xref: /openbmc/u-boot/arch/arm/mach-tegra/clock.c (revision 86a390d3)
1 /*
2  * Copyright (c) 2010-2014, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /* Tegra SoC common clock control functions */
18 
19 #include <common.h>
20 #include <asm/io.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/tegra.h>
23 #include <asm/arch-tegra/clk_rst.h>
24 #include <asm/arch-tegra/timer.h>
25 #include <div64.h>
26 #include <fdtdec.h>
27 
28 /*
29  * This is our record of the current clock rate of each clock. We don't
30  * fill all of these in since we are only really interested in clocks which
31  * we use as parents.
32  */
33 static unsigned pll_rate[CLOCK_ID_COUNT];
34 
35 /*
36  * The oscillator frequency is fixed to one of four set values. Based on this
37  * the other clocks are set up appropriately.
38  */
39 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
40 	13000000,
41 	19200000,
42 	12000000,
43 	26000000,
44 };
45 
46 /* return 1 if a peripheral ID is in range */
47 #define clock_type_id_isvalid(id) ((id) >= 0 && \
48 		(id) < CLOCK_TYPE_COUNT)
49 
50 char pllp_valid = 1;	/* PLLP is set up correctly */
51 
52 /* return 1 if a periphc_internal_id is in range */
53 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
54 		(id) < PERIPHC_COUNT)
55 
56 /* number of clock outputs of a PLL */
57 static const u8 pll_num_clkouts[] = {
58 	1,	/* PLLC */
59 	1,	/* PLLM */
60 	4,	/* PLLP */
61 	1,	/* PLLA */
62 	0,	/* PLLU */
63 	0,	/* PLLD */
64 };
65 
66 int clock_get_osc_bypass(void)
67 {
68 	struct clk_rst_ctlr *clkrst =
69 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
70 	u32 reg;
71 
72 	reg = readl(&clkrst->crc_osc_ctrl);
73 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
74 }
75 
76 /* Returns a pointer to the registers of the given pll */
77 static struct clk_pll *get_pll(enum clock_id clkid)
78 {
79 	struct clk_rst_ctlr *clkrst =
80 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
81 
82 	assert(clock_id_is_pll(clkid));
83 	return &clkrst->crc_pll[clkid];
84 }
85 
86 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
87 		u32 *divp, u32 *cpcon, u32 *lfcon)
88 {
89 	struct clk_pll *pll = get_pll(clkid);
90 	u32 data;
91 
92 	assert(clkid != CLOCK_ID_USB);
93 
94 	/* Safety check, adds to code size but is small */
95 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
96 		return -1;
97 	data = readl(&pll->pll_base);
98 	*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
99 	*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
100 	*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
101 	data = readl(&pll->pll_misc);
102 	*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
103 	*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
104 
105 	return 0;
106 }
107 
108 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
109 		u32 divp, u32 cpcon, u32 lfcon)
110 {
111 	struct clk_pll *pll = get_pll(clkid);
112 	u32 data;
113 
114 	/*
115 	 * We cheat by treating all PLL (except PLLU) in the same fashion.
116 	 * This works only because:
117 	 * - same fields are always mapped at same offsets, except DCCON
118 	 * - DCCON is always 0, doesn't conflict
119 	 * - M,N, P of PLLP values are ignored for PLLP
120 	 */
121 	data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
122 	writel(data, &pll->pll_misc);
123 
124 	data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
125 			(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
126 
127 	if (clkid == CLOCK_ID_USB)
128 		data |= divp << PLLU_VCO_FREQ_SHIFT;
129 	else
130 		data |= divp << PLL_DIVP_SHIFT;
131 	writel(data, &pll->pll_base);
132 
133 	/* calculate the stable time */
134 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
135 }
136 
137 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
138 			unsigned divisor)
139 {
140 	u32 *reg = get_periph_source_reg(periph_id);
141 	u32 value;
142 
143 	value = readl(reg);
144 
145 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
146 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
147 
148 	value &= ~OUT_CLK_DIVISOR_MASK;
149 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
150 
151 	writel(value, reg);
152 }
153 
154 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
155 {
156 	u32 *reg = get_periph_source_reg(periph_id);
157 
158 	clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
159 			source << OUT_CLK_SOURCE_31_30_SHIFT);
160 }
161 
162 /**
163  * Given the parent's rate and the required rate for the children, this works
164  * out the peripheral clock divider to use, in 7.1 binary format.
165  *
166  * @param divider_bits	number of divider bits (8 or 16)
167  * @param parent_rate	clock rate of parent clock in Hz
168  * @param rate		required clock rate for this clock
169  * @return divider which should be used
170  */
171 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
172 			   unsigned long rate)
173 {
174 	u64 divider = parent_rate * 2;
175 	unsigned max_divider = 1 << divider_bits;
176 
177 	divider += rate - 1;
178 	do_div(divider, rate);
179 
180 	if ((s64)divider - 2 < 0)
181 		return 0;
182 
183 	if ((s64)divider - 2 >= max_divider)
184 		return -1;
185 
186 	return divider - 2;
187 }
188 
189 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
190 {
191 	struct clk_pll *pll = get_pll(clkid);
192 	int data = 0, div = 0, offset = 0;
193 
194 	if (!clock_id_is_pll(clkid))
195 		return -1;
196 
197 	if (pllout + 1 > pll_num_clkouts[clkid])
198 		return -1;
199 
200 	div = clk_get_divider(8, pll_rate[clkid], rate);
201 
202 	if (div < 0)
203 		return -1;
204 
205 	/* out2 and out4 are in the high part of the register */
206 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
207 		offset = 16;
208 
209 	data = (div << PLL_OUT_RATIO_SHIFT) |
210 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
211 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
212 			PLL_OUT_RATIO_MASK << offset, data << offset);
213 
214 	return 0;
215 }
216 
217 /**
218  * Given the parent's rate and the divider in 7.1 format, this works out the
219  * resulting peripheral clock rate.
220  *
221  * @param parent_rate	clock rate of parent clock in Hz
222  * @param divider which should be used in 7.1 format
223  * @return effective clock rate of peripheral
224  */
225 static unsigned long get_rate_from_divider(unsigned long parent_rate,
226 					   int divider)
227 {
228 	u64 rate;
229 
230 	rate = (u64)parent_rate * 2;
231 	do_div(rate, divider + 2);
232 	return rate;
233 }
234 
235 unsigned long clock_get_periph_rate(enum periph_id periph_id,
236 		enum clock_id parent)
237 {
238 	u32 *reg = get_periph_source_reg(periph_id);
239 
240 	return get_rate_from_divider(pll_rate[parent],
241 		(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
242 }
243 
244 /**
245  * Find the best available 7.1 format divisor given a parent clock rate and
246  * required child clock rate. This function assumes that a second-stage
247  * divisor is available which can divide by powers of 2 from 1 to 256.
248  *
249  * @param divider_bits	number of divider bits (8 or 16)
250  * @param parent_rate	clock rate of parent clock in Hz
251  * @param rate		required clock rate for this clock
252  * @param extra_div	value for the second-stage divisor (not set if this
253  *			function returns -1.
254  * @return divider which should be used, or -1 if nothing is valid
255  *
256  */
257 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
258 				unsigned long rate, int *extra_div)
259 {
260 	int shift;
261 	int best_divider = -1;
262 	int best_error = rate;
263 
264 	/* try dividers from 1 to 256 and find closest match */
265 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
266 		unsigned divided_parent = parent_rate >> shift;
267 		int divider = clk_get_divider(divider_bits, divided_parent,
268 						rate);
269 		unsigned effective_rate = get_rate_from_divider(divided_parent,
270 						divider);
271 		int error = rate - effective_rate;
272 
273 		/* Given a valid divider, look for the lowest error */
274 		if (divider != -1 && error < best_error) {
275 			best_error = error;
276 			*extra_div = 1 << shift;
277 			best_divider = divider;
278 		}
279 	}
280 
281 	/* return what we found - *extra_div will already be set */
282 	return best_divider;
283 }
284 
285 /**
286  * Adjust peripheral PLL to use the given divider and source.
287  *
288  * @param periph_id	peripheral to adjust
289  * @param source	Source number (0-3 or 0-7)
290  * @param mux_bits	Number of mux bits (2 or 4)
291  * @param divider	Required divider in 7.1 or 15.1 format
292  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
293  *		for this peripheral)
294  */
295 static int adjust_periph_pll(enum periph_id periph_id, int source,
296 				int mux_bits, unsigned divider)
297 {
298 	u32 *reg = get_periph_source_reg(periph_id);
299 
300 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
301 			divider << OUT_CLK_DIVISOR_SHIFT);
302 	udelay(1);
303 
304 	/* work out the source clock and set it */
305 	if (source < 0)
306 		return -1;
307 
308 	switch (mux_bits) {
309 	case MASK_BITS_31_30:
310 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
311 				source << OUT_CLK_SOURCE_31_30_SHIFT);
312 		break;
313 
314 	case MASK_BITS_31_29:
315 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
316 				source << OUT_CLK_SOURCE_31_29_SHIFT);
317 		break;
318 
319 	case MASK_BITS_31_28:
320 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
321 				source << OUT_CLK_SOURCE_31_28_SHIFT);
322 		break;
323 
324 	default:
325 		return -1;
326 	}
327 
328 	udelay(2);
329 	return 0;
330 }
331 
332 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
333 		enum clock_id parent, unsigned rate, int *extra_div)
334 {
335 	unsigned effective_rate;
336 	int mux_bits, divider_bits, source;
337 	int divider;
338 	int xdiv = 0;
339 
340 	/* work out the source clock and set it */
341 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
342 					 &divider_bits);
343 
344 	divider = find_best_divider(divider_bits, pll_rate[parent],
345 				    rate, &xdiv);
346 	if (extra_div)
347 		*extra_div = xdiv;
348 
349 	assert(divider >= 0);
350 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
351 		return -1U;
352 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
353 		get_periph_source_reg(periph_id),
354 		readl(get_periph_source_reg(periph_id)));
355 
356 	/* Check what we ended up with. This shouldn't matter though */
357 	effective_rate = clock_get_periph_rate(periph_id, parent);
358 	if (extra_div)
359 		effective_rate /= *extra_div;
360 	if (rate != effective_rate)
361 		debug("Requested clock rate %u not honored (got %u)\n",
362 			rate, effective_rate);
363 	return effective_rate;
364 }
365 
366 unsigned clock_start_periph_pll(enum periph_id periph_id,
367 		enum clock_id parent, unsigned rate)
368 {
369 	unsigned effective_rate;
370 
371 	reset_set_enable(periph_id, 1);
372 	clock_enable(periph_id);
373 
374 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
375 						 NULL);
376 
377 	reset_set_enable(periph_id, 0);
378 	return effective_rate;
379 }
380 
381 void clock_enable(enum periph_id clkid)
382 {
383 	clock_set_enable(clkid, 1);
384 }
385 
386 void clock_disable(enum periph_id clkid)
387 {
388 	clock_set_enable(clkid, 0);
389 }
390 
391 void reset_periph(enum periph_id periph_id, int us_delay)
392 {
393 	/* Put peripheral into reset */
394 	reset_set_enable(periph_id, 1);
395 	udelay(us_delay);
396 
397 	/* Remove reset */
398 	reset_set_enable(periph_id, 0);
399 
400 	udelay(us_delay);
401 }
402 
403 void reset_cmplx_set_enable(int cpu, int which, int reset)
404 {
405 	struct clk_rst_ctlr *clkrst =
406 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
407 	u32 mask;
408 
409 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
410 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
411 	mask = which << cpu;
412 
413 	/* either enable or disable those reset for that CPU */
414 	if (reset)
415 		writel(mask, &clkrst->crc_cpu_cmplx_set);
416 	else
417 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
418 }
419 
420 unsigned clock_get_rate(enum clock_id clkid)
421 {
422 	struct clk_pll *pll;
423 	u32 base;
424 	u32 divm;
425 	u64 parent_rate;
426 	u64 rate;
427 
428 	parent_rate = osc_freq[clock_get_osc_freq()];
429 	if (clkid == CLOCK_ID_OSC)
430 		return parent_rate;
431 
432 	pll = get_pll(clkid);
433 	base = readl(&pll->pll_base);
434 
435 	/* Oh for bf_unpack()... */
436 	rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
437 	divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
438 	if (clkid == CLOCK_ID_USB)
439 		divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
440 	else
441 		divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
442 	do_div(rate, divm);
443 	return rate;
444 }
445 
446 /**
447  * Set the output frequency you want for each PLL clock.
448  * PLL output frequencies are programmed by setting their N, M and P values.
449  * The governing equations are:
450  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
451  *     where Fo is the output frequency from the PLL.
452  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
453  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
454  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
455  *
456  * @param n PLL feedback divider(DIVN)
457  * @param m PLL input divider(DIVN)
458  * @param p post divider(DIVP)
459  * @param cpcon base PLL charge pump(CPCON)
460  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
461  *		be overriden), 1 if PLL is already correct
462  */
463 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
464 {
465 	u32 base_reg;
466 	u32 misc_reg;
467 	struct clk_pll *pll;
468 
469 	pll = get_pll(clkid);
470 
471 	base_reg = readl(&pll->pll_base);
472 
473 	/* Set BYPASS, m, n and p to PLL_BASE */
474 	base_reg &= ~PLL_DIVM_MASK;
475 	base_reg |= m << PLL_DIVM_SHIFT;
476 
477 	base_reg &= ~PLL_DIVN_MASK;
478 	base_reg |= n << PLL_DIVN_SHIFT;
479 
480 	base_reg &= ~PLL_DIVP_MASK;
481 	base_reg |= p << PLL_DIVP_SHIFT;
482 
483 	if (clkid == CLOCK_ID_PERIPH) {
484 		/*
485 		 * If the PLL is already set up, check that it is correct
486 		 * and record this info for clock_verify() to check.
487 		 */
488 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
489 			base_reg |= PLL_ENABLE_MASK;
490 			if (base_reg != readl(&pll->pll_base))
491 				pllp_valid = 0;
492 			return pllp_valid ? 1 : -1;
493 		}
494 		base_reg |= PLL_BASE_OVRRIDE_MASK;
495 	}
496 
497 	base_reg |= PLL_BYPASS_MASK;
498 	writel(base_reg, &pll->pll_base);
499 
500 	/* Set cpcon to PLL_MISC */
501 	misc_reg = readl(&pll->pll_misc);
502 	misc_reg &= ~PLL_CPCON_MASK;
503 	misc_reg |= cpcon << PLL_CPCON_SHIFT;
504 	writel(misc_reg, &pll->pll_misc);
505 
506 	/* Enable PLL */
507 	base_reg |= PLL_ENABLE_MASK;
508 	writel(base_reg, &pll->pll_base);
509 
510 	/* Disable BYPASS */
511 	base_reg &= ~PLL_BYPASS_MASK;
512 	writel(base_reg, &pll->pll_base);
513 
514 	return 0;
515 }
516 
517 void clock_ll_start_uart(enum periph_id periph_id)
518 {
519 	/* Assert UART reset and enable clock */
520 	reset_set_enable(periph_id, 1);
521 	clock_enable(periph_id);
522 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
523 
524 	/* wait for 2us */
525 	udelay(2);
526 
527 	/* De-assert reset to UART */
528 	reset_set_enable(periph_id, 0);
529 }
530 
531 #ifdef CONFIG_OF_CONTROL
532 int clock_decode_periph_id(const void *blob, int node)
533 {
534 	enum periph_id id;
535 	u32 cell[2];
536 	int err;
537 
538 	err = fdtdec_get_int_array(blob, node, "clocks", cell,
539 				   ARRAY_SIZE(cell));
540 	if (err)
541 		return -1;
542 	id = clk_id_to_periph_id(cell[1]);
543 	assert(clock_periph_id_isvalid(id));
544 	return id;
545 }
546 #endif /* CONFIG_OF_CONTROL */
547 
548 int clock_verify(void)
549 {
550 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
551 	u32 reg = readl(&pll->pll_base);
552 
553 	if (!pllp_valid) {
554 		printf("Warning: PLLP %x is not correct\n", reg);
555 		return -1;
556 	}
557 	debug("PLLP %x is correct\n", reg);
558 	return 0;
559 }
560 
561 void clock_init(void)
562 {
563 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
564 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
565 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
566 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
567 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
568 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
569 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
570 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
571 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
572 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
573 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
574 
575 	/* Do any special system timer/TSC setup */
576 	arch_timer_init();
577 }
578 
579 static void set_avp_clock_source(u32 src)
580 {
581 	struct clk_rst_ctlr *clkrst =
582 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
583 	u32 val;
584 
585 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
586 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
587 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
588 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
589 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
590 	writel(val, &clkrst->crc_sclk_brst_pol);
591 	udelay(3);
592 }
593 
594 /*
595  * This function is useful on Tegra30, and any later SoCs that have compatible
596  * PLLP configuration registers.
597  */
598 void tegra30_set_up_pllp(void)
599 {
600 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
601 	u32 reg;
602 
603 	/*
604 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
605 	 * run up to 275MHz. On power on, the default sytem clock source is set
606 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
607 	 * 408MHz which is beyond system clock's upper limit.
608 	 *
609 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
610 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
611 	 * configured, after PLLP has been configured
612 	 */
613 	set_avp_clock_source(SCLK_SOURCE_CLKM);
614 
615 	/*
616 	 * PLLP output frequency set to 408Mhz
617 	 * PLLC output frequency set to 228Mhz
618 	 */
619 	switch (clock_get_osc_freq()) {
620 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
621 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
622 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
623 		break;
624 
625 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
626 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
627 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
628 		break;
629 
630 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
631 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
632 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
633 		break;
634 	case CLOCK_OSC_FREQ_19_2:
635 	default:
636 		/*
637 		 * These are not supported. It is too early to print a
638 		 * message and the UART likely won't work anyway due to the
639 		 * oscillator being wrong.
640 		 */
641 		break;
642 	}
643 
644 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
645 
646 	/* OUT1, 2 */
647 	/* Assert RSTN before enable */
648 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
649 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
650 	/* Set divisor and reenable */
651 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
652 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
653 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
654 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
655 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
656 
657 	/* OUT3, 4 */
658 	/* Assert RSTN before enable */
659 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
660 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
661 	/* Set divisor and reenable */
662 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
663 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
664 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
665 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
666 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
667 
668 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
669 }
670