE_PC2CC3S_T),
253 	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
254 
255 	/* 0x50 */
256 	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
257 	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
258 	TYPE(PERIPHC_52h,	CLOCK_TYPE_NONE),
259 	TYPE(PERIPHC_I2CSLOW,	CLOCK_TYPE_PC2CC3S_T),
260 	TYPE(PERIPHC_SYS,	CLOCK_TYPE_NONE),
261 	TYPE(PERIPHC_55h,	CLOCK_TYPE_NONE),
262 	TYPE(PERIPHC_56h,	CLOCK_TYPE_NONE),
263 	TYPE(PERIPHC_57h,	CLOCK_TYPE_NONE),
264 
265 	/* 0x58 */
266 	TYPE(PERIPHC_58h,	CLOCK_TYPE_NONE),
267 	TYPE(PERIPHC_SOR,	CLOCK_TYPE_NONE),
268 	TYPE(PERIPHC_5ah,	CLOCK_TYPE_NONE),
269 	TYPE(PERIPHC_5bh,	CLOCK_TYPE_NONE),
270 	TYPE(PERIPHC_SATAOOB,	CLOCK_TYPE_PCMT),
271 	TYPE(PERIPHC_SATA,	CLOCK_TYPE_PCMT),
272 	TYPE(PERIPHC_HDA,	CLOCK_TYPE_PC2CC3M_T),
273 	TYPE(PERIPHC_5fh,	CLOCK_TYPE_NONE),
274 
275 	/* 0x60 */
276 	TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
277 	TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
278 	TYPE(PERIPHC_XUSB_FS,	CLOCK_TYPE_NONE),
279 	TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
280 	TYPE(PERIPHC_XUSB_SS,	CLOCK_TYPE_NONE),
281 	TYPE(PERIPHC_CILAB,	CLOCK_TYPE_NONE),
282 	TYPE(PERIPHC_CILCD,	CLOCK_TYPE_NONE),
283 	TYPE(PERIPHC_CILE,	CLOCK_TYPE_NONE),
284 
285 	/* 0x68 */
286 	TYPE(PERIPHC_DSIA_LP,	CLOCK_TYPE_NONE),
287 	TYPE(PERIPHC_DSIB_LP,	CLOCK_TYPE_NONE),
288 	TYPE(PERIPHC_ENTROPY,	CLOCK_TYPE_NONE),
289 	TYPE(PERIPHC_DVFS_REF,	CLOCK_TYPE_NONE),
290 	TYPE(PERIPHC_DVFS_SOC,	CLOCK_TYPE_NONE),
291 	TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
292 	TYPE(PERIPHC_ADX0,	CLOCK_TYPE_NONE),
293 	TYPE(PERIPHC_AMX0,	CLOCK_TYPE_NONE),
294 
295 	/* 0x70 */
296 	TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
297 	TYPE(PERIPHC_SOC_THERM,	CLOCK_TYPE_NONE),
298 	TYPE(PERIPHC_72h,	CLOCK_TYPE_NONE),
299 	TYPE(PERIPHC_73h,	CLOCK_TYPE_NONE),
300 	TYPE(PERIPHC_74h,	CLOCK_TYPE_NONE),
301 	TYPE(PERIPHC_75h,	CLOCK_TYPE_NONE),
302 	TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
303 	TYPE(PERIPHC_I2C6,	CLOCK_TYPE_PC2CC3M_T16),
304 
305 	/* 0x78 */
306 	TYPE(PERIPHC_78h,	CLOCK_TYPE_NONE),
307 	TYPE(PERIPHC_EMC_DLL,	CLOCK_TYPE_MCPTM2C2C3),
308 	TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
309 	TYPE(PERIPHC_CLK72MHZ,	CLOCK_TYPE_NONE),
310 	TYPE(PERIPHC_ADX1,	CLOCK_TYPE_AC2CC3P_TS2),
311 	TYPE(PERIPHC_AMX1,	CLOCK_TYPE_AC2CC3P_TS2),
312 	TYPE(PERIPHC_VIC,	CLOCK_TYPE_NONE),
313 	TYPE(PERIPHC_7Fh,	CLOCK_TYPE_NONE),
314 };
315 
316 /*
317  * This array translates a periph_id to a periphc_internal_id
318  *
319  * Not present/matched up:
320  *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
321  *	SPDIF - which is both 0x08 and 0x0c
322  *
323  */
324 #define NONE(name) (-1)
325 #define OFFSET(name, value) PERIPHC_ ## name
326 static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
327 	/* Low word: 31:0 */
328 	NONE(CPU),
329 	NONE(COP),
330 	NONE(TRIGSYS),
331 	NONE(ISPB),
332 	NONE(RESERVED4),
333 	NONE(TMR),
334 	PERIPHC_UART1,
335 	PERIPHC_UART2,	/* and vfir 0x68 */
336 
337 	/* 8 */
338 	NONE(GPIO),
339 	PERIPHC_SDMMC2,
340 	PERIPHC_SPDIF_IN,
341 	PERIPHC_I2S1,
342 	PERIPHC_I2C1,
343 	NONE(RESERVED13),
344 	PERIPHC_SDMMC1,
345 	PERIPHC_SDMMC4,
346 
347 	/* 16 */
348 	NONE(TCW),
349 	PERIPHC_PWM,
350 	PERIPHC_I2S2,
351 	NONE(RESERVED19),
352 	PERIPHC_VI,
353 	NONE(RESERVED21),
354 	NONE(USBD),
355 	NONE(ISP),
356 
357 	/* 24 */
358 	NONE(RESERVED24),
359 	NONE(RESERVED25),
360 	PERIPHC_DISP2,
361 	PERIPHC_DISP1,
362 	PERIPHC_HOST1X,
363 	NONE(VCP),
364 	PERIPHC_I2S0,
365 	NONE(CACHE2),
366 
367 	/* Middle word: 63:32 */
368 	NONE(MEM),
369 	NONE(AHBDMA),
370 	NONE(APBDMA),
371 	NONE(RESERVED35),
372 	NONE(RESERVED36),
373 	NONE(STAT_MON),
374 	NONE(RESERVED38),
375 	NONE(FUSE),
376 
377 	/* 40 */
378 	NONE(KFUSE),
379 	PERIPHC_SBC1,		/* SBCx = SPIx */
380 	PERIPHC_NOR,
381 	NONE(RESERVED43),
382 	PERIPHC_SBC2,
383 	NONE(XIO),
384 	PERIPHC_SBC3,
385 	PERIPHC_I2C5,
386 
387 	/* 48 */
388 	NONE(DSI),
389 	NONE(RESERVED49),
390 	PERIPHC_HSI,
391 	PERIPHC_HDMI,
392 	NONE(CSI),
393 	NONE(RESERVED53),
394 	PERIPHC_I2C2,
395 	PERIPHC_UART3,
396 
397 	/* 56 */
398 	NONE(MIPI_CAL),
399 	PERIPHC_EMC,
400 	NONE(USB2),
401 	NONE(USB3),
402 	NONE(RESERVED60),
403 	PERIPHC_VDE,
404 	NONE(BSEA),
405 	NONE(BSEV),
406 
407 	/* Upper word 95:64 */
408 	NONE(RESERVED64),
409 	PERIPHC_UART4,
410 	PERIPHC_UART5,
411 	PERIPHC_I2C3,
412 	PERIPHC_SBC4,
413 	PERIPHC_SDMMC3,
414 	NONE(PCIE),
415 	PERIPHC_OWR,
416 
417 	/* 72 */
418 	NONE(AFI),
419 	PERIPHC_CSITE,
420 	NONE(PCIEXCLK),
421 	NONE(AVPUCQ),
422 	NONE(LA),
423 	NONE(TRACECLKIN),
424 	NONE(SOC_THERM),
425 	NONE(DTV),
426 
427 	/* 80 */
428 	NONE(RESERVED80),
429 	PERIPHC_I2CSLOW,
430 	NONE(DSIB),
431 	PERIPHC_TSEC,
432 	NONE(RESERVED84),
433 	NONE(RESERVED85),
434 	NONE(RESERVED86),
435 	NONE(EMUCIF),
436 
437 	/* 88 */
438 	NONE(RESERVED88),
439 	NONE(XUSB_HOST),
440 	NONE(RESERVED90),
441 	PERIPHC_MSENC,
442 	NONE(RESERVED92),
443 	NONE(RESERVED93),
444 	NONE(RESERVED94),
445 	NONE(XUSB_DEV),
446 
447 	/* V word: 31:0 */
448 	NONE(CPUG),
449 	NONE(CPULP),
450 	NONE(V_RESERVED2),
451 	PERIPHC_MSELECT,
452 	NONE(V_RESERVED4),
453 	PERIPHC_I2S3,
454 	PERIPHC_I2S4,
455 	PERIPHC_I2C4,
456 
457 	/* 104 */
458 	PERIPHC_SBC5,
459 	PERIPHC_SBC6,
460 	PERIPHC_AUDIO,
461 	NONE(APBIF),
462 	PERIPHC_DAM0,
463 	PERIPHC_DAM1,
464 	PERIPHC_DAM2,
465 	PERIPHC_HDA2CODEC2X,
466 
467 	/* 112 */
468 	NONE(ATOMICS),
469 	NONE(V_RESERVED17),
470 	NONE(V_RESERVED18),
471 	NONE(V_RESERVED19),
472 	NONE(V_RESERVED20),
473 	NONE(V_RESERVED21),
474 	NONE(V_RESERVED22),
475 	PERIPHC_ACTMON,
476 
477 	/* 120 */
478 	PERIPHC_EXTPERIPH1,
479 	NONE(EXTPERIPH2),
480 	NONE(EXTPERIPH3),
481 	NONE(OOB),
482 	PERIPHC_SATA,
483 	PERIPHC_HDA,
484 	NONE(TZRAM),
485 	NONE(SE),
486 
487 	/* W word: 31:0 */
488 	NONE(HDA2HDMICODEC),
489 	NONE(SATACOLD),
490 	NONE(W_RESERVED2),
491 	NONE(W_RESERVED3),
492 	NONE(W_RESERVED4),
493 	NONE(W_RESERVED5),
494 	NONE(W_RESERVED6),
495 	NONE(W_RESERVED7),
496 
497 	/* 136 */
498 	NONE(CEC),
499 	NONE(W_RESERVED9),
500 	NONE(W_RESERVED10),
501 	NONE(W_RESERVED11),
502 	NONE(W_RESERVED12),
503 	NONE(W_RESERVED13),
504 	NONE(XUSB_PADCTL),
505 	NONE(W_RESERVED15),
506 
507 	/* 144 */
508 	NONE(W_RESERVED16),
509 	NONE(W_RESERVED17),
510 	NONE(W_RESERVED18),
511 	NONE(W_RESERVED19),
512 	NONE(W_RESERVED20),
513 	NONE(ENTROPY),
514 	NONE(DDS),
515 	NONE(W_RESERVED23),
516 
517 	/* 152 */
518 	NONE(DP2),
519 	NONE(AMX0),
520 	NONE(ADX0),
521 	NONE(DVFS),
522 	NONE(XUSB_SS),
523 	NONE(W_RESERVED29),
524 	NONE(W_RESERVED30),
525 	NONE(W_RESERVED31),
526 
527 	/* X word: 31:0 */
528 	NONE(SPARE),
529 	NONE(X_RESERVED1),
530 	NONE(X_RESERVED2),
531 	NONE(X_RESERVED3),
532 	NONE(CAM_MCLK),
533 	NONE(CAM_MCLK2),
534 	PERIPHC_I2C6,
535 	NONE(X_RESERVED7),
536 
537 	/* 168 */
538 	NONE(X_RESERVED8),
539 	NONE(X_RESERVED9),
540 	NONE(X_RESERVED10),
541 	NONE(VIM2_CLK),
542 	NONE(X_RESERVED12),
543 	NONE(X_RESERVED13),
544 	NONE(EMC_DLL),
545 	NONE(X_RESERVED15),
546 
547 	/* 176 */
548 	NONE(HDMI_AUDIO),
549 	NONE(CLK72MHZ),
550 	NONE(VIC),
551 	NONE(X_RESERVED19),
552 	NONE(ADX1),
553 	NONE(DPAUX),
554 	PERIPHC_SOR,
555 	NONE(X_RESERVED23),
556 
557 	/* 184 */
558 	NONE(GPU),
559 	NONE(AMX1),
560 	NONE(X_RESERVED26),
561 	NONE(X_RESERVED27),
562 	NONE(X_RESERVED28),
563 	NONE(X_RESERVED29),
564 	NONE(X_RESERVED30),
565 	NONE(X_RESERVED31),
566 };
567 
568 /*
569  * PLL divider shift/mask tables for all PLL IDs.
570  */
571 struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
572 	/*
573 	 * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
574 	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
575 	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
576 	 */
577 
578 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
579 	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
580 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
581 	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
582 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
583 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
584 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
585 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
586 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
587 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
588 	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
589 	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
590 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
591 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
592 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
593 	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
594 	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
595 	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS (RESERVED) */
596 	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20,  .p_mask = 0xF,
597 	  .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLDP */
598 };
599 
600 /*
601  * Get the oscillator frequency, from the corresponding hardware configuration
602  * field. Note that Tegra30+ support 3 new higher freqs, but we map back
603  * to the old T20 freqs. Support for the higher oscillators is TBD.
604  */
605 enum clock_osc_freq clock_get_osc_freq(void)
606 {
607 	struct clk_rst_ctlr *clkrst =
608 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
609 	u32 reg;
610 
611 	reg = readl(&clkrst->crc_osc_ctrl);
612 	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
613 
614 	if (reg & 1)				/* one of the newer freqs */
615 		printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
616 
617 	return reg >> 2;	/* Map to most common (T20) freqs */
618 }
619 
620 /* Returns a pointer to the clock source register for a peripheral */
621 u32 *get_periph_source_reg(enum periph_id periph_id)
622 {
623 	struct clk_rst_ctlr *clkrst =
624 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
625 	enum periphc_internal_id internal_id;
626 
627 	/* Coresight is a special case */
628 	if (periph_id == PERIPH_ID_CSI)
629 		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
630 
631 	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
632 	internal_id = periph_id_to_internal_id[periph_id];
633 	assert(internal_id != -1);
634 	if (internal_id >= PERIPHC_X_FIRST) {
635 		internal_id -= PERIPHC_X_FIRST;
636 		return &clkrst->crc_clk_src_x[internal_id];
637 	} else if (internal_id >= PERIPHC_VW_FIRST) {
638 		internal_id -= PERIPHC_VW_FIRST;
639 		return &clkrst->crc_clk_src_vw[internal_id];
640 	} else {
641 		return &clkrst->crc_clk_src[internal_id];
642 	}
643 }
644 
645 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
646 			  int *divider_bits, int *type)
647 {
648 	enum periphc_internal_id internal_id;
649 
650 	if (!clock_periph_id_isvalid(periph_id))
651 		return -1;
652 
653 	internal_id = periph_id_to_internal_id[periph_id];
654 	if (!periphc_internal_id_isvalid(internal_id))
655 		return -1;
656 
657 	*type = clock_periph_type[internal_id];
658 	if (!clock_type_id_isvalid(*type))
659 		return -1;
660 
661 	*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
662 
663 	if (*type == CLOCK_TYPE_PC2CC3M_T16)
664 		*divider_bits = 16;
665 	else
666 		*divider_bits = 8;
667 
668 	return 0;
669 }
670 
671 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
672 {
673 	enum periphc_internal_id internal_id;
674 	int type;
675 
676 	if (!clock_periph_id_isvalid(periph_id))
677 		return CLOCK_ID_NONE;
678 
679 	internal_id = periph_id_to_internal_id[periph_id];
680 	if (!periphc_internal_id_isvalid(internal_id))
681 		return CLOCK_ID_NONE;
682 
683 	type = clock_periph_type[internal_id];
684 	if (!clock_type_id_isvalid(type))
685 		return CLOCK_ID_NONE;
686 
687 	return clock_source[type][source];
688 }
689 
690 /**
691  * Given a peripheral ID and the required source clock, this returns which
692  * value should be programmed into the source mux for that peripheral.
693  *
694  * There is special code here to handle the one source type with 5 sources.
695  *
696  * @param periph_id	peripheral to start
697  * @param source	PLL id of required parent clock
698  * @param mux_bits	Set to number of bits in mux register: 2 or 4
699  * @param divider_bits Set to number of divider bits (8 or 16)
700  * @return mux value (0-4, or -1 if not found)
701  */
702 int get_periph_clock_source(enum periph_id periph_id,
703 	enum clock_id parent, int *mux_bits, int *divider_bits)
704 {
705 	enum clock_type_id type;
706 	int mux, err;
707 
708 	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
709 	assert(!err);
710 
711 	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
712 		if (clock_source[type][mux] == parent)
713 			return mux;
714 
715 	/* if we get here, either us or the caller has made a mistake */
716 	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
717 	       parent);
718 	return -1;
719 }
720 
721 void clock_set_enable(enum periph_id periph_id, int enable)
722 {
723 	struct clk_rst_ctlr *clkrst =
724 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
725 	u32 *clk;
726 	u32 reg;
727 
728 	/* Enable/disable the clock to this peripheral */
729 	assert(clock_periph_id_isvalid(periph_id));
730 	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
731 		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
732 	else if ((int)periph_id < PERIPH_ID_X_FIRST)
733 		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
734 	else
735 		clk = &clkrst->crc_clk_out_enb_x;
736 	reg = readl(clk);
737 	if (enable)
738 		reg |= PERIPH_MASK(periph_id);
739 	else
740 		reg &= ~PERIPH_MASK(periph_id);
741 	writel(reg, clk);
742 }
743 
744 void reset_set_enable(enum periph_id periph_id, int enable)
745 {
746 	struct clk_rst_ctlr *clkrst =
747 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
748 	u32 *reset;
749 	u32 reg;
750 
751 	/* Enable/disable reset to the peripheral */
752 	assert(clock_periph_id_isvalid(periph_id));
753 	if (periph_id < PERIPH_ID_VW_FIRST)
754 		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
755 	else if ((int)periph_id < PERIPH_ID_X_FIRST)
756 		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
757 	else
758 		reset = &clkrst->crc_rst_devices_x;
759 	reg = readl(reset);
760 	if (enable)
761 		reg |= PERIPH_MASK(periph_id);
762 	else
763 		reg &= ~PERIPH_MASK(periph_id);
764 	writel(reg, reset);
765 }
766 
767 #if CONFIG_IS_ENABLED(OF_CONTROL)
768 /*
769  * Convert a device tree clock ID to our peripheral ID. They are mostly
770  * the same but we are very cautious so we check that a valid clock ID is
771  * provided.
772  *
773  * @param clk_id    Clock ID according to tegra124 device tree binding
774  * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
775  */
776 enum periph_id clk_id_to_periph_id(int clk_id)
777 {
778 	if (clk_id > PERIPH_ID_COUNT)
779 		return PERIPH_ID_NONE;
780 
781 	switch (clk_id) {
782 	case PERIPH_ID_RESERVED4:
783 	case PERIPH_ID_RESERVED25:
784 	case PERIPH_ID_RESERVED35:
785 	case PERIPH_ID_RESERVED36:
786 	case PERIPH_ID_RESERVED38:
787 	case PERIPH_ID_RESERVED43:
788 	case PERIPH_ID_RESERVED49:
789 	case PERIPH_ID_RESERVED53:
790 	case PERIPH_ID_RESERVED64:
791 	case PERIPH_ID_RESERVED84:
792 	case PERIPH_ID_RESERVED85:
793 	case PERIPH_ID_RESERVED86:
794 	case PERIPH_ID_RESERVED88:
795 	case PERIPH_ID_RESERVED90:
796 	case PERIPH_ID_RESERVED92:
797 	case PERIPH_ID_RESERVED93:
798 	case PERIPH_ID_RESERVED94:
799 	case PERIPH_ID_V_RESERVED2:
800 	case PERIPH_ID_V_RESERVED4:
801 	case PERIPH_ID_V_RESERVED17:
802 	case PERIPH_ID_V_RESERVED18:
803 	case PERIPH_ID_V_RESERVED19:
804 	case PERIPH_ID_V_RESERVED20:
805 	case PERIPH_ID_V_RESERVED21:
806 	case PERIPH_ID_V_RESERVED22:
807 	case PERIPH_ID_W_RESERVED2:
808 	case PERIPH_ID_W_RESERVED3:
809 	case PERIPH_ID_W_RESERVED4:
810 	case PERIPH_ID_W_RESERVED5:
811 	case PERIPH_ID_W_RESERVED6:
812 	case PERIPH_ID_W_RESERVED7:
813 	case PERIPH_ID_W_RESERVED9:
814 	case PERIPH_ID_W_RESERVED10:
815 	case PERIPH_ID_W_RESERVED11:
816 	case PERIPH_ID_W_RESERVED12:
817 	case PERIPH_ID_W_RESERVED13:
818 	case PERIPH_ID_W_RESERVED15:
819 	case PERIPH_ID_W_RESERVED16:
820 	case PERIPH_ID_W_RESERVED17:
821 	case PERIPH_ID_W_RESERVED18:
822 	case PERIPH_ID_W_RESERVED19:
823 	case PERIPH_ID_W_RESERVED20:
824 	case PERIPH_ID_W_RESERVED23:
825 	case PERIPH_ID_W_RESERVED29:
826 	case PERIPH_ID_W_RESERVED30:
827 	case PERIPH_ID_W_RESERVED31:
828 		return PERIPH_ID_NONE;
829 	default:
830 		return clk_id;
831 	}
832 }
833 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
834 
835 void clock_early_init(void)
836 {
837 	struct clk_rst_ctlr *clkrst =
838 		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
839 	struct clk_pll_info *pllinfo;
840 	u32 data;
841 
842 	tegra30_set_up_pllp();
843 
844 	/* clear IDDQ before accessing any other PLLC registers */
845 	pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
846 	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
847 	udelay(2);
848 
849 	/*
850 	 * PLLC output frequency set to 600Mhz
851 	 * PLLD output frequency set to 925Mhz
852 	 */
853 	switch (clock_get_osc_freq()) {
854 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
855 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
856 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
857 		break;
858 
859 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
860 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
861 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
862 		break;
863 
864 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
865 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
866 		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
867 		break;
868 	case CLOCK_OSC_FREQ_19_2:
869 	default:
870 		/*
871 		 * These are not supported. It is too early to print a
872 		 * message and the UART likely won't work anyway due to the
873 		 * oscillator being wrong.
874 		 */
875 		break;
876 	}
877 
878 	/* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
879 	writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
880 
881 	/* PLLC_MISC: Set LOCK_ENABLE */
882 	pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
883 	setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
884 	udelay(2);
885 
886 	/* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
887 	pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
888 	data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
889 	data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
890 	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
891 	udelay(2);
892 }
893 
894 /*
895  * clock_early_init_done - Check if clock_early_init() has been called
896  *
897  * Check a register that we set up to see if clock_early_init() has already
898  * been called.
899  *
900  * @return true if clock_early_init() was called, false if not
901  */
902 bool clock_early_init_done(void)
903 {
904 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
905 	u32 val;
906 
907 	val = readl(&clkrst->crc_sclk_brst_pol);
908 
909 	return val == 0x20002222;
910 }
911 
912 void arch_timer_init(void)
913 {
914 	struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
915 	u32 freq, val;
916 
917 	freq = clock_get_rate(CLOCK_ID_CLK_M);
918 	debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
919 
920 	/* ARM CNTFRQ */
921 	asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
922 
923 	/* Only Tegra114+ has the System Counter regs */
924 	debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
925 	writel(freq, &sysctr->cntfid0);
926 
927 	val = readl(&sysctr->cntcr);
928 	val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
929 	writel(val, &sysctr->cntcr);
930 	debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
931 }
932 
933 #define PLLE_SS_CNTL 0x68
934 #define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
935 #define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
936 #define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
937 #define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
938 #define  PLLE_SS_CNTL_SSCBYP (1 << 12)
939 #define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
940 #define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
941 #define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
942 
943 #define PLLE_BASE 0x0e8
944 #define  PLLE_BASE_ENABLE (1 << 30)
945 #define  PLLE_BASE_LOCK_OVERRIDE (1 << 29)
946 #define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
947 #define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
948 #define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
949 
950 #define PLLE_MISC 0x0ec
951 #define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
952 #define  PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
953 #define  PLLE_MISC_LOCK_ENABLE (1 << 9)
954 #define  PLLE_MISC_PTS (1 << 8)
955 #define  PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
956 #define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
957 
958 #define PLLE_AUX 0x48c
959 #define  PLLE_AUX_SEQ_ENABLE (1 << 24)
960 #define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
961 
962 int tegra_plle_enable(void)
963 {
964 	unsigned int m = 1, n = 200, cpcon = 13;
965 	u32 value;
966 
967 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
968 	value &= ~PLLE_BASE_LOCK_OVERRIDE;
969 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
970 
971 	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
972 	value |= PLLE_AUX_ENABLE_SWCTL;
973 	value &= ~PLLE_AUX_SEQ_ENABLE;
974 	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
975 
976 	udelay(1);
977 
978 	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
979 	value |= PLLE_MISC_IDDQ_SWCTL;
980 	value &= ~PLLE_MISC_IDDQ_OVERRIDE;
981 	value |= PLLE_MISC_LOCK_ENABLE;
982 	value |= PLLE_MISC_PTS;
983 	value |= PLLE_MISC_VREG_BG_CTRL(3);
984 	value |= PLLE_MISC_VREG_CTRL(2);
985 	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
986 
987 	udelay(5);
988 
989 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
990 	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
991 		 PLLE_SS_CNTL_BYPASS_SS;
992 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
993 
994 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
995 	value &= ~PLLE_BASE_PLDIV_CML(0xf);
996 	value &= ~PLLE_BASE_NDIV(0xff);
997 	value &= ~PLLE_BASE_MDIV(0xff);
998 	value |= PLLE_BASE_PLDIV_CML(cpcon);
999 	value |= PLLE_BASE_NDIV(n);
1000 	value |= PLLE_BASE_MDIV(m);
1001 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1002 
1003 	udelay(1);
1004 
1005 	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1006 	value |= PLLE_BASE_ENABLE;
1007 	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1008 
1009 	/* wait for lock */
1010 	udelay(300);
1011 
1012 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1013 	value &= ~PLLE_SS_CNTL_SSCINVERT;
1014 	value &= ~PLLE_SS_CNTL_SSCCENTER;
1015 
1016 	value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1017 	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1018 	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
1019 
1020 	value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
1021 	value |= PLLE_SS_CNTL_SSCINC(0x01);
1022 	value |= PLLE_SS_CNTL_SSCMAX(0x25);
1023 
1024 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1025 
1026 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1027 	value &= ~PLLE_SS_CNTL_SSCBYP;
1028 	value &= ~PLLE_SS_CNTL_BYPASS_SS;
1029 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1030 
1031 	udelay(1);
1032 
1033 	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1034 	value &= ~PLLE_SS_CNTL_INTERP_RESET;
1035 	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1036 
1037 	udelay(1);
1038 
1039 	return 0;
1040 }
1041 
1042 void clock_sor_enable_edp_clock(void)
1043 {
1044 	u32 *reg;
1045 
1046 	/* uses PLLP, has a non-standard bit layout. */
1047 	reg = get_periph_source_reg(PERIPH_ID_SOR0);
1048 	setbits_le32(reg, SOR0_CLK_SEL0);
1049 }
1050 
1051 u32 clock_set_display_rate(u32 frequency)
1052 {
1053 	/**
1054 	 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1055 	 *           = (cf * n) >> p, where 1MHz < cf < 6MHz
1056 	 *           = ((ref / m) * n) >> p
1057 	 *
1058 	 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1059 	 * safe vco, then find best (m, n). since m has only 5 bits, we can
1060 	 * iterate all possible values.  Note Tegra 124 supports 11 bits for n,
1061 	 * but our pll_fields has only 10 bits for n.
1062 	 *
1063 	 * Note values undershoot or overshoot target output frequency may not
1064 	 * work if the values are not in "safe" range by panel specification.
1065 	 */
1066 	u32 ref = clock_get_rate(CLOCK_ID_OSC);
1067 	u32 divm, divn, divp, cpcon;
1068 	u32 cf, vco, rounded_rate = frequency;
1069 	u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1070 	const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1071 		  mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1072 		  min_cf = 1 * mhz, max_cf = 6 * mhz;
1073 	int mux_bits, divider_bits, source;
1074 
1075 	for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1076 		vco <<= 1;
1077 
1078 	if (vco < min_vco || vco > max_vco) {
1079 		printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1080 		       __func__, frequency);
1081 		return 0;
1082 	}
1083 
1084 	best_p = divp;
1085 	best_diff = vco;
1086 
1087 	for (divm = 1; divm < max_m && best_diff; divm++) {
1088 		cf = ref / divm;
1089 		if (cf < min_cf)
1090 			break;
1091 		if (cf > max_cf)
1092 			continue;
1093 
1094 		divn = vco / cf;
1095 		if (divn >= max_n)
1096 			continue;
1097 
1098 		diff = vco - divn * cf;
1099 		if (divn + 1 < max_n && diff > cf / 2) {
1100 			divn++;
1101 			diff = cf - diff;
1102 		}
1103 
1104 		if (diff >= best_diff)
1105 			continue;
1106 
1107 		best_diff = diff;
1108 		best_m = divm;
1109 		best_n = divn;
1110 	}
1111 
1112 	if (best_n < 50)
1113 		cpcon = 2;
1114 	else if (best_n < 300)
1115 		cpcon = 3;
1116 	else if (best_n < 600)
1117 		cpcon = 8;
1118 	else
1119 		cpcon = 12;
1120 
1121 	if (best_diff) {
1122 		printf("%s: Failed to match output frequency %u, best difference is %u\n",
1123 		       __func__, frequency, best_diff);
1124 		rounded_rate = (ref / best_m * best_n) >> best_p;
1125 	}
1126 
1127 	debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1128 	      __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1129 
1130 	source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1131 					 &mux_bits, &divider_bits);
1132 	clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1133 	clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1134 
1135 	return rounded_rate;
1136 }
1137 
1138 void clock_set_up_plldp(void)
1139 {
1140 	struct clk_rst_ctlr *clkrst =
1141 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1142 	u32 value;
1143 
1144 	value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1145 	writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1146 	clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1147 	writel(value, &clkrst->crc_plldp_ss_cfg);
1148 }
1149 
1150 struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1151 {
1152 	struct clk_rst_ctlr *clkrst =
1153 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1154 
1155 	if (clkid == CLOCK_ID_DP)
1156 		return &clkrst->plldp;
1157 
1158 	return NULL;
1159 }
1160 
1161 struct periph_clk_init periph_clk_init_table[] = {
1162 	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1163 	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1164 	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1165 	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1166 	{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1167 	{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1168 	{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1169 	{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1170 	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1171 	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1172 	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1173 	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1174 	{ PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
1175 	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1176 	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1177 	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1178 	{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1179 	{ PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1180 	{ PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1181 	{ -1, },
1182 };
1183