xref: /openbmc/u-boot/arch/arm/mach-tegra/cpu.c (revision 225f5eeccd6c0d376a20c15897edd8c69500d8cc)
1 /*
2  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 #include <common.h>
18 #include <asm/io.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/gp_padctrl.h>
21 #include <asm/arch/pinmux.h>
22 #include <asm/arch/tegra.h>
23 #include <asm/arch-tegra/clk_rst.h>
24 #include <asm/arch-tegra/pmc.h>
25 #include <asm/arch-tegra/scu.h>
26 #include "cpu.h"
27 
28 int get_num_cpus(void)
29 {
30 	struct apb_misc_gp_ctlr *gp;
31 	uint rev;
32 	debug("%s entry\n", __func__);
33 
34 	gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
35 	rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
36 
37 	switch (rev) {
38 	case CHIPID_TEGRA20:
39 		return 2;
40 		break;
41 	case CHIPID_TEGRA30:
42 	case CHIPID_TEGRA114:
43 	case CHIPID_TEGRA124:
44 	case CHIPID_TEGRA210:
45 	default:
46 		return 4;
47 		break;
48 	}
49 }
50 
51 /*
52  * Timing tables for each SOC for all four oscillator options.
53  */
54 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
55 	/*
56 	 * T20: 1 GHz
57 	 *
58 	 * Register   Field  Bits   Width
59 	 * ------------------------------
60 	 * PLLX_BASE  p      22:20    3
61 	 * PLLX_BASE  n      17: 8   10
62 	 * PLLX_BASE  m       4: 0    5
63 	 * PLLX_MISC  cpcon  11: 8    4
64 	 */
65 	{
66 		{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
67 		{ .n =  625, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
68 		{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
69 		{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
70 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 38.4 MHz (N/A) */
71 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 48.0 MHz (N/A) */
72 	},
73 	/*
74 	 * T25: 1.2 GHz
75 	 *
76 	 * Register   Field  Bits   Width
77 	 * ------------------------------
78 	 * PLLX_BASE  p      22:20    3
79 	 * PLLX_BASE  n      17: 8   10
80 	 * PLLX_BASE  m       4: 0    5
81 	 * PLLX_MISC  cpcon  11: 8    4
82 	 */
83 	{
84 		{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
85 		{ .n = 750, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
86 		{ .n = 600, .m =  6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
87 		{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
88 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 38.4 MHz (N/A) */
89 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 48.0 MHz (N/A) */
90 	},
91 	/*
92 	 * T30: 600 MHz
93 	 *
94 	 * Register   Field  Bits   Width
95 	 * ------------------------------
96 	 * PLLX_BASE  p      22:20    3
97 	 * PLLX_BASE  n      17: 8   10
98 	 * PLLX_BASE  m       4: 0    5
99 	 * PLLX_MISC  cpcon  11: 8    4
100 	 */
101 	{
102 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
103 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
104 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
105 		{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
106 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* OSC: 38.4 MHz (N/A) */
107 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* OSC: 48.0 MHz (N/A) */
108 	},
109 	/*
110 	 * T114: 700 MHz
111 	 *
112 	 * Register   Field  Bits   Width
113 	 * ------------------------------
114 	 * PLLX_BASE  p      23:20    4
115 	 * PLLX_BASE  n      15: 8    8
116 	 * PLLX_BASE  m       7: 0    8
117 	 */
118 	{
119 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
120 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
121 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
122 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
123 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
124 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
125 	},
126 
127 	/*
128 	 * T124: 700 MHz
129 	 *
130 	 * Register   Field  Bits   Width
131 	 * ------------------------------
132 	 * PLLX_BASE  p      23:20    4
133 	 * PLLX_BASE  n      15: 8    8
134 	 * PLLX_BASE  m       7: 0    8
135 	 */
136 	{
137 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
138 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
139 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
140 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
141 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
142 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
143 	},
144 
145 	/*
146 	 * T210: 700 MHz
147 	 *
148 	 * Register   Field  Bits   Width
149 	 * ------------------------------
150 	 * PLLX_BASE  p      24:20    5
151 	 * PLLX_BASE  n      15: 8    8
152 	 * PLLX_BASE  m       7: 0    8
153 	 */
154 	{
155 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz = 702   MHz*/
156 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz = 700.8 MHz*/
157 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz = 696   MHz*/
158 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz = 702   MHz*/
159 		{ .n =  36, .m = 1, .p = 1 }, /* OSC: 38.4 MHz = 691.2 MHz */
160 		{ .n =  58, .m = 2, .p = 1 }, /* OSC: 48.0 MHz = 696   MHz */
161 	},
162 };
163 
164 static inline void pllx_set_iddq(void)
165 {
166 #if defined(CONFIG_TEGRA124) || defined(CONFIG_TEGRA210)
167 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
168 	u32 reg;
169 	debug("%s entry\n", __func__);
170 
171 	/* Disable IDDQ */
172 	reg = readl(&clkrst->crc_pllx_misc3);
173 	reg &= ~PLLX_IDDQ_MASK;
174 	writel(reg, &clkrst->crc_pllx_misc3);
175 	udelay(2);
176 	debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
177 	      readl(&clkrst->crc_pllx_misc3));
178 #endif
179 }
180 
181 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
182 		u32 divp, u32 cpcon)
183 {
184 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
185 	int chip = tegra_get_chip();
186 	u32 reg;
187 	debug("%s entry\n", __func__);
188 
189 	/* If PLLX is already enabled, just return */
190 	if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
191 		debug("%s: PLLX already enabled, returning\n", __func__);
192 		return 0;
193 	}
194 
195 	pllx_set_iddq();
196 
197 	/* Set BYPASS, m, n and p to PLLX_BASE */
198 	reg = PLL_BYPASS_MASK | (divm << pllinfo->m_shift);
199 	reg |= (divn << pllinfo->n_shift) | (divp << pllinfo->p_shift);
200 	writel(reg, &pll->pll_base);
201 
202 	/* Set cpcon to PLLX_MISC */
203 	if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
204 		reg = (cpcon << pllinfo->kcp_shift);
205 	else
206 		reg = 0;
207 
208 	/*
209 	 * TODO(twarren@nvidia.com) Check which SoCs use DCCON
210 	 * and add to pllinfo table if needed!
211 	 */
212 	 /* Set dccon to PLLX_MISC if freq > 600MHz */
213 	if (divn > 600)
214 		reg |= (1 << PLL_DCCON_SHIFT);
215 	writel(reg, &pll->pll_misc);
216 
217 	/* Disable BYPASS */
218 	reg = readl(&pll->pll_base);
219 	reg &= ~PLL_BYPASS_MASK;
220 	writel(reg, &pll->pll_base);
221 	debug("%s: base = 0x%08X\n", __func__, reg);
222 
223 	/* Set lock_enable to PLLX_MISC if lock_ena is valid (i.e. 0-31) */
224 	reg = readl(&pll->pll_misc);
225 	if (pllinfo->lock_ena < 32)
226 		reg |= (1 << pllinfo->lock_ena);
227 	writel(reg, &pll->pll_misc);
228 	debug("%s: misc = 0x%08X\n", __func__, reg);
229 
230 	/* Enable PLLX last, once it's all configured */
231 	reg = readl(&pll->pll_base);
232 	reg |= PLL_ENABLE_MASK;
233 	writel(reg, &pll->pll_base);
234 	debug("%s: base final = 0x%08X\n", __func__, reg);
235 
236 	return 0;
237 }
238 
239 void init_pllx(void)
240 {
241 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
242 	struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
243 	int soc_type, sku_info, chip_sku;
244 	enum clock_osc_freq osc;
245 	struct clk_pll_table *sel;
246 	debug("%s entry\n", __func__);
247 
248 	/* get SOC (chip) type */
249 	soc_type = tegra_get_chip();
250 	debug("%s: SoC = 0x%02X\n", __func__, soc_type);
251 
252 	/* get SKU info */
253 	sku_info = tegra_get_sku_info();
254 	debug("%s: SKU info byte = 0x%02X\n", __func__, sku_info);
255 
256 	/* get chip SKU, combo of the above info */
257 	chip_sku = tegra_get_chip_sku();
258 	debug("%s: Chip SKU = %d\n", __func__, chip_sku);
259 
260 	/* get osc freq */
261 	osc = clock_get_osc_freq();
262 	debug("%s: osc = %d\n", __func__, osc);
263 
264 	/* set pllx */
265 	sel = &tegra_pll_x_table[chip_sku][osc];
266 	pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
267 }
268 
269 void enable_cpu_clock(int enable)
270 {
271 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
272 	u32 clk;
273 	debug("%s entry\n", __func__);
274 
275 	/*
276 	 * NOTE:
277 	 * Regardless of whether the request is to enable or disable the CPU
278 	 * clock, every processor in the CPU complex except the master (CPU 0)
279 	 * will have it's clock stopped because the AVP only talks to the
280 	 * master.
281 	 */
282 
283 	if (enable) {
284 		/* Initialize PLLX */
285 		init_pllx();
286 
287 		/* Wait until all clocks are stable */
288 		udelay(PLL_STABILIZATION_DELAY);
289 
290 		writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
291 		writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
292 	}
293 
294 	/*
295 	 * Read the register containing the individual CPU clock enables and
296 	 * always stop the clocks to CPUs > 0.
297 	 */
298 	clk = readl(&clkrst->crc_clk_cpu_cmplx);
299 	clk |= 1 << CPU1_CLK_STP_SHIFT;
300 	if (get_num_cpus() == 4)
301 		clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
302 
303 	/* Stop/Unstop the CPU clock */
304 	clk &= ~CPU0_CLK_STP_MASK;
305 	clk |= !enable << CPU0_CLK_STP_SHIFT;
306 	writel(clk, &clkrst->crc_clk_cpu_cmplx);
307 
308 	clock_enable(PERIPH_ID_CPU);
309 }
310 
311 static int is_cpu_powered(void)
312 {
313 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
314 
315 	return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
316 }
317 
318 static void remove_cpu_io_clamps(void)
319 {
320 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
321 	u32 reg;
322 	debug("%s entry\n", __func__);
323 
324 	/* Remove the clamps on the CPU I/O signals */
325 	reg = readl(&pmc->pmc_remove_clamping);
326 	reg |= CPU_CLMP;
327 	writel(reg, &pmc->pmc_remove_clamping);
328 
329 	/* Give I/O signals time to stabilize */
330 	udelay(IO_STABILIZATION_DELAY);
331 }
332 
333 void powerup_cpu(void)
334 {
335 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
336 	u32 reg;
337 	int timeout = IO_STABILIZATION_DELAY;
338 	debug("%s entry\n", __func__);
339 
340 	if (!is_cpu_powered()) {
341 		/* Toggle the CPU power state (OFF -> ON) */
342 		reg = readl(&pmc->pmc_pwrgate_toggle);
343 		reg &= PARTID_CP;
344 		reg |= START_CP;
345 		writel(reg, &pmc->pmc_pwrgate_toggle);
346 
347 		/* Wait for the power to come up */
348 		while (!is_cpu_powered()) {
349 			if (timeout-- == 0)
350 				printf("CPU failed to power up!\n");
351 			else
352 				udelay(10);
353 		}
354 
355 		/*
356 		 * Remove the I/O clamps from CPU power partition.
357 		 * Recommended only on a Warm boot, if the CPU partition gets
358 		 * power gated. Shouldn't cause any harm when called after a
359 		 * cold boot according to HW, probably just redundant.
360 		 */
361 		remove_cpu_io_clamps();
362 	}
363 }
364 
365 void reset_A9_cpu(int reset)
366 {
367 	/*
368 	* NOTE:  Regardless of whether the request is to hold the CPU in reset
369 	*        or take it out of reset, every processor in the CPU complex
370 	*        except the master (CPU 0) will be held in reset because the
371 	*        AVP only talks to the master. The AVP does not know that there
372 	*        are multiple processors in the CPU complex.
373 	*/
374 	int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
375 	int num_cpus = get_num_cpus();
376 	int cpu;
377 
378 	debug("%s entry\n", __func__);
379 	/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
380 	for (cpu = 1; cpu < num_cpus; cpu++)
381 		reset_cmplx_set_enable(cpu, mask, 1);
382 	reset_cmplx_set_enable(0, mask, reset);
383 
384 	/* Enable/Disable master CPU reset */
385 	reset_set_enable(PERIPH_ID_CPU, reset);
386 }
387 
388 void clock_enable_coresight(int enable)
389 {
390 	u32 rst, src = 2;
391 
392 	debug("%s entry\n", __func__);
393 	clock_set_enable(PERIPH_ID_CORESIGHT, enable);
394 	reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
395 
396 	if (enable) {
397 		/*
398 		 * Put CoreSight on PLLP_OUT0 and divide it down as per
399 		 * PLLP base frequency based on SoC type (T20/T30+).
400 		 * Clock divider request would setup CSITE clock as 144MHz
401 		 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
402 		 */
403 		src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
404 		clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
405 
406 		/* Unlock the CPU CoreSight interfaces */
407 		rst = CORESIGHT_UNLOCK;
408 		writel(rst, CSITE_CPU_DBG0_LAR);
409 		writel(rst, CSITE_CPU_DBG1_LAR);
410 		if (get_num_cpus() == 4) {
411 			writel(rst, CSITE_CPU_DBG2_LAR);
412 			writel(rst, CSITE_CPU_DBG3_LAR);
413 		}
414 	}
415 }
416 
417 void halt_avp(void)
418 {
419 	debug("%s entry\n", __func__);
420 
421 	for (;;) {
422 		writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
423 		       FLOW_CTLR_HALT_COP_EVENTS);
424 	}
425 }
426