1 /* 2 * Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * SPDX-License-Identifier: GPL-2.0 5 */ 6 7 /* Tegra SoC common clock control functions */ 8 9 #include <common.h> 10 #include <errno.h> 11 #include <asm/io.h> 12 #include <asm/arch/clock.h> 13 #include <asm/arch/tegra.h> 14 #include <asm/arch-tegra/ap.h> 15 #include <asm/arch-tegra/clk_rst.h> 16 #include <asm/arch-tegra/pmc.h> 17 #include <asm/arch-tegra/timer.h> 18 #include <div64.h> 19 #include <fdtdec.h> 20 21 /* 22 * This is our record of the current clock rate of each clock. We don't 23 * fill all of these in since we are only really interested in clocks which 24 * we use as parents. 25 */ 26 static unsigned pll_rate[CLOCK_ID_COUNT]; 27 28 /* 29 * The oscillator frequency is fixed to one of four set values. Based on this 30 * the other clocks are set up appropriately. 31 */ 32 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { 33 13000000, 34 19200000, 35 12000000, 36 26000000, 37 38400000, 38 48000000, 39 }; 40 41 /* return 1 if a peripheral ID is in range */ 42 #define clock_type_id_isvalid(id) ((id) >= 0 && \ 43 (id) < CLOCK_TYPE_COUNT) 44 45 char pllp_valid = 1; /* PLLP is set up correctly */ 46 47 /* return 1 if a periphc_internal_id is in range */ 48 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ 49 (id) < PERIPHC_COUNT) 50 51 /* number of clock outputs of a PLL */ 52 static const u8 pll_num_clkouts[] = { 53 1, /* PLLC */ 54 1, /* PLLM */ 55 4, /* PLLP */ 56 1, /* PLLA */ 57 0, /* PLLU */ 58 0, /* PLLD */ 59 }; 60 61 int clock_get_osc_bypass(void) 62 { 63 struct clk_rst_ctlr *clkrst = 64 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 65 u32 reg; 66 67 reg = readl(&clkrst->crc_osc_ctrl); 68 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; 69 } 70 71 /* Returns a pointer to the registers of the given pll */ 72 static struct clk_pll *get_pll(enum clock_id clkid) 73 { 74 struct clk_rst_ctlr *clkrst = 75 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 76 77 assert(clock_id_is_pll(clkid)); 78 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) { 79 debug("%s: Invalid PLL %d\n", __func__, clkid); 80 return NULL; 81 } 82 return &clkrst->crc_pll[clkid]; 83 } 84 85 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid) 86 { 87 return NULL; 88 } 89 90 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, 91 u32 *divp, u32 *cpcon, u32 *lfcon) 92 { 93 struct clk_pll *pll = get_pll(clkid); 94 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 95 u32 data; 96 97 assert(clkid != CLOCK_ID_USB); 98 99 /* Safety check, adds to code size but is small */ 100 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) 101 return -1; 102 data = readl(&pll->pll_base); 103 *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask; 104 *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask; 105 *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask; 106 data = readl(&pll->pll_misc); 107 /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */ 108 *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask; 109 *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask; 110 111 return 0; 112 } 113 114 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, 115 u32 divp, u32 cpcon, u32 lfcon) 116 { 117 struct clk_pll *pll = NULL; 118 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 119 struct clk_pll_simple *simple_pll = NULL; 120 u32 misc_data, data; 121 122 if (clkid < (enum clock_id)TEGRA_CLK_PLLS) { 123 pll = get_pll(clkid); 124 } else { 125 simple_pll = clock_get_simple_pll(clkid); 126 if (!simple_pll) { 127 debug("%s: Uknown simple PLL %d\n", __func__, clkid); 128 return 0; 129 } 130 } 131 132 /* 133 * pllinfo has the m/n/p and kcp/kvco mask and shift 134 * values for all of the PLLs used in U-Boot, with any 135 * SoC differences accounted for. 136 * 137 * Preserve EN_LOCKDET, etc. 138 */ 139 if (pll) 140 misc_data = readl(&pll->pll_misc); 141 else 142 misc_data = readl(&simple_pll->pll_misc); 143 misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); 144 misc_data |= cpcon << pllinfo->kcp_shift; 145 misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift); 146 misc_data |= lfcon << pllinfo->kvco_shift; 147 148 data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift); 149 data |= divp << pllinfo->p_shift; 150 data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */ 151 152 if (pll) { 153 writel(misc_data, &pll->pll_misc); 154 writel(data, &pll->pll_base); 155 } else { 156 writel(misc_data, &simple_pll->pll_misc); 157 writel(data, &simple_pll->pll_base); 158 } 159 160 /* calculate the stable time */ 161 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; 162 } 163 164 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, 165 unsigned divisor) 166 { 167 u32 *reg = get_periph_source_reg(periph_id); 168 u32 value; 169 170 value = readl(reg); 171 172 value &= ~OUT_CLK_SOURCE_31_30_MASK; 173 value |= source << OUT_CLK_SOURCE_31_30_SHIFT; 174 175 value &= ~OUT_CLK_DIVISOR_MASK; 176 value |= divisor << OUT_CLK_DIVISOR_SHIFT; 177 178 writel(value, reg); 179 } 180 181 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits, 182 unsigned source) 183 { 184 u32 *reg = get_periph_source_reg(periph_id); 185 186 switch (mux_bits) { 187 case MASK_BITS_31_30: 188 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK, 189 source << OUT_CLK_SOURCE_31_30_SHIFT); 190 break; 191 192 case MASK_BITS_31_29: 193 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK, 194 source << OUT_CLK_SOURCE_31_29_SHIFT); 195 break; 196 197 case MASK_BITS_31_28: 198 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK, 199 source << OUT_CLK_SOURCE_31_28_SHIFT); 200 break; 201 202 default: 203 return -1; 204 } 205 206 return 0; 207 } 208 209 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits) 210 { 211 u32 *reg = get_periph_source_reg(periph_id); 212 u32 val = readl(reg); 213 214 switch (mux_bits) { 215 case MASK_BITS_31_30: 216 val >>= OUT_CLK_SOURCE_31_30_SHIFT; 217 val &= OUT_CLK_SOURCE_31_30_MASK; 218 return val; 219 case MASK_BITS_31_29: 220 val >>= OUT_CLK_SOURCE_31_29_SHIFT; 221 val &= OUT_CLK_SOURCE_31_29_MASK; 222 return val; 223 case MASK_BITS_31_28: 224 val >>= OUT_CLK_SOURCE_31_28_SHIFT; 225 val &= OUT_CLK_SOURCE_31_28_MASK; 226 return val; 227 default: 228 return -1; 229 } 230 } 231 232 void clock_ll_set_source(enum periph_id periph_id, unsigned source) 233 { 234 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source); 235 } 236 237 /** 238 * Given the parent's rate and the required rate for the children, this works 239 * out the peripheral clock divider to use, in 7.1 binary format. 240 * 241 * @param divider_bits number of divider bits (8 or 16) 242 * @param parent_rate clock rate of parent clock in Hz 243 * @param rate required clock rate for this clock 244 * @return divider which should be used 245 */ 246 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, 247 unsigned long rate) 248 { 249 u64 divider = parent_rate * 2; 250 unsigned max_divider = 1 << divider_bits; 251 252 divider += rate - 1; 253 do_div(divider, rate); 254 255 if ((s64)divider - 2 < 0) 256 return 0; 257 258 if ((s64)divider - 2 >= max_divider) 259 return -1; 260 261 return divider - 2; 262 } 263 264 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate) 265 { 266 struct clk_pll *pll = get_pll(clkid); 267 int data = 0, div = 0, offset = 0; 268 269 if (!clock_id_is_pll(clkid)) 270 return -1; 271 272 if (pllout + 1 > pll_num_clkouts[clkid]) 273 return -1; 274 275 div = clk_get_divider(8, pll_rate[clkid], rate); 276 277 if (div < 0) 278 return -1; 279 280 /* out2 and out4 are in the high part of the register */ 281 if (pllout == PLL_OUT2 || pllout == PLL_OUT4) 282 offset = 16; 283 284 data = (div << PLL_OUT_RATIO_SHIFT) | 285 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN; 286 clrsetbits_le32(&pll->pll_out[pllout >> 1], 287 PLL_OUT_RATIO_MASK << offset, data << offset); 288 289 return 0; 290 } 291 292 /** 293 * Given the parent's rate and the divider in 7.1 format, this works out the 294 * resulting peripheral clock rate. 295 * 296 * @param parent_rate clock rate of parent clock in Hz 297 * @param divider which should be used in 7.1 format 298 * @return effective clock rate of peripheral 299 */ 300 static unsigned long get_rate_from_divider(unsigned long parent_rate, 301 int divider) 302 { 303 u64 rate; 304 305 rate = (u64)parent_rate * 2; 306 do_div(rate, divider + 2); 307 return rate; 308 } 309 310 unsigned long clock_get_periph_rate(enum periph_id periph_id, 311 enum clock_id parent) 312 { 313 u32 *reg = get_periph_source_reg(periph_id); 314 unsigned parent_rate = pll_rate[parent]; 315 int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT; 316 317 switch (periph_id) { 318 case PERIPH_ID_UART1: 319 case PERIPH_ID_UART2: 320 case PERIPH_ID_UART3: 321 case PERIPH_ID_UART4: 322 case PERIPH_ID_UART5: 323 #ifdef CONFIG_TEGRA20 324 /* There's no divider for these clocks in this SoC. */ 325 return parent_rate; 326 #else 327 /* 328 * This undoes the +2 in get_rate_from_divider() which I 329 * believe is incorrect. Ideally we would fix 330 * get_rate_from_divider(), but... Removing the +2 from 331 * get_rate_from_divider() would probably require remove the -2 332 * from the tail of clk_get_divider() since I believe that's 333 * only there to invert get_rate_from_divider()'s +2. Observe 334 * how find_best_divider() uses those two functions together. 335 * However, doing so breaks other stuff, such as Seaboard's 336 * display, likely due to clock_set_pllout()'s call to 337 * clk_get_divider(). Attempting to fix that by making 338 * clock_set_pllout() subtract 2 from clk_get_divider()'s 339 * return value doesn't help. In summary this clock driver is 340 * quite broken but I'm afraid I have no idea how to fix it 341 * without completely replacing it. 342 * 343 * Be careful to avoid a divide by zero error. 344 */ 345 if (div >= 1) 346 div -= 2; 347 break; 348 #endif 349 default: 350 break; 351 } 352 353 return get_rate_from_divider(parent_rate, div); 354 } 355 356 /** 357 * Find the best available 7.1 format divisor given a parent clock rate and 358 * required child clock rate. This function assumes that a second-stage 359 * divisor is available which can divide by powers of 2 from 1 to 256. 360 * 361 * @param divider_bits number of divider bits (8 or 16) 362 * @param parent_rate clock rate of parent clock in Hz 363 * @param rate required clock rate for this clock 364 * @param extra_div value for the second-stage divisor (not set if this 365 * function returns -1. 366 * @return divider which should be used, or -1 if nothing is valid 367 * 368 */ 369 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, 370 unsigned long rate, int *extra_div) 371 { 372 int shift; 373 int best_divider = -1; 374 int best_error = rate; 375 376 /* try dividers from 1 to 256 and find closest match */ 377 for (shift = 0; shift <= 8 && best_error > 0; shift++) { 378 unsigned divided_parent = parent_rate >> shift; 379 int divider = clk_get_divider(divider_bits, divided_parent, 380 rate); 381 unsigned effective_rate = get_rate_from_divider(divided_parent, 382 divider); 383 int error = rate - effective_rate; 384 385 /* Given a valid divider, look for the lowest error */ 386 if (divider != -1 && error < best_error) { 387 best_error = error; 388 *extra_div = 1 << shift; 389 best_divider = divider; 390 } 391 } 392 393 /* return what we found - *extra_div will already be set */ 394 return best_divider; 395 } 396 397 /** 398 * Adjust peripheral PLL to use the given divider and source. 399 * 400 * @param periph_id peripheral to adjust 401 * @param source Source number (0-3 or 0-7) 402 * @param mux_bits Number of mux bits (2 or 4) 403 * @param divider Required divider in 7.1 or 15.1 format 404 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid 405 * for this peripheral) 406 */ 407 static int adjust_periph_pll(enum periph_id periph_id, int source, 408 int mux_bits, unsigned divider) 409 { 410 u32 *reg = get_periph_source_reg(periph_id); 411 412 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, 413 divider << OUT_CLK_DIVISOR_SHIFT); 414 udelay(1); 415 416 /* work out the source clock and set it */ 417 if (source < 0) 418 return -1; 419 420 clock_ll_set_source_bits(periph_id, mux_bits, source); 421 422 udelay(2); 423 return 0; 424 } 425 426 enum clock_id clock_get_periph_parent(enum periph_id periph_id) 427 { 428 int err, mux_bits, divider_bits, type; 429 int source; 430 431 err = get_periph_clock_info(periph_id, &mux_bits, ÷r_bits, &type); 432 if (err) 433 return CLOCK_ID_NONE; 434 435 source = clock_ll_get_source_bits(periph_id, mux_bits); 436 437 return get_periph_clock_id(periph_id, source); 438 } 439 440 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, 441 enum clock_id parent, unsigned rate, int *extra_div) 442 { 443 unsigned effective_rate; 444 int mux_bits, divider_bits, source; 445 int divider; 446 int xdiv = 0; 447 448 /* work out the source clock and set it */ 449 source = get_periph_clock_source(periph_id, parent, &mux_bits, 450 ÷r_bits); 451 452 divider = find_best_divider(divider_bits, pll_rate[parent], 453 rate, &xdiv); 454 if (extra_div) 455 *extra_div = xdiv; 456 457 assert(divider >= 0); 458 if (adjust_periph_pll(periph_id, source, mux_bits, divider)) 459 return -1U; 460 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, 461 get_periph_source_reg(periph_id), 462 readl(get_periph_source_reg(periph_id))); 463 464 /* Check what we ended up with. This shouldn't matter though */ 465 effective_rate = clock_get_periph_rate(periph_id, parent); 466 if (extra_div) 467 effective_rate /= *extra_div; 468 if (rate != effective_rate) 469 debug("Requested clock rate %u not honored (got %u)\n", 470 rate, effective_rate); 471 return effective_rate; 472 } 473 474 unsigned clock_start_periph_pll(enum periph_id periph_id, 475 enum clock_id parent, unsigned rate) 476 { 477 unsigned effective_rate; 478 479 reset_set_enable(periph_id, 1); 480 clock_enable(periph_id); 481 482 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, 483 NULL); 484 485 reset_set_enable(periph_id, 0); 486 return effective_rate; 487 } 488 489 void clock_enable(enum periph_id clkid) 490 { 491 clock_set_enable(clkid, 1); 492 } 493 494 void clock_disable(enum periph_id clkid) 495 { 496 clock_set_enable(clkid, 0); 497 } 498 499 void reset_periph(enum periph_id periph_id, int us_delay) 500 { 501 /* Put peripheral into reset */ 502 reset_set_enable(periph_id, 1); 503 udelay(us_delay); 504 505 /* Remove reset */ 506 reset_set_enable(periph_id, 0); 507 508 udelay(us_delay); 509 } 510 511 void reset_cmplx_set_enable(int cpu, int which, int reset) 512 { 513 struct clk_rst_ctlr *clkrst = 514 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 515 u32 mask; 516 517 /* Form the mask, which depends on the cpu chosen (2 or 4) */ 518 assert(cpu >= 0 && cpu < MAX_NUM_CPU); 519 mask = which << cpu; 520 521 /* either enable or disable those reset for that CPU */ 522 if (reset) 523 writel(mask, &clkrst->crc_cpu_cmplx_set); 524 else 525 writel(mask, &clkrst->crc_cpu_cmplx_clr); 526 } 527 528 unsigned int __weak clk_m_get_rate(unsigned int parent_rate) 529 { 530 return parent_rate; 531 } 532 533 unsigned clock_get_rate(enum clock_id clkid) 534 { 535 struct clk_pll *pll; 536 u32 base, divm; 537 u64 parent_rate, rate; 538 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 539 540 parent_rate = osc_freq[clock_get_osc_freq()]; 541 if (clkid == CLOCK_ID_OSC) 542 return parent_rate; 543 544 if (clkid == CLOCK_ID_CLK_M) 545 return clk_m_get_rate(parent_rate); 546 547 pll = get_pll(clkid); 548 if (!pll) 549 return 0; 550 base = readl(&pll->pll_base); 551 552 rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask); 553 divm = (base >> pllinfo->m_shift) & pllinfo->m_mask; 554 /* 555 * PLLU uses p_mask/p_shift for VCO on all but T210, 556 * T210 uses normal DIVP. Handled in pllinfo table. 557 */ 558 #ifdef CONFIG_TEGRA210 559 /* 560 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is 561 * not applied. pllP_out2 does have divp applied. All other pllP_outN 562 * are divided down from pllP_out0. We only support pllP_out0 in 563 * U-Boot at the time of writing this comment. 564 */ 565 if (clkid != CLOCK_ID_PERIPH) 566 #endif 567 divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask; 568 do_div(rate, divm); 569 return rate; 570 } 571 572 /** 573 * Set the output frequency you want for each PLL clock. 574 * PLL output frequencies are programmed by setting their N, M and P values. 575 * The governing equations are: 576 * VCO = (Fi / m) * n, Fo = VCO / (2^p) 577 * where Fo is the output frequency from the PLL. 578 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) 579 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 580 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming 581 * 582 * @param n PLL feedback divider(DIVN) 583 * @param m PLL input divider(DIVN) 584 * @param p post divider(DIVP) 585 * @param cpcon base PLL charge pump(CPCON) 586 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot 587 * be overridden), 1 if PLL is already correct 588 */ 589 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) 590 { 591 u32 base_reg, misc_reg; 592 struct clk_pll *pll; 593 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 594 595 pll = get_pll(clkid); 596 597 base_reg = readl(&pll->pll_base); 598 599 /* Set BYPASS, m, n and p to PLL_BASE */ 600 base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift); 601 base_reg |= m << pllinfo->m_shift; 602 603 base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift); 604 base_reg |= n << pllinfo->n_shift; 605 606 base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift); 607 base_reg |= p << pllinfo->p_shift; 608 609 if (clkid == CLOCK_ID_PERIPH) { 610 /* 611 * If the PLL is already set up, check that it is correct 612 * and record this info for clock_verify() to check. 613 */ 614 if (base_reg & PLL_BASE_OVRRIDE_MASK) { 615 base_reg |= PLL_ENABLE_MASK; 616 if (base_reg != readl(&pll->pll_base)) 617 pllp_valid = 0; 618 return pllp_valid ? 1 : -1; 619 } 620 base_reg |= PLL_BASE_OVRRIDE_MASK; 621 } 622 623 base_reg |= PLL_BYPASS_MASK; 624 writel(base_reg, &pll->pll_base); 625 626 /* Set cpcon (KCP) to PLL_MISC */ 627 misc_reg = readl(&pll->pll_misc); 628 misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); 629 misc_reg |= cpcon << pllinfo->kcp_shift; 630 writel(misc_reg, &pll->pll_misc); 631 632 /* Enable PLL */ 633 base_reg |= PLL_ENABLE_MASK; 634 writel(base_reg, &pll->pll_base); 635 636 /* Disable BYPASS */ 637 base_reg &= ~PLL_BYPASS_MASK; 638 writel(base_reg, &pll->pll_base); 639 640 return 0; 641 } 642 643 void clock_ll_start_uart(enum periph_id periph_id) 644 { 645 /* Assert UART reset and enable clock */ 646 reset_set_enable(periph_id, 1); 647 clock_enable(periph_id); 648 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ 649 650 /* wait for 2us */ 651 udelay(2); 652 653 /* De-assert reset to UART */ 654 reset_set_enable(periph_id, 0); 655 } 656 657 #if CONFIG_IS_ENABLED(OF_CONTROL) 658 int clock_decode_periph_id(const void *blob, int node) 659 { 660 enum periph_id id; 661 u32 cell[2]; 662 int err; 663 664 err = fdtdec_get_int_array(blob, node, "clocks", cell, 665 ARRAY_SIZE(cell)); 666 if (err) 667 return -1; 668 id = clk_id_to_periph_id(cell[1]); 669 assert(clock_periph_id_isvalid(id)); 670 return id; 671 } 672 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 673 674 int clock_verify(void) 675 { 676 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); 677 u32 reg = readl(&pll->pll_base); 678 679 if (!pllp_valid) { 680 printf("Warning: PLLP %x is not correct\n", reg); 681 return -1; 682 } 683 debug("PLLP %x is correct\n", reg); 684 return 0; 685 } 686 687 void clock_init(void) 688 { 689 int i; 690 691 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); 692 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); 693 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); 694 pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB); 695 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY); 696 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU); 697 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; 698 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); 699 pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M); 700 701 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); 702 debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]); 703 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]); 704 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); 705 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); 706 debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]); 707 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]); 708 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]); 709 710 for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) { 711 enum periph_id periph_id; 712 enum clock_id parent; 713 int source, mux_bits, divider_bits; 714 715 periph_id = periph_clk_init_table[i].periph_id; 716 parent = periph_clk_init_table[i].parent_clock_id; 717 718 source = get_periph_clock_source(periph_id, parent, &mux_bits, 719 ÷r_bits); 720 clock_ll_set_source_bits(periph_id, mux_bits, source); 721 } 722 } 723 724 static void set_avp_clock_source(u32 src) 725 { 726 struct clk_rst_ctlr *clkrst = 727 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 728 u32 val; 729 730 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) | 731 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) | 732 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) | 733 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) | 734 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT); 735 writel(val, &clkrst->crc_sclk_brst_pol); 736 udelay(3); 737 } 738 739 /* 740 * This function is useful on Tegra30, and any later SoCs that have compatible 741 * PLLP configuration registers. 742 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c 743 */ 744 void tegra30_set_up_pllp(void) 745 { 746 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 747 u32 reg; 748 749 /* 750 * Based on the Tegra TRM, the system clock (which is the AVP clock) can 751 * run up to 275MHz. On power on, the default sytem clock source is set 752 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to 753 * 408MHz which is beyond system clock's upper limit. 754 * 755 * The fix is to set the system clock to CLK_M before initializing PLLP, 756 * and then switch back to PLLP_OUT4, which has an appropriate divider 757 * configured, after PLLP has been configured 758 */ 759 set_avp_clock_source(SCLK_SOURCE_CLKM); 760 761 /* 762 * PLLP output frequency set to 408Mhz 763 * PLLC output frequency set to 228Mhz 764 */ 765 switch (clock_get_osc_freq()) { 766 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ 767 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8); 768 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8); 769 break; 770 771 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ 772 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8); 773 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); 774 break; 775 776 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ 777 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8); 778 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); 779 break; 780 case CLOCK_OSC_FREQ_19_2: 781 default: 782 /* 783 * These are not supported. It is too early to print a 784 * message and the UART likely won't work anyway due to the 785 * oscillator being wrong. 786 */ 787 break; 788 } 789 790 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */ 791 792 /* OUT1, 2 */ 793 /* Assert RSTN before enable */ 794 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN; 795 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 796 /* Set divisor and reenable */ 797 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) 798 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS 799 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) 800 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS; 801 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 802 803 /* OUT3, 4 */ 804 /* Assert RSTN before enable */ 805 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN; 806 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 807 /* Set divisor and reenable */ 808 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) 809 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS 810 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) 811 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS; 812 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 813 814 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4); 815 } 816 817 int clock_external_output(int clk_id) 818 { 819 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; 820 821 if (clk_id >= 1 && clk_id <= 3) { 822 setbits_le32(&pmc->pmc_clk_out_cntrl, 823 1 << (2 + (clk_id - 1) * 8)); 824 } else { 825 printf("%s: Unknown output clock id %d\n", __func__, clk_id); 826 return -EINVAL; 827 } 828 829 return 0; 830 } 831 832 __weak bool clock_early_init_done(void) 833 { 834 return true; 835 } 836