xref: /openbmc/u-boot/arch/arm/mach-tegra/ivc.c (revision 3949d2a7169cc4abe94bf9bf144a6af180c13dd8)
1 /*
2  * Copyright (c) 2016, NVIDIA CORPORATION.
3  *
4  * SPDX-License-Identifier: GPL-2.0
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch-tegra/ivc.h>
10 
11 #define TEGRA_IVC_ALIGN 64
12 
13 /*
14  * IVC channel reset protocol.
15  *
16  * Each end uses its tx_channel.state to indicate its synchronization state.
17  */
18 enum ivc_state {
19 	/*
20 	 * This value is zero for backwards compatibility with services that
21 	 * assume channels to be initially zeroed. Such channels are in an
22 	 * initially valid state, but cannot be asynchronously reset, and must
23 	 * maintain a valid state at all times.
24 	 *
25 	 * The transmitting end can enter the established state from the sync or
26 	 * ack state when it observes the receiving endpoint in the ack or
27 	 * established state, indicating that has cleared the counters in our
28 	 * rx_channel.
29 	 */
30 	ivc_state_established = 0,
31 
32 	/*
33 	 * If an endpoint is observed in the sync state, the remote endpoint is
34 	 * allowed to clear the counters it owns asynchronously with respect to
35 	 * the current endpoint. Therefore, the current endpoint is no longer
36 	 * allowed to communicate.
37 	 */
38 	ivc_state_sync,
39 
40 	/*
41 	 * When the transmitting end observes the receiving end in the sync
42 	 * state, it can clear the w_count and r_count and transition to the ack
43 	 * state. If the remote endpoint observes us in the ack state, it can
44 	 * return to the established state once it has cleared its counters.
45 	 */
46 	ivc_state_ack
47 };
48 
49 /*
50  * This structure is divided into two-cache aligned parts, the first is only
51  * written through the tx_channel pointer, while the second is only written
52  * through the rx_channel pointer. This delineates ownership of the cache lines,
53  * which is critical to performance and necessary in non-cache coherent
54  * implementations.
55  */
56 struct tegra_ivc_channel_header {
57 	union {
58 		/* fields owned by the transmitting end */
59 		struct {
60 			uint32_t w_count;
61 			uint32_t state;
62 		};
63 		uint8_t w_align[TEGRA_IVC_ALIGN];
64 	};
65 	union {
66 		/* fields owned by the receiving end */
67 		uint32_t r_count;
68 		uint8_t r_align[TEGRA_IVC_ALIGN];
69 	};
70 };
71 
72 static inline void tegra_ivc_invalidate_counter(struct tegra_ivc *ivc,
73 					struct tegra_ivc_channel_header *h,
74 					ulong offset)
75 {
76 	ulong base = ((ulong)h) + offset;
77 	invalidate_dcache_range(base, base + TEGRA_IVC_ALIGN);
78 }
79 
80 static inline void tegra_ivc_flush_counter(struct tegra_ivc *ivc,
81 					   struct tegra_ivc_channel_header *h,
82 					   ulong offset)
83 {
84 	ulong base = ((ulong)h) + offset;
85 	flush_dcache_range(base, base + TEGRA_IVC_ALIGN);
86 }
87 
88 static inline ulong tegra_ivc_frame_addr(struct tegra_ivc *ivc,
89 					 struct tegra_ivc_channel_header *h,
90 					 uint32_t frame)
91 {
92 	BUG_ON(frame >= ivc->nframes);
93 
94 	return ((ulong)h) + sizeof(struct tegra_ivc_channel_header) +
95 	       (ivc->frame_size * frame);
96 }
97 
98 static inline void *tegra_ivc_frame_pointer(struct tegra_ivc *ivc,
99 					    struct tegra_ivc_channel_header *ch,
100 					    uint32_t frame)
101 {
102 	return (void *)tegra_ivc_frame_addr(ivc, ch, frame);
103 }
104 
105 static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
106 					struct tegra_ivc_channel_header *h,
107 					unsigned frame)
108 {
109 	ulong base = tegra_ivc_frame_addr(ivc, h, frame);
110 	invalidate_dcache_range(base, base + ivc->frame_size);
111 }
112 
113 static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
114 					 struct tegra_ivc_channel_header *h,
115 					 unsigned frame)
116 {
117 	ulong base = tegra_ivc_frame_addr(ivc, h, frame);
118 	flush_dcache_range(base, base + ivc->frame_size);
119 }
120 
121 static inline int tegra_ivc_channel_empty(struct tegra_ivc *ivc,
122 					  struct tegra_ivc_channel_header *ch)
123 {
124 	/*
125 	 * This function performs multiple checks on the same values with
126 	 * security implications, so create snapshots with ACCESS_ONCE() to
127 	 * ensure that these checks use the same values.
128 	 */
129 	uint32_t w_count = ACCESS_ONCE(ch->w_count);
130 	uint32_t r_count = ACCESS_ONCE(ch->r_count);
131 
132 	/*
133 	 * Perform an over-full check to prevent denial of service attacks where
134 	 * a server could be easily fooled into believing that there's an
135 	 * extremely large number of frames ready, since receivers are not
136 	 * expected to check for full or over-full conditions.
137 	 *
138 	 * Although the channel isn't empty, this is an invalid case caused by
139 	 * a potentially malicious peer, so returning empty is safer, because it
140 	 * gives the impression that the channel has gone silent.
141 	 */
142 	if (w_count - r_count > ivc->nframes)
143 		return 1;
144 
145 	return w_count == r_count;
146 }
147 
148 static inline int tegra_ivc_channel_full(struct tegra_ivc *ivc,
149 					 struct tegra_ivc_channel_header *ch)
150 {
151 	/*
152 	 * Invalid cases where the counters indicate that the queue is over
153 	 * capacity also appear full.
154 	 */
155 	return (ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)) >=
156 	       ivc->nframes;
157 }
158 
159 static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
160 {
161 	ACCESS_ONCE(ivc->rx_channel->r_count) =
162 			ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
163 
164 	if (ivc->r_pos == ivc->nframes - 1)
165 		ivc->r_pos = 0;
166 	else
167 		ivc->r_pos++;
168 }
169 
170 static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
171 {
172 	ACCESS_ONCE(ivc->tx_channel->w_count) =
173 			ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
174 
175 	if (ivc->w_pos == ivc->nframes - 1)
176 		ivc->w_pos = 0;
177 	else
178 		ivc->w_pos++;
179 }
180 
181 static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
182 {
183 	ulong offset;
184 
185 	/*
186 	 * tx_channel->state is set locally, so it is not synchronized with
187 	 * state from the remote peer. The remote peer cannot reset its
188 	 * transmit counters until we've acknowledged its synchronization
189 	 * request, so no additional synchronization is required because an
190 	 * asynchronous transition of rx_channel->state to ivc_state_ack is not
191 	 * allowed.
192 	 */
193 	if (ivc->tx_channel->state != ivc_state_established)
194 		return -ECONNRESET;
195 
196 	/*
197 	 * Avoid unnecessary invalidations when performing repeated accesses to
198 	 * an IVC channel by checking the old queue pointers first.
199 	 * Synchronization is only necessary when these pointers indicate empty
200 	 * or full.
201 	 */
202 	if (!tegra_ivc_channel_empty(ivc, ivc->rx_channel))
203 		return 0;
204 
205 	offset = offsetof(struct tegra_ivc_channel_header, w_count);
206 	tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
207 	return tegra_ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
208 }
209 
210 static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
211 {
212 	ulong offset;
213 
214 	if (ivc->tx_channel->state != ivc_state_established)
215 		return -ECONNRESET;
216 
217 	if (!tegra_ivc_channel_full(ivc, ivc->tx_channel))
218 		return 0;
219 
220 	offset = offsetof(struct tegra_ivc_channel_header, r_count);
221 	tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
222 	return tegra_ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
223 }
224 
225 static inline uint32_t tegra_ivc_channel_avail_count(struct tegra_ivc *ivc,
226 	struct tegra_ivc_channel_header *ch)
227 {
228 	/*
229 	 * This function isn't expected to be used in scenarios where an
230 	 * over-full situation can lead to denial of service attacks. See the
231 	 * comment in tegra_ivc_channel_empty() for an explanation about
232 	 * special over-full considerations.
233 	 */
234 	return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
235 }
236 
237 int tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc, void **frame)
238 {
239 	int result = tegra_ivc_check_read(ivc);
240 	if (result < 0)
241 		return result;
242 
243 	/*
244 	 * Order observation of w_pos potentially indicating new data before
245 	 * data read.
246 	 */
247 	mb();
248 
249 	tegra_ivc_invalidate_frame(ivc, ivc->rx_channel, ivc->r_pos);
250 	*frame = tegra_ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
251 
252 	return 0;
253 }
254 
255 int tegra_ivc_read_advance(struct tegra_ivc *ivc)
256 {
257 	ulong offset;
258 	int result;
259 
260 	/*
261 	 * No read barriers or synchronization here: the caller is expected to
262 	 * have already observed the channel non-empty. This check is just to
263 	 * catch programming errors.
264 	 */
265 	result = tegra_ivc_check_read(ivc);
266 	if (result)
267 		return result;
268 
269 	tegra_ivc_advance_rx(ivc);
270 	offset = offsetof(struct tegra_ivc_channel_header, r_count);
271 	tegra_ivc_flush_counter(ivc, ivc->rx_channel, offset);
272 
273 	/*
274 	 * Ensure our write to r_pos occurs before our read from w_pos.
275 	 */
276 	mb();
277 
278 	offset = offsetof(struct tegra_ivc_channel_header, w_count);
279 	tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
280 
281 	if (tegra_ivc_channel_avail_count(ivc, ivc->rx_channel) ==
282 	    ivc->nframes - 1)
283 		ivc->notify(ivc);
284 
285 	return 0;
286 }
287 
288 int tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc, void **frame)
289 {
290 	int result = tegra_ivc_check_write(ivc);
291 	if (result)
292 		return result;
293 
294 	*frame = tegra_ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
295 
296 	return 0;
297 }
298 
299 int tegra_ivc_write_advance(struct tegra_ivc *ivc)
300 {
301 	ulong offset;
302 	int result;
303 
304 	result = tegra_ivc_check_write(ivc);
305 	if (result)
306 		return result;
307 
308 	tegra_ivc_flush_frame(ivc, ivc->tx_channel, ivc->w_pos);
309 
310 	/*
311 	 * Order any possible stores to the frame before update of w_pos.
312 	 */
313 	mb();
314 
315 	tegra_ivc_advance_tx(ivc);
316 	offset = offsetof(struct tegra_ivc_channel_header, w_count);
317 	tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
318 
319 	/*
320 	 * Ensure our write to w_pos occurs before our read from r_pos.
321 	 */
322 	mb();
323 
324 	offset = offsetof(struct tegra_ivc_channel_header, r_count);
325 	tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
326 
327 	if (tegra_ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
328 		ivc->notify(ivc);
329 
330 	return 0;
331 }
332 
333 /*
334  * ===============================================================
335  *  IVC State Transition Table - see tegra_ivc_channel_notified()
336  * ===============================================================
337  *
338  *	local	remote	action
339  *	-----	------	-----------------------------------
340  *	SYNC	EST	<none>
341  *	SYNC	ACK	reset counters; move to EST; notify
342  *	SYNC	SYNC	reset counters; move to ACK; notify
343  *	ACK	EST	move to EST; notify
344  *	ACK	ACK	move to EST; notify
345  *	ACK	SYNC	reset counters; move to ACK; notify
346  *	EST	EST	<none>
347  *	EST	ACK	<none>
348  *	EST	SYNC	reset counters; move to ACK; notify
349  *
350  * ===============================================================
351  */
352 int tegra_ivc_channel_notified(struct tegra_ivc *ivc)
353 {
354 	ulong offset;
355 	enum ivc_state peer_state;
356 
357 	/* Copy the receiver's state out of shared memory. */
358 	offset = offsetof(struct tegra_ivc_channel_header, w_count);
359 	tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
360 	peer_state = ACCESS_ONCE(ivc->rx_channel->state);
361 
362 	if (peer_state == ivc_state_sync) {
363 		/*
364 		 * Order observation of ivc_state_sync before stores clearing
365 		 * tx_channel.
366 		 */
367 		mb();
368 
369 		/*
370 		 * Reset tx_channel counters. The remote end is in the SYNC
371 		 * state and won't make progress until we change our state,
372 		 * so the counters are not in use at this time.
373 		 */
374 		ivc->tx_channel->w_count = 0;
375 		ivc->rx_channel->r_count = 0;
376 
377 		ivc->w_pos = 0;
378 		ivc->r_pos = 0;
379 
380 		/*
381 		 * Ensure that counters appear cleared before new state can be
382 		 * observed.
383 		 */
384 		mb();
385 
386 		/*
387 		 * Move to ACK state. We have just cleared our counters, so it
388 		 * is now safe for the remote end to start using these values.
389 		 */
390 		ivc->tx_channel->state = ivc_state_ack;
391 		offset = offsetof(struct tegra_ivc_channel_header, w_count);
392 		tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
393 
394 		/*
395 		 * Notify remote end to observe state transition.
396 		 */
397 		ivc->notify(ivc);
398 	} else if (ivc->tx_channel->state == ivc_state_sync &&
399 			peer_state == ivc_state_ack) {
400 		/*
401 		 * Order observation of ivc_state_sync before stores clearing
402 		 * tx_channel.
403 		 */
404 		mb();
405 
406 		/*
407 		 * Reset tx_channel counters. The remote end is in the ACK
408 		 * state and won't make progress until we change our state,
409 		 * so the counters are not in use at this time.
410 		 */
411 		ivc->tx_channel->w_count = 0;
412 		ivc->rx_channel->r_count = 0;
413 
414 		ivc->w_pos = 0;
415 		ivc->r_pos = 0;
416 
417 		/*
418 		 * Ensure that counters appear cleared before new state can be
419 		 * observed.
420 		 */
421 		mb();
422 
423 		/*
424 		 * Move to ESTABLISHED state. We know that the remote end has
425 		 * already cleared its counters, so it is safe to start
426 		 * writing/reading on this channel.
427 		 */
428 		ivc->tx_channel->state = ivc_state_established;
429 		offset = offsetof(struct tegra_ivc_channel_header, w_count);
430 		tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
431 
432 		/*
433 		 * Notify remote end to observe state transition.
434 		 */
435 		ivc->notify(ivc);
436 	} else if (ivc->tx_channel->state == ivc_state_ack) {
437 		/*
438 		 * At this point, we have observed the peer to be in either
439 		 * the ACK or ESTABLISHED state. Next, order observation of
440 		 * peer state before storing to tx_channel.
441 		 */
442 		mb();
443 
444 		/*
445 		 * Move to ESTABLISHED state. We know that we have previously
446 		 * cleared our counters, and we know that the remote end has
447 		 * cleared its counters, so it is safe to start writing/reading
448 		 * on this channel.
449 		 */
450 		ivc->tx_channel->state = ivc_state_established;
451 		offset = offsetof(struct tegra_ivc_channel_header, w_count);
452 		tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
453 
454 		/*
455 		 * Notify remote end to observe state transition.
456 		 */
457 		ivc->notify(ivc);
458 	} else {
459 		/*
460 		 * There is no need to handle any further action. Either the
461 		 * channel is already fully established, or we are waiting for
462 		 * the remote end to catch up with our current state. Refer
463 		 * to the diagram in "IVC State Transition Table" above.
464 		 */
465 	}
466 
467 	if (ivc->tx_channel->state != ivc_state_established)
468 		return -EAGAIN;
469 
470 	return 0;
471 }
472 
473 void tegra_ivc_channel_reset(struct tegra_ivc *ivc)
474 {
475 	ulong offset;
476 
477 	ivc->tx_channel->state = ivc_state_sync;
478 	offset = offsetof(struct tegra_ivc_channel_header, w_count);
479 	tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
480 	ivc->notify(ivc);
481 }
482 
483 static int check_ivc_params(ulong qbase1, ulong qbase2, uint32_t nframes,
484 			    uint32_t frame_size)
485 {
486 	int ret = 0;
487 
488 	BUG_ON(offsetof(struct tegra_ivc_channel_header, w_count) &
489 	       (TEGRA_IVC_ALIGN - 1));
490 	BUG_ON(offsetof(struct tegra_ivc_channel_header, r_count) &
491 	       (TEGRA_IVC_ALIGN - 1));
492 	BUG_ON(sizeof(struct tegra_ivc_channel_header) &
493 	       (TEGRA_IVC_ALIGN - 1));
494 
495 	if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
496 		pr_err("tegra_ivc: nframes * frame_size overflows\n");
497 		return -EINVAL;
498 	}
499 
500 	/*
501 	 * The headers must at least be aligned enough for counters
502 	 * to be accessed atomically.
503 	 */
504 	if ((qbase1 & (TEGRA_IVC_ALIGN - 1)) ||
505 	    (qbase2 & (TEGRA_IVC_ALIGN - 1))) {
506 		pr_err("tegra_ivc: channel start not aligned\n");
507 		return -EINVAL;
508 	}
509 
510 	if (frame_size & (TEGRA_IVC_ALIGN - 1)) {
511 		pr_err("tegra_ivc: frame size not adequately aligned\n");
512 		return -EINVAL;
513 	}
514 
515 	if (qbase1 < qbase2) {
516 		if (qbase1 + frame_size * nframes > qbase2)
517 			ret = -EINVAL;
518 	} else {
519 		if (qbase2 + frame_size * nframes > qbase1)
520 			ret = -EINVAL;
521 	}
522 
523 	if (ret) {
524 		pr_err("tegra_ivc: queue regions overlap\n");
525 		return ret;
526 	}
527 
528 	return 0;
529 }
530 
531 int tegra_ivc_init(struct tegra_ivc *ivc, ulong rx_base, ulong tx_base,
532 		   uint32_t nframes, uint32_t frame_size,
533 		   void (*notify)(struct tegra_ivc *))
534 {
535 	int ret;
536 
537 	if (!ivc)
538 		return -EINVAL;
539 
540 	ret = check_ivc_params(rx_base, tx_base, nframes, frame_size);
541 	if (ret)
542 		return ret;
543 
544 	ivc->rx_channel = (struct tegra_ivc_channel_header *)rx_base;
545 	ivc->tx_channel = (struct tegra_ivc_channel_header *)tx_base;
546 	ivc->w_pos = 0;
547 	ivc->r_pos = 0;
548 	ivc->nframes = nframes;
549 	ivc->frame_size = frame_size;
550 	ivc->notify = notify;
551 
552 	return 0;
553 }
554