xref: /openbmc/u-boot/arch/arm/mach-tegra/cpu.c (revision ff255e83)
1 /*
2  * Copyright (c) 2010-2014, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 #include <common.h>
18 #include <asm/io.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/gp_padctrl.h>
21 #include <asm/arch/pinmux.h>
22 #include <asm/arch/tegra.h>
23 #include <asm/arch-tegra/clk_rst.h>
24 #include <asm/arch-tegra/pmc.h>
25 #include <asm/arch-tegra/scu.h>
26 #include "cpu.h"
27 
28 int get_num_cpus(void)
29 {
30 	struct apb_misc_gp_ctlr *gp;
31 	uint rev;
32 
33 	gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
34 	rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
35 
36 	switch (rev) {
37 	case CHIPID_TEGRA20:
38 		return 2;
39 		break;
40 	case CHIPID_TEGRA30:
41 	case CHIPID_TEGRA114:
42 	default:
43 		return 4;
44 		break;
45 	}
46 }
47 
48 /*
49  * Timing tables for each SOC for all four oscillator options.
50  */
51 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
52 	/*
53 	 * T20: 1 GHz
54 	 *
55 	 * Register   Field  Bits   Width
56 	 * ------------------------------
57 	 * PLLX_BASE  p      22:20    3
58 	 * PLLX_BASE  n      17: 8   10
59 	 * PLLX_BASE  m       4: 0    5
60 	 * PLLX_MISC  cpcon  11: 8    4
61 	 */
62 	{
63 		{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
64 		{ .n =  625, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
65 		{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
66 		{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
67 	},
68 	/*
69 	 * T25: 1.2 GHz
70 	 *
71 	 * Register   Field  Bits   Width
72 	 * ------------------------------
73 	 * PLLX_BASE  p      22:20    3
74 	 * PLLX_BASE  n      17: 8   10
75 	 * PLLX_BASE  m       4: 0    5
76 	 * PLLX_MISC  cpcon  11: 8    4
77 	 */
78 	{
79 		{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
80 		{ .n = 750, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
81 		{ .n = 600, .m =  6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
82 		{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
83 	},
84 	/*
85 	 * T30: 600 MHz
86 	 *
87 	 * Register   Field  Bits   Width
88 	 * ------------------------------
89 	 * PLLX_BASE  p      22:20    3
90 	 * PLLX_BASE  n      17: 8   10
91 	 * PLLX_BASE  m       4: 0    5
92 	 * PLLX_MISC  cpcon  11: 8    4
93 	 */
94 	{
95 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
96 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
97 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
98 		{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
99 	},
100 	/*
101 	 * T114: 700 MHz
102 	 *
103 	 * Register   Field  Bits   Width
104 	 * ------------------------------
105 	 * PLLX_BASE  p      23:20    4
106 	 * PLLX_BASE  n      15: 8    8
107 	 * PLLX_BASE  m       7: 0    8
108 	 */
109 	{
110 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
111 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
112 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
113 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
114 	},
115 
116 	/*
117 	 * T124: 700 MHz
118 	 *
119 	 * Register   Field  Bits   Width
120 	 * ------------------------------
121 	 * PLLX_BASE  p      23:20    4
122 	 * PLLX_BASE  n      15: 8    8
123 	 * PLLX_BASE  m       7: 0    8
124 	 */
125 	{
126 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
127 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
128 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
129 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
130 	},
131 };
132 
133 static inline void pllx_set_iddq(void)
134 {
135 #if defined(CONFIG_TEGRA124)
136 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
137 	u32 reg;
138 
139 	/* Disable IDDQ */
140 	reg = readl(&clkrst->crc_pllx_misc3);
141 	reg &= ~PLLX_IDDQ_MASK;
142 	writel(reg, &clkrst->crc_pllx_misc3);
143 	udelay(2);
144 	debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
145 	      readl(&clkrst->crc_pllx_misc3));
146 #endif
147 }
148 
149 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
150 		u32 divp, u32 cpcon)
151 {
152 	int chip = tegra_get_chip();
153 	u32 reg;
154 
155 	/* If PLLX is already enabled, just return */
156 	if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
157 		debug("pllx_set_rate: PLLX already enabled, returning\n");
158 		return 0;
159 	}
160 
161 	debug(" pllx_set_rate entry\n");
162 
163 	pllx_set_iddq();
164 
165 	/* Set BYPASS, m, n and p to PLLX_BASE */
166 	reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT);
167 	reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT));
168 	writel(reg, &pll->pll_base);
169 
170 	/* Set cpcon to PLLX_MISC */
171 	if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
172 		reg = (cpcon << PLL_CPCON_SHIFT);
173 	else
174 		reg = 0;
175 
176 	/* Set dccon to PLLX_MISC if freq > 600MHz */
177 	if (divn > 600)
178 		reg |= (1 << PLL_DCCON_SHIFT);
179 	writel(reg, &pll->pll_misc);
180 
181 	/* Disable BYPASS */
182 	reg = readl(&pll->pll_base);
183 	reg &= ~PLL_BYPASS_MASK;
184 	writel(reg, &pll->pll_base);
185 	debug("pllx_set_rate: base = 0x%08X\n", reg);
186 
187 	/* Set lock_enable to PLLX_MISC */
188 	reg = readl(&pll->pll_misc);
189 	reg |= PLL_LOCK_ENABLE_MASK;
190 	writel(reg, &pll->pll_misc);
191 	debug("pllx_set_rate: misc = 0x%08X\n", reg);
192 
193 	/* Enable PLLX last, once it's all configured */
194 	reg = readl(&pll->pll_base);
195 	reg |= PLL_ENABLE_MASK;
196 	writel(reg, &pll->pll_base);
197 	debug("pllx_set_rate: base final = 0x%08X\n", reg);
198 
199 	return 0;
200 }
201 
202 void init_pllx(void)
203 {
204 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
205 	struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
206 	int soc_type, sku_info, chip_sku;
207 	enum clock_osc_freq osc;
208 	struct clk_pll_table *sel;
209 
210 	debug("init_pllx entry\n");
211 
212 	/* get SOC (chip) type */
213 	soc_type = tegra_get_chip();
214 	debug(" init_pllx: SoC = 0x%02X\n", soc_type);
215 
216 	/* get SKU info */
217 	sku_info = tegra_get_sku_info();
218 	debug(" init_pllx: SKU info byte = 0x%02X\n", sku_info);
219 
220 	/* get chip SKU, combo of the above info */
221 	chip_sku = tegra_get_chip_sku();
222 	debug(" init_pllx: Chip SKU = %d\n", chip_sku);
223 
224 	/* get osc freq */
225 	osc = clock_get_osc_freq();
226 	debug(" init_pllx: osc = %d\n", osc);
227 
228 	/* set pllx */
229 	sel = &tegra_pll_x_table[chip_sku][osc];
230 	pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
231 }
232 
233 void enable_cpu_clock(int enable)
234 {
235 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
236 	u32 clk;
237 
238 	/*
239 	 * NOTE:
240 	 * Regardless of whether the request is to enable or disable the CPU
241 	 * clock, every processor in the CPU complex except the master (CPU 0)
242 	 * will have it's clock stopped because the AVP only talks to the
243 	 * master.
244 	 */
245 
246 	if (enable) {
247 		/* Initialize PLLX */
248 		init_pllx();
249 
250 		/* Wait until all clocks are stable */
251 		udelay(PLL_STABILIZATION_DELAY);
252 
253 		writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
254 		writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
255 	}
256 
257 	/*
258 	 * Read the register containing the individual CPU clock enables and
259 	 * always stop the clocks to CPUs > 0.
260 	 */
261 	clk = readl(&clkrst->crc_clk_cpu_cmplx);
262 	clk |= 1 << CPU1_CLK_STP_SHIFT;
263 	if (get_num_cpus() == 4)
264 		clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
265 
266 	/* Stop/Unstop the CPU clock */
267 	clk &= ~CPU0_CLK_STP_MASK;
268 	clk |= !enable << CPU0_CLK_STP_SHIFT;
269 	writel(clk, &clkrst->crc_clk_cpu_cmplx);
270 
271 	clock_enable(PERIPH_ID_CPU);
272 }
273 
274 static int is_cpu_powered(void)
275 {
276 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
277 
278 	return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
279 }
280 
281 static void remove_cpu_io_clamps(void)
282 {
283 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
284 	u32 reg;
285 
286 	/* Remove the clamps on the CPU I/O signals */
287 	reg = readl(&pmc->pmc_remove_clamping);
288 	reg |= CPU_CLMP;
289 	writel(reg, &pmc->pmc_remove_clamping);
290 
291 	/* Give I/O signals time to stabilize */
292 	udelay(IO_STABILIZATION_DELAY);
293 }
294 
295 void powerup_cpu(void)
296 {
297 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
298 	u32 reg;
299 	int timeout = IO_STABILIZATION_DELAY;
300 
301 	if (!is_cpu_powered()) {
302 		/* Toggle the CPU power state (OFF -> ON) */
303 		reg = readl(&pmc->pmc_pwrgate_toggle);
304 		reg &= PARTID_CP;
305 		reg |= START_CP;
306 		writel(reg, &pmc->pmc_pwrgate_toggle);
307 
308 		/* Wait for the power to come up */
309 		while (!is_cpu_powered()) {
310 			if (timeout-- == 0)
311 				printf("CPU failed to power up!\n");
312 			else
313 				udelay(10);
314 		}
315 
316 		/*
317 		 * Remove the I/O clamps from CPU power partition.
318 		 * Recommended only on a Warm boot, if the CPU partition gets
319 		 * power gated. Shouldn't cause any harm when called after a
320 		 * cold boot according to HW, probably just redundant.
321 		 */
322 		remove_cpu_io_clamps();
323 	}
324 }
325 
326 void reset_A9_cpu(int reset)
327 {
328 	/*
329 	* NOTE:  Regardless of whether the request is to hold the CPU in reset
330 	*        or take it out of reset, every processor in the CPU complex
331 	*        except the master (CPU 0) will be held in reset because the
332 	*        AVP only talks to the master. The AVP does not know that there
333 	*        are multiple processors in the CPU complex.
334 	*/
335 	int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
336 	int num_cpus = get_num_cpus();
337 	int cpu;
338 
339 	debug("reset_a9_cpu entry\n");
340 	/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
341 	for (cpu = 1; cpu < num_cpus; cpu++)
342 		reset_cmplx_set_enable(cpu, mask, 1);
343 	reset_cmplx_set_enable(0, mask, reset);
344 
345 	/* Enable/Disable master CPU reset */
346 	reset_set_enable(PERIPH_ID_CPU, reset);
347 }
348 
349 void clock_enable_coresight(int enable)
350 {
351 	u32 rst, src = 2;
352 
353 	debug("clock_enable_coresight entry\n");
354 	clock_set_enable(PERIPH_ID_CORESIGHT, enable);
355 	reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
356 
357 	if (enable) {
358 		/*
359 		 * Put CoreSight on PLLP_OUT0 and divide it down as per
360 		 * PLLP base frequency based on SoC type (T20/T30+).
361 		 * Clock divider request would setup CSITE clock as 144MHz
362 		 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
363 		 */
364 		src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
365 		clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
366 
367 		/* Unlock the CPU CoreSight interfaces */
368 		rst = CORESIGHT_UNLOCK;
369 		writel(rst, CSITE_CPU_DBG0_LAR);
370 		writel(rst, CSITE_CPU_DBG1_LAR);
371 		if (get_num_cpus() == 4) {
372 			writel(rst, CSITE_CPU_DBG2_LAR);
373 			writel(rst, CSITE_CPU_DBG3_LAR);
374 		}
375 	}
376 }
377 
378 void halt_avp(void)
379 {
380 	for (;;) {
381 		writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
382 		       FLOW_CTLR_HALT_COP_EVENTS);
383 	}
384 }
385