1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved. 4 */ 5 6 /* Tegra SoC common clock control functions */ 7 8 #include <common.h> 9 #include <div64.h> 10 #include <dm.h> 11 #include <errno.h> 12 #include <asm/io.h> 13 #include <asm/arch/clock.h> 14 #include <asm/arch/tegra.h> 15 #include <asm/arch-tegra/ap.h> 16 #include <asm/arch-tegra/clk_rst.h> 17 #include <asm/arch-tegra/pmc.h> 18 #include <asm/arch-tegra/timer.h> 19 20 /* 21 * This is our record of the current clock rate of each clock. We don't 22 * fill all of these in since we are only really interested in clocks which 23 * we use as parents. 24 */ 25 static unsigned pll_rate[CLOCK_ID_COUNT]; 26 27 /* 28 * The oscillator frequency is fixed to one of four set values. Based on this 29 * the other clocks are set up appropriately. 30 */ 31 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { 32 13000000, 33 19200000, 34 12000000, 35 26000000, 36 38400000, 37 48000000, 38 }; 39 40 /* return 1 if a peripheral ID is in range */ 41 #define clock_type_id_isvalid(id) ((id) >= 0 && \ 42 (id) < CLOCK_TYPE_COUNT) 43 44 char pllp_valid = 1; /* PLLP is set up correctly */ 45 46 /* return 1 if a periphc_internal_id is in range */ 47 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ 48 (id) < PERIPHC_COUNT) 49 50 /* number of clock outputs of a PLL */ 51 static const u8 pll_num_clkouts[] = { 52 1, /* PLLC */ 53 1, /* PLLM */ 54 4, /* PLLP */ 55 1, /* PLLA */ 56 0, /* PLLU */ 57 0, /* PLLD */ 58 }; 59 60 int clock_get_osc_bypass(void) 61 { 62 struct clk_rst_ctlr *clkrst = 63 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 64 u32 reg; 65 66 reg = readl(&clkrst->crc_osc_ctrl); 67 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; 68 } 69 70 /* Returns a pointer to the registers of the given pll */ 71 static struct clk_pll *get_pll(enum clock_id clkid) 72 { 73 struct clk_rst_ctlr *clkrst = 74 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 75 76 assert(clock_id_is_pll(clkid)); 77 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) { 78 debug("%s: Invalid PLL %d\n", __func__, clkid); 79 return NULL; 80 } 81 return &clkrst->crc_pll[clkid]; 82 } 83 84 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid) 85 { 86 return NULL; 87 } 88 89 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, 90 u32 *divp, u32 *cpcon, u32 *lfcon) 91 { 92 struct clk_pll *pll = get_pll(clkid); 93 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 94 u32 data; 95 96 assert(clkid != CLOCK_ID_USB); 97 98 /* Safety check, adds to code size but is small */ 99 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) 100 return -1; 101 data = readl(&pll->pll_base); 102 *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask; 103 *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask; 104 *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask; 105 data = readl(&pll->pll_misc); 106 /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */ 107 *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask; 108 *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask; 109 110 return 0; 111 } 112 113 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, 114 u32 divp, u32 cpcon, u32 lfcon) 115 { 116 struct clk_pll *pll = NULL; 117 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 118 struct clk_pll_simple *simple_pll = NULL; 119 u32 misc_data, data; 120 121 if (clkid < (enum clock_id)TEGRA_CLK_PLLS) { 122 pll = get_pll(clkid); 123 } else { 124 simple_pll = clock_get_simple_pll(clkid); 125 if (!simple_pll) { 126 debug("%s: Uknown simple PLL %d\n", __func__, clkid); 127 return 0; 128 } 129 } 130 131 /* 132 * pllinfo has the m/n/p and kcp/kvco mask and shift 133 * values for all of the PLLs used in U-Boot, with any 134 * SoC differences accounted for. 135 * 136 * Preserve EN_LOCKDET, etc. 137 */ 138 if (pll) 139 misc_data = readl(&pll->pll_misc); 140 else 141 misc_data = readl(&simple_pll->pll_misc); 142 misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); 143 misc_data |= cpcon << pllinfo->kcp_shift; 144 misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift); 145 misc_data |= lfcon << pllinfo->kvco_shift; 146 147 data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift); 148 data |= divp << pllinfo->p_shift; 149 data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */ 150 151 if (pll) { 152 writel(misc_data, &pll->pll_misc); 153 writel(data, &pll->pll_base); 154 } else { 155 writel(misc_data, &simple_pll->pll_misc); 156 writel(data, &simple_pll->pll_base); 157 } 158 159 /* calculate the stable time */ 160 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; 161 } 162 163 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, 164 unsigned divisor) 165 { 166 u32 *reg = get_periph_source_reg(periph_id); 167 u32 value; 168 169 value = readl(reg); 170 171 value &= ~OUT_CLK_SOURCE_31_30_MASK; 172 value |= source << OUT_CLK_SOURCE_31_30_SHIFT; 173 174 value &= ~OUT_CLK_DIVISOR_MASK; 175 value |= divisor << OUT_CLK_DIVISOR_SHIFT; 176 177 writel(value, reg); 178 } 179 180 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits, 181 unsigned source) 182 { 183 u32 *reg = get_periph_source_reg(periph_id); 184 185 switch (mux_bits) { 186 case MASK_BITS_31_30: 187 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK, 188 source << OUT_CLK_SOURCE_31_30_SHIFT); 189 break; 190 191 case MASK_BITS_31_29: 192 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK, 193 source << OUT_CLK_SOURCE_31_29_SHIFT); 194 break; 195 196 case MASK_BITS_31_28: 197 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK, 198 source << OUT_CLK_SOURCE_31_28_SHIFT); 199 break; 200 201 default: 202 return -1; 203 } 204 205 return 0; 206 } 207 208 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits) 209 { 210 u32 *reg = get_periph_source_reg(periph_id); 211 u32 val = readl(reg); 212 213 switch (mux_bits) { 214 case MASK_BITS_31_30: 215 val >>= OUT_CLK_SOURCE_31_30_SHIFT; 216 val &= OUT_CLK_SOURCE_31_30_MASK; 217 return val; 218 case MASK_BITS_31_29: 219 val >>= OUT_CLK_SOURCE_31_29_SHIFT; 220 val &= OUT_CLK_SOURCE_31_29_MASK; 221 return val; 222 case MASK_BITS_31_28: 223 val >>= OUT_CLK_SOURCE_31_28_SHIFT; 224 val &= OUT_CLK_SOURCE_31_28_MASK; 225 return val; 226 default: 227 return -1; 228 } 229 } 230 231 void clock_ll_set_source(enum periph_id periph_id, unsigned source) 232 { 233 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source); 234 } 235 236 /** 237 * Given the parent's rate and the required rate for the children, this works 238 * out the peripheral clock divider to use, in 7.1 binary format. 239 * 240 * @param divider_bits number of divider bits (8 or 16) 241 * @param parent_rate clock rate of parent clock in Hz 242 * @param rate required clock rate for this clock 243 * @return divider which should be used 244 */ 245 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, 246 unsigned long rate) 247 { 248 u64 divider = parent_rate * 2; 249 unsigned max_divider = 1 << divider_bits; 250 251 divider += rate - 1; 252 do_div(divider, rate); 253 254 if ((s64)divider - 2 < 0) 255 return 0; 256 257 if ((s64)divider - 2 >= max_divider) 258 return -1; 259 260 return divider - 2; 261 } 262 263 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate) 264 { 265 struct clk_pll *pll = get_pll(clkid); 266 int data = 0, div = 0, offset = 0; 267 268 if (!clock_id_is_pll(clkid)) 269 return -1; 270 271 if (pllout + 1 > pll_num_clkouts[clkid]) 272 return -1; 273 274 div = clk_get_divider(8, pll_rate[clkid], rate); 275 276 if (div < 0) 277 return -1; 278 279 /* out2 and out4 are in the high part of the register */ 280 if (pllout == PLL_OUT2 || pllout == PLL_OUT4) 281 offset = 16; 282 283 data = (div << PLL_OUT_RATIO_SHIFT) | 284 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN; 285 clrsetbits_le32(&pll->pll_out[pllout >> 1], 286 PLL_OUT_RATIO_MASK << offset, data << offset); 287 288 return 0; 289 } 290 291 /** 292 * Given the parent's rate and the divider in 7.1 format, this works out the 293 * resulting peripheral clock rate. 294 * 295 * @param parent_rate clock rate of parent clock in Hz 296 * @param divider which should be used in 7.1 format 297 * @return effective clock rate of peripheral 298 */ 299 static unsigned long get_rate_from_divider(unsigned long parent_rate, 300 int divider) 301 { 302 u64 rate; 303 304 rate = (u64)parent_rate * 2; 305 do_div(rate, divider + 2); 306 return rate; 307 } 308 309 unsigned long clock_get_periph_rate(enum periph_id periph_id, 310 enum clock_id parent) 311 { 312 u32 *reg = get_periph_source_reg(periph_id); 313 unsigned parent_rate = pll_rate[parent]; 314 int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT; 315 316 switch (periph_id) { 317 case PERIPH_ID_UART1: 318 case PERIPH_ID_UART2: 319 case PERIPH_ID_UART3: 320 case PERIPH_ID_UART4: 321 case PERIPH_ID_UART5: 322 #ifdef CONFIG_TEGRA20 323 /* There's no divider for these clocks in this SoC. */ 324 return parent_rate; 325 #else 326 /* 327 * This undoes the +2 in get_rate_from_divider() which I 328 * believe is incorrect. Ideally we would fix 329 * get_rate_from_divider(), but... Removing the +2 from 330 * get_rate_from_divider() would probably require remove the -2 331 * from the tail of clk_get_divider() since I believe that's 332 * only there to invert get_rate_from_divider()'s +2. Observe 333 * how find_best_divider() uses those two functions together. 334 * However, doing so breaks other stuff, such as Seaboard's 335 * display, likely due to clock_set_pllout()'s call to 336 * clk_get_divider(). Attempting to fix that by making 337 * clock_set_pllout() subtract 2 from clk_get_divider()'s 338 * return value doesn't help. In summary this clock driver is 339 * quite broken but I'm afraid I have no idea how to fix it 340 * without completely replacing it. 341 * 342 * Be careful to avoid a divide by zero error. 343 */ 344 if (div >= 1) 345 div -= 2; 346 break; 347 #endif 348 default: 349 break; 350 } 351 352 return get_rate_from_divider(parent_rate, div); 353 } 354 355 /** 356 * Find the best available 7.1 format divisor given a parent clock rate and 357 * required child clock rate. This function assumes that a second-stage 358 * divisor is available which can divide by powers of 2 from 1 to 256. 359 * 360 * @param divider_bits number of divider bits (8 or 16) 361 * @param parent_rate clock rate of parent clock in Hz 362 * @param rate required clock rate for this clock 363 * @param extra_div value for the second-stage divisor (not set if this 364 * function returns -1. 365 * @return divider which should be used, or -1 if nothing is valid 366 * 367 */ 368 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, 369 unsigned long rate, int *extra_div) 370 { 371 int shift; 372 int best_divider = -1; 373 int best_error = rate; 374 375 /* try dividers from 1 to 256 and find closest match */ 376 for (shift = 0; shift <= 8 && best_error > 0; shift++) { 377 unsigned divided_parent = parent_rate >> shift; 378 int divider = clk_get_divider(divider_bits, divided_parent, 379 rate); 380 unsigned effective_rate = get_rate_from_divider(divided_parent, 381 divider); 382 int error = rate - effective_rate; 383 384 /* Given a valid divider, look for the lowest error */ 385 if (divider != -1 && error < best_error) { 386 best_error = error; 387 *extra_div = 1 << shift; 388 best_divider = divider; 389 } 390 } 391 392 /* return what we found - *extra_div will already be set */ 393 return best_divider; 394 } 395 396 /** 397 * Adjust peripheral PLL to use the given divider and source. 398 * 399 * @param periph_id peripheral to adjust 400 * @param source Source number (0-3 or 0-7) 401 * @param mux_bits Number of mux bits (2 or 4) 402 * @param divider Required divider in 7.1 or 15.1 format 403 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid 404 * for this peripheral) 405 */ 406 static int adjust_periph_pll(enum periph_id periph_id, int source, 407 int mux_bits, unsigned divider) 408 { 409 u32 *reg = get_periph_source_reg(periph_id); 410 411 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, 412 divider << OUT_CLK_DIVISOR_SHIFT); 413 udelay(1); 414 415 /* work out the source clock and set it */ 416 if (source < 0) 417 return -1; 418 419 clock_ll_set_source_bits(periph_id, mux_bits, source); 420 421 udelay(2); 422 return 0; 423 } 424 425 enum clock_id clock_get_periph_parent(enum periph_id periph_id) 426 { 427 int err, mux_bits, divider_bits, type; 428 int source; 429 430 err = get_periph_clock_info(periph_id, &mux_bits, ÷r_bits, &type); 431 if (err) 432 return CLOCK_ID_NONE; 433 434 source = clock_ll_get_source_bits(periph_id, mux_bits); 435 436 return get_periph_clock_id(periph_id, source); 437 } 438 439 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, 440 enum clock_id parent, unsigned rate, int *extra_div) 441 { 442 unsigned effective_rate; 443 int mux_bits, divider_bits, source; 444 int divider; 445 int xdiv = 0; 446 447 /* work out the source clock and set it */ 448 source = get_periph_clock_source(periph_id, parent, &mux_bits, 449 ÷r_bits); 450 451 divider = find_best_divider(divider_bits, pll_rate[parent], 452 rate, &xdiv); 453 if (extra_div) 454 *extra_div = xdiv; 455 456 assert(divider >= 0); 457 if (adjust_periph_pll(periph_id, source, mux_bits, divider)) 458 return -1U; 459 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, 460 get_periph_source_reg(periph_id), 461 readl(get_periph_source_reg(periph_id))); 462 463 /* Check what we ended up with. This shouldn't matter though */ 464 effective_rate = clock_get_periph_rate(periph_id, parent); 465 if (extra_div) 466 effective_rate /= *extra_div; 467 if (rate != effective_rate) 468 debug("Requested clock rate %u not honored (got %u)\n", 469 rate, effective_rate); 470 return effective_rate; 471 } 472 473 unsigned clock_start_periph_pll(enum periph_id periph_id, 474 enum clock_id parent, unsigned rate) 475 { 476 unsigned effective_rate; 477 478 reset_set_enable(periph_id, 1); 479 clock_enable(periph_id); 480 481 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, 482 NULL); 483 484 reset_set_enable(periph_id, 0); 485 return effective_rate; 486 } 487 488 void clock_enable(enum periph_id clkid) 489 { 490 clock_set_enable(clkid, 1); 491 } 492 493 void clock_disable(enum periph_id clkid) 494 { 495 clock_set_enable(clkid, 0); 496 } 497 498 void reset_periph(enum periph_id periph_id, int us_delay) 499 { 500 /* Put peripheral into reset */ 501 reset_set_enable(periph_id, 1); 502 udelay(us_delay); 503 504 /* Remove reset */ 505 reset_set_enable(periph_id, 0); 506 507 udelay(us_delay); 508 } 509 510 void reset_cmplx_set_enable(int cpu, int which, int reset) 511 { 512 struct clk_rst_ctlr *clkrst = 513 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 514 u32 mask; 515 516 /* Form the mask, which depends on the cpu chosen (2 or 4) */ 517 assert(cpu >= 0 && cpu < MAX_NUM_CPU); 518 mask = which << cpu; 519 520 /* either enable or disable those reset for that CPU */ 521 if (reset) 522 writel(mask, &clkrst->crc_cpu_cmplx_set); 523 else 524 writel(mask, &clkrst->crc_cpu_cmplx_clr); 525 } 526 527 unsigned int __weak clk_m_get_rate(unsigned int parent_rate) 528 { 529 return parent_rate; 530 } 531 532 unsigned clock_get_rate(enum clock_id clkid) 533 { 534 struct clk_pll *pll; 535 u32 base, divm; 536 u64 parent_rate, rate; 537 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 538 539 parent_rate = osc_freq[clock_get_osc_freq()]; 540 if (clkid == CLOCK_ID_OSC) 541 return parent_rate; 542 543 if (clkid == CLOCK_ID_CLK_M) 544 return clk_m_get_rate(parent_rate); 545 546 pll = get_pll(clkid); 547 if (!pll) 548 return 0; 549 base = readl(&pll->pll_base); 550 551 rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask); 552 divm = (base >> pllinfo->m_shift) & pllinfo->m_mask; 553 /* 554 * PLLU uses p_mask/p_shift for VCO on all but T210, 555 * T210 uses normal DIVP. Handled in pllinfo table. 556 */ 557 #ifdef CONFIG_TEGRA210 558 /* 559 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is 560 * not applied. pllP_out2 does have divp applied. All other pllP_outN 561 * are divided down from pllP_out0. We only support pllP_out0 in 562 * U-Boot at the time of writing this comment. 563 */ 564 if (clkid != CLOCK_ID_PERIPH) 565 #endif 566 divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask; 567 do_div(rate, divm); 568 return rate; 569 } 570 571 /** 572 * Set the output frequency you want for each PLL clock. 573 * PLL output frequencies are programmed by setting their N, M and P values. 574 * The governing equations are: 575 * VCO = (Fi / m) * n, Fo = VCO / (2^p) 576 * where Fo is the output frequency from the PLL. 577 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) 578 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 579 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming 580 * 581 * @param n PLL feedback divider(DIVN) 582 * @param m PLL input divider(DIVN) 583 * @param p post divider(DIVP) 584 * @param cpcon base PLL charge pump(CPCON) 585 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot 586 * be overridden), 1 if PLL is already correct 587 */ 588 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) 589 { 590 u32 base_reg, misc_reg; 591 struct clk_pll *pll; 592 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 593 594 pll = get_pll(clkid); 595 596 base_reg = readl(&pll->pll_base); 597 598 /* Set BYPASS, m, n and p to PLL_BASE */ 599 base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift); 600 base_reg |= m << pllinfo->m_shift; 601 602 base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift); 603 base_reg |= n << pllinfo->n_shift; 604 605 base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift); 606 base_reg |= p << pllinfo->p_shift; 607 608 if (clkid == CLOCK_ID_PERIPH) { 609 /* 610 * If the PLL is already set up, check that it is correct 611 * and record this info for clock_verify() to check. 612 */ 613 if (base_reg & PLL_BASE_OVRRIDE_MASK) { 614 base_reg |= PLL_ENABLE_MASK; 615 if (base_reg != readl(&pll->pll_base)) 616 pllp_valid = 0; 617 return pllp_valid ? 1 : -1; 618 } 619 base_reg |= PLL_BASE_OVRRIDE_MASK; 620 } 621 622 base_reg |= PLL_BYPASS_MASK; 623 writel(base_reg, &pll->pll_base); 624 625 /* Set cpcon (KCP) to PLL_MISC */ 626 misc_reg = readl(&pll->pll_misc); 627 misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); 628 misc_reg |= cpcon << pllinfo->kcp_shift; 629 writel(misc_reg, &pll->pll_misc); 630 631 /* Enable PLL */ 632 base_reg |= PLL_ENABLE_MASK; 633 writel(base_reg, &pll->pll_base); 634 635 /* Disable BYPASS */ 636 base_reg &= ~PLL_BYPASS_MASK; 637 writel(base_reg, &pll->pll_base); 638 639 return 0; 640 } 641 642 void clock_ll_start_uart(enum periph_id periph_id) 643 { 644 /* Assert UART reset and enable clock */ 645 reset_set_enable(periph_id, 1); 646 clock_enable(periph_id); 647 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ 648 649 /* wait for 2us */ 650 udelay(2); 651 652 /* De-assert reset to UART */ 653 reset_set_enable(periph_id, 0); 654 } 655 656 #if CONFIG_IS_ENABLED(OF_CONTROL) 657 int clock_decode_periph_id(struct udevice *dev) 658 { 659 enum periph_id id; 660 u32 cell[2]; 661 int err; 662 663 err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell)); 664 if (err) 665 return -1; 666 id = clk_id_to_periph_id(cell[1]); 667 assert(clock_periph_id_isvalid(id)); 668 return id; 669 } 670 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 671 672 int clock_verify(void) 673 { 674 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); 675 u32 reg = readl(&pll->pll_base); 676 677 if (!pllp_valid) { 678 printf("Warning: PLLP %x is not correct\n", reg); 679 return -1; 680 } 681 debug("PLLP %x is correct\n", reg); 682 return 0; 683 } 684 685 void clock_init(void) 686 { 687 int i; 688 689 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); 690 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); 691 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); 692 pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB); 693 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY); 694 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU); 695 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; 696 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); 697 pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M); 698 699 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); 700 debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]); 701 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]); 702 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); 703 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); 704 debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]); 705 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]); 706 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]); 707 708 for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) { 709 enum periph_id periph_id; 710 enum clock_id parent; 711 int source, mux_bits, divider_bits; 712 713 periph_id = periph_clk_init_table[i].periph_id; 714 parent = periph_clk_init_table[i].parent_clock_id; 715 716 source = get_periph_clock_source(periph_id, parent, &mux_bits, 717 ÷r_bits); 718 clock_ll_set_source_bits(periph_id, mux_bits, source); 719 } 720 } 721 722 static void set_avp_clock_source(u32 src) 723 { 724 struct clk_rst_ctlr *clkrst = 725 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 726 u32 val; 727 728 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) | 729 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) | 730 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) | 731 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) | 732 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT); 733 writel(val, &clkrst->crc_sclk_brst_pol); 734 udelay(3); 735 } 736 737 /* 738 * This function is useful on Tegra30, and any later SoCs that have compatible 739 * PLLP configuration registers. 740 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c 741 */ 742 void tegra30_set_up_pllp(void) 743 { 744 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 745 u32 reg; 746 747 /* 748 * Based on the Tegra TRM, the system clock (which is the AVP clock) can 749 * run up to 275MHz. On power on, the default sytem clock source is set 750 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to 751 * 408MHz which is beyond system clock's upper limit. 752 * 753 * The fix is to set the system clock to CLK_M before initializing PLLP, 754 * and then switch back to PLLP_OUT4, which has an appropriate divider 755 * configured, after PLLP has been configured 756 */ 757 set_avp_clock_source(SCLK_SOURCE_CLKM); 758 759 /* 760 * PLLP output frequency set to 408Mhz 761 * PLLC output frequency set to 228Mhz 762 */ 763 switch (clock_get_osc_freq()) { 764 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ 765 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8); 766 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8); 767 break; 768 769 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ 770 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8); 771 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); 772 break; 773 774 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ 775 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8); 776 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); 777 break; 778 case CLOCK_OSC_FREQ_19_2: 779 default: 780 /* 781 * These are not supported. It is too early to print a 782 * message and the UART likely won't work anyway due to the 783 * oscillator being wrong. 784 */ 785 break; 786 } 787 788 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */ 789 790 /* OUT1, 2 */ 791 /* Assert RSTN before enable */ 792 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN; 793 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 794 /* Set divisor and reenable */ 795 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) 796 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS 797 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) 798 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS; 799 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 800 801 /* OUT3, 4 */ 802 /* Assert RSTN before enable */ 803 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN; 804 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 805 /* Set divisor and reenable */ 806 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) 807 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS 808 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) 809 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS; 810 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 811 812 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4); 813 } 814 815 int clock_external_output(int clk_id) 816 { 817 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; 818 819 if (clk_id >= 1 && clk_id <= 3) { 820 setbits_le32(&pmc->pmc_clk_out_cntrl, 821 1 << (2 + (clk_id - 1) * 8)); 822 } else { 823 printf("%s: Unknown output clock id %d\n", __func__, clk_id); 824 return -EINVAL; 825 } 826 827 return 0; 828 } 829 830 __weak bool clock_early_init_done(void) 831 { 832 return true; 833 } 834