xref: /openbmc/u-boot/arch/arm/mach-tegra/clock.c (revision 83bf0057)
1 /*
2  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /* Tegra SoC common clock control functions */
18 
19 #include <common.h>
20 #include <errno.h>
21 #include <asm/io.h>
22 #include <asm/arch/clock.h>
23 #include <asm/arch/tegra.h>
24 #include <asm/arch-tegra/ap.h>
25 #include <asm/arch-tegra/clk_rst.h>
26 #include <asm/arch-tegra/pmc.h>
27 #include <asm/arch-tegra/timer.h>
28 #include <div64.h>
29 #include <fdtdec.h>
30 
31 /*
32  * This is our record of the current clock rate of each clock. We don't
33  * fill all of these in since we are only really interested in clocks which
34  * we use as parents.
35  */
36 static unsigned pll_rate[CLOCK_ID_COUNT];
37 
38 /*
39  * The oscillator frequency is fixed to one of four set values. Based on this
40  * the other clocks are set up appropriately.
41  */
42 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
43 	13000000,
44 	19200000,
45 	12000000,
46 	26000000,
47 	38400000,
48 	48000000,
49 };
50 
51 /* return 1 if a peripheral ID is in range */
52 #define clock_type_id_isvalid(id) ((id) >= 0 && \
53 		(id) < CLOCK_TYPE_COUNT)
54 
55 char pllp_valid = 1;	/* PLLP is set up correctly */
56 
57 /* return 1 if a periphc_internal_id is in range */
58 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
59 		(id) < PERIPHC_COUNT)
60 
61 /* number of clock outputs of a PLL */
62 static const u8 pll_num_clkouts[] = {
63 	1,	/* PLLC */
64 	1,	/* PLLM */
65 	4,	/* PLLP */
66 	1,	/* PLLA */
67 	0,	/* PLLU */
68 	0,	/* PLLD */
69 };
70 
71 int clock_get_osc_bypass(void)
72 {
73 	struct clk_rst_ctlr *clkrst =
74 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
75 	u32 reg;
76 
77 	reg = readl(&clkrst->crc_osc_ctrl);
78 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
79 }
80 
81 /* Returns a pointer to the registers of the given pll */
82 static struct clk_pll *get_pll(enum clock_id clkid)
83 {
84 	struct clk_rst_ctlr *clkrst =
85 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
86 
87 	assert(clock_id_is_pll(clkid));
88 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
89 		debug("%s: Invalid PLL %d\n", __func__, clkid);
90 		return NULL;
91 	}
92 	return &clkrst->crc_pll[clkid];
93 }
94 
95 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
96 {
97 	return NULL;
98 }
99 
100 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
101 		u32 *divp, u32 *cpcon, u32 *lfcon)
102 {
103 	struct clk_pll *pll = get_pll(clkid);
104 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
105 	u32 data;
106 
107 	assert(clkid != CLOCK_ID_USB);
108 
109 	/* Safety check, adds to code size but is small */
110 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
111 		return -1;
112 	data = readl(&pll->pll_base);
113 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
114 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
115 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
116 	data = readl(&pll->pll_misc);
117 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
118 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
119 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
120 
121 	return 0;
122 }
123 
124 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
125 		u32 divp, u32 cpcon, u32 lfcon)
126 {
127 	struct clk_pll *pll = NULL;
128 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
129 	struct clk_pll_simple *simple_pll = NULL;
130 	u32 misc_data, data;
131 
132 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
133 		pll = get_pll(clkid);
134 	} else {
135 		simple_pll = clock_get_simple_pll(clkid);
136 		if (!simple_pll) {
137 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
138 			return 0;
139 		}
140 	}
141 
142 	/*
143 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
144 	 * values for all of the PLLs used in U-Boot, with any
145 	 * SoC differences accounted for.
146 	 *
147 	 * Preserve EN_LOCKDET, etc.
148 	 */
149 	if (pll)
150 		misc_data = readl(&pll->pll_misc);
151 	else
152 		misc_data = readl(&simple_pll->pll_misc);
153 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
154 	misc_data |= cpcon << pllinfo->kcp_shift;
155 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
156 	misc_data |= lfcon << pllinfo->kvco_shift;
157 
158 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
159 	data |= divp << pllinfo->p_shift;
160 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
161 
162 	if (pll) {
163 		writel(misc_data, &pll->pll_misc);
164 		writel(data, &pll->pll_base);
165 	} else {
166 		writel(misc_data, &simple_pll->pll_misc);
167 		writel(data, &simple_pll->pll_base);
168 	}
169 
170 	/* calculate the stable time */
171 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
172 }
173 
174 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
175 			unsigned divisor)
176 {
177 	u32 *reg = get_periph_source_reg(periph_id);
178 	u32 value;
179 
180 	value = readl(reg);
181 
182 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
183 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
184 
185 	value &= ~OUT_CLK_DIVISOR_MASK;
186 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
187 
188 	writel(value, reg);
189 }
190 
191 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
192 			     unsigned source)
193 {
194 	u32 *reg = get_periph_source_reg(periph_id);
195 
196 	switch (mux_bits) {
197 	case MASK_BITS_31_30:
198 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
199 				source << OUT_CLK_SOURCE_31_30_SHIFT);
200 		break;
201 
202 	case MASK_BITS_31_29:
203 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
204 				source << OUT_CLK_SOURCE_31_29_SHIFT);
205 		break;
206 
207 	case MASK_BITS_31_28:
208 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
209 				source << OUT_CLK_SOURCE_31_28_SHIFT);
210 		break;
211 
212 	default:
213 		return -1;
214 	}
215 
216 	return 0;
217 }
218 
219 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
220 {
221 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
222 }
223 
224 /**
225  * Given the parent's rate and the required rate for the children, this works
226  * out the peripheral clock divider to use, in 7.1 binary format.
227  *
228  * @param divider_bits	number of divider bits (8 or 16)
229  * @param parent_rate	clock rate of parent clock in Hz
230  * @param rate		required clock rate for this clock
231  * @return divider which should be used
232  */
233 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
234 			   unsigned long rate)
235 {
236 	u64 divider = parent_rate * 2;
237 	unsigned max_divider = 1 << divider_bits;
238 
239 	divider += rate - 1;
240 	do_div(divider, rate);
241 
242 	if ((s64)divider - 2 < 0)
243 		return 0;
244 
245 	if ((s64)divider - 2 >= max_divider)
246 		return -1;
247 
248 	return divider - 2;
249 }
250 
251 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
252 {
253 	struct clk_pll *pll = get_pll(clkid);
254 	int data = 0, div = 0, offset = 0;
255 
256 	if (!clock_id_is_pll(clkid))
257 		return -1;
258 
259 	if (pllout + 1 > pll_num_clkouts[clkid])
260 		return -1;
261 
262 	div = clk_get_divider(8, pll_rate[clkid], rate);
263 
264 	if (div < 0)
265 		return -1;
266 
267 	/* out2 and out4 are in the high part of the register */
268 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
269 		offset = 16;
270 
271 	data = (div << PLL_OUT_RATIO_SHIFT) |
272 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
273 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
274 			PLL_OUT_RATIO_MASK << offset, data << offset);
275 
276 	return 0;
277 }
278 
279 /**
280  * Given the parent's rate and the divider in 7.1 format, this works out the
281  * resulting peripheral clock rate.
282  *
283  * @param parent_rate	clock rate of parent clock in Hz
284  * @param divider which should be used in 7.1 format
285  * @return effective clock rate of peripheral
286  */
287 static unsigned long get_rate_from_divider(unsigned long parent_rate,
288 					   int divider)
289 {
290 	u64 rate;
291 
292 	rate = (u64)parent_rate * 2;
293 	do_div(rate, divider + 2);
294 	return rate;
295 }
296 
297 unsigned long clock_get_periph_rate(enum periph_id periph_id,
298 		enum clock_id parent)
299 {
300 	u32 *reg = get_periph_source_reg(periph_id);
301 
302 	return get_rate_from_divider(pll_rate[parent],
303 		(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
304 }
305 
306 /**
307  * Find the best available 7.1 format divisor given a parent clock rate and
308  * required child clock rate. This function assumes that a second-stage
309  * divisor is available which can divide by powers of 2 from 1 to 256.
310  *
311  * @param divider_bits	number of divider bits (8 or 16)
312  * @param parent_rate	clock rate of parent clock in Hz
313  * @param rate		required clock rate for this clock
314  * @param extra_div	value for the second-stage divisor (not set if this
315  *			function returns -1.
316  * @return divider which should be used, or -1 if nothing is valid
317  *
318  */
319 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
320 				unsigned long rate, int *extra_div)
321 {
322 	int shift;
323 	int best_divider = -1;
324 	int best_error = rate;
325 
326 	/* try dividers from 1 to 256 and find closest match */
327 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
328 		unsigned divided_parent = parent_rate >> shift;
329 		int divider = clk_get_divider(divider_bits, divided_parent,
330 						rate);
331 		unsigned effective_rate = get_rate_from_divider(divided_parent,
332 						divider);
333 		int error = rate - effective_rate;
334 
335 		/* Given a valid divider, look for the lowest error */
336 		if (divider != -1 && error < best_error) {
337 			best_error = error;
338 			*extra_div = 1 << shift;
339 			best_divider = divider;
340 		}
341 	}
342 
343 	/* return what we found - *extra_div will already be set */
344 	return best_divider;
345 }
346 
347 /**
348  * Adjust peripheral PLL to use the given divider and source.
349  *
350  * @param periph_id	peripheral to adjust
351  * @param source	Source number (0-3 or 0-7)
352  * @param mux_bits	Number of mux bits (2 or 4)
353  * @param divider	Required divider in 7.1 or 15.1 format
354  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
355  *		for this peripheral)
356  */
357 static int adjust_periph_pll(enum periph_id periph_id, int source,
358 				int mux_bits, unsigned divider)
359 {
360 	u32 *reg = get_periph_source_reg(periph_id);
361 
362 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
363 			divider << OUT_CLK_DIVISOR_SHIFT);
364 	udelay(1);
365 
366 	/* work out the source clock and set it */
367 	if (source < 0)
368 		return -1;
369 
370 	clock_ll_set_source_bits(periph_id, mux_bits, source);
371 
372 	udelay(2);
373 	return 0;
374 }
375 
376 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
377 		enum clock_id parent, unsigned rate, int *extra_div)
378 {
379 	unsigned effective_rate;
380 	int mux_bits, divider_bits, source;
381 	int divider;
382 	int xdiv = 0;
383 
384 	/* work out the source clock and set it */
385 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
386 					 &divider_bits);
387 
388 	divider = find_best_divider(divider_bits, pll_rate[parent],
389 				    rate, &xdiv);
390 	if (extra_div)
391 		*extra_div = xdiv;
392 
393 	assert(divider >= 0);
394 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
395 		return -1U;
396 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
397 		get_periph_source_reg(periph_id),
398 		readl(get_periph_source_reg(periph_id)));
399 
400 	/* Check what we ended up with. This shouldn't matter though */
401 	effective_rate = clock_get_periph_rate(periph_id, parent);
402 	if (extra_div)
403 		effective_rate /= *extra_div;
404 	if (rate != effective_rate)
405 		debug("Requested clock rate %u not honored (got %u)\n",
406 			rate, effective_rate);
407 	return effective_rate;
408 }
409 
410 unsigned clock_start_periph_pll(enum periph_id periph_id,
411 		enum clock_id parent, unsigned rate)
412 {
413 	unsigned effective_rate;
414 
415 	reset_set_enable(periph_id, 1);
416 	clock_enable(periph_id);
417 
418 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
419 						 NULL);
420 
421 	reset_set_enable(periph_id, 0);
422 	return effective_rate;
423 }
424 
425 void clock_enable(enum periph_id clkid)
426 {
427 	clock_set_enable(clkid, 1);
428 }
429 
430 void clock_disable(enum periph_id clkid)
431 {
432 	clock_set_enable(clkid, 0);
433 }
434 
435 void reset_periph(enum periph_id periph_id, int us_delay)
436 {
437 	/* Put peripheral into reset */
438 	reset_set_enable(periph_id, 1);
439 	udelay(us_delay);
440 
441 	/* Remove reset */
442 	reset_set_enable(periph_id, 0);
443 
444 	udelay(us_delay);
445 }
446 
447 void reset_cmplx_set_enable(int cpu, int which, int reset)
448 {
449 	struct clk_rst_ctlr *clkrst =
450 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
451 	u32 mask;
452 
453 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
454 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
455 	mask = which << cpu;
456 
457 	/* either enable or disable those reset for that CPU */
458 	if (reset)
459 		writel(mask, &clkrst->crc_cpu_cmplx_set);
460 	else
461 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
462 }
463 
464 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
465 {
466 	return parent_rate;
467 }
468 
469 unsigned clock_get_rate(enum clock_id clkid)
470 {
471 	struct clk_pll *pll;
472 	u32 base, divm;
473 	u64 parent_rate, rate;
474 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
475 
476 	parent_rate = osc_freq[clock_get_osc_freq()];
477 	if (clkid == CLOCK_ID_OSC)
478 		return parent_rate;
479 
480 	if (clkid == CLOCK_ID_CLK_M)
481 		return clk_m_get_rate(parent_rate);
482 
483 	pll = get_pll(clkid);
484 	if (!pll)
485 		return 0;
486 	base = readl(&pll->pll_base);
487 
488 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
489 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
490 	/*
491 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
492 	 * T210 uses normal DIVP. Handled in pllinfo table.
493 	 */
494 #ifdef CONFIG_TEGRA210
495 	/*
496 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
497 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
498 	 * are divided down from pllP_out0. We only support pllP_out0 in
499 	 * U-Boot at the time of writing this comment.
500 	 */
501 	if (clkid != CLOCK_ID_PERIPH)
502 #endif
503 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
504 	do_div(rate, divm);
505 	return rate;
506 }
507 
508 /**
509  * Set the output frequency you want for each PLL clock.
510  * PLL output frequencies are programmed by setting their N, M and P values.
511  * The governing equations are:
512  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
513  *     where Fo is the output frequency from the PLL.
514  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
515  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
516  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
517  *
518  * @param n PLL feedback divider(DIVN)
519  * @param m PLL input divider(DIVN)
520  * @param p post divider(DIVP)
521  * @param cpcon base PLL charge pump(CPCON)
522  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
523  *		be overriden), 1 if PLL is already correct
524  */
525 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
526 {
527 	u32 base_reg, misc_reg;
528 	struct clk_pll *pll;
529 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
530 
531 	pll = get_pll(clkid);
532 
533 	base_reg = readl(&pll->pll_base);
534 
535 	/* Set BYPASS, m, n and p to PLL_BASE */
536 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
537 	base_reg |= m << pllinfo->m_shift;
538 
539 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
540 	base_reg |= n << pllinfo->n_shift;
541 
542 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
543 	base_reg |= p << pllinfo->p_shift;
544 
545 	if (clkid == CLOCK_ID_PERIPH) {
546 		/*
547 		 * If the PLL is already set up, check that it is correct
548 		 * and record this info for clock_verify() to check.
549 		 */
550 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
551 			base_reg |= PLL_ENABLE_MASK;
552 			if (base_reg != readl(&pll->pll_base))
553 				pllp_valid = 0;
554 			return pllp_valid ? 1 : -1;
555 		}
556 		base_reg |= PLL_BASE_OVRRIDE_MASK;
557 	}
558 
559 	base_reg |= PLL_BYPASS_MASK;
560 	writel(base_reg, &pll->pll_base);
561 
562 	/* Set cpcon (KCP) to PLL_MISC */
563 	misc_reg = readl(&pll->pll_misc);
564 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
565 	misc_reg |= cpcon << pllinfo->kcp_shift;
566 	writel(misc_reg, &pll->pll_misc);
567 
568 	/* Enable PLL */
569 	base_reg |= PLL_ENABLE_MASK;
570 	writel(base_reg, &pll->pll_base);
571 
572 	/* Disable BYPASS */
573 	base_reg &= ~PLL_BYPASS_MASK;
574 	writel(base_reg, &pll->pll_base);
575 
576 	return 0;
577 }
578 
579 void clock_ll_start_uart(enum periph_id periph_id)
580 {
581 	/* Assert UART reset and enable clock */
582 	reset_set_enable(periph_id, 1);
583 	clock_enable(periph_id);
584 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
585 
586 	/* wait for 2us */
587 	udelay(2);
588 
589 	/* De-assert reset to UART */
590 	reset_set_enable(periph_id, 0);
591 }
592 
593 #if CONFIG_IS_ENABLED(OF_CONTROL)
594 int clock_decode_periph_id(const void *blob, int node)
595 {
596 	enum periph_id id;
597 	u32 cell[2];
598 	int err;
599 
600 	err = fdtdec_get_int_array(blob, node, "clocks", cell,
601 				   ARRAY_SIZE(cell));
602 	if (err)
603 		return -1;
604 	id = clk_id_to_periph_id(cell[1]);
605 	assert(clock_periph_id_isvalid(id));
606 	return id;
607 }
608 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
609 
610 int clock_verify(void)
611 {
612 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
613 	u32 reg = readl(&pll->pll_base);
614 
615 	if (!pllp_valid) {
616 		printf("Warning: PLLP %x is not correct\n", reg);
617 		return -1;
618 	}
619 	debug("PLLP %x is correct\n", reg);
620 	return 0;
621 }
622 
623 void clock_init(void)
624 {
625 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
626 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
627 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
628 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
629 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
630 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
631 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
632 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
633 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
634 
635 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
636 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
637 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
638 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
639 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
640 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
641 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
642 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
643 }
644 
645 static void set_avp_clock_source(u32 src)
646 {
647 	struct clk_rst_ctlr *clkrst =
648 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
649 	u32 val;
650 
651 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
652 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
653 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
654 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
655 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
656 	writel(val, &clkrst->crc_sclk_brst_pol);
657 	udelay(3);
658 }
659 
660 /*
661  * This function is useful on Tegra30, and any later SoCs that have compatible
662  * PLLP configuration registers.
663  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
664  */
665 void tegra30_set_up_pllp(void)
666 {
667 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
668 	u32 reg;
669 
670 	/*
671 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
672 	 * run up to 275MHz. On power on, the default sytem clock source is set
673 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
674 	 * 408MHz which is beyond system clock's upper limit.
675 	 *
676 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
677 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
678 	 * configured, after PLLP has been configured
679 	 */
680 	set_avp_clock_source(SCLK_SOURCE_CLKM);
681 
682 	/*
683 	 * PLLP output frequency set to 408Mhz
684 	 * PLLC output frequency set to 228Mhz
685 	 */
686 	switch (clock_get_osc_freq()) {
687 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
688 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
689 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
690 		break;
691 
692 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
693 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
694 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
695 		break;
696 
697 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
698 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
699 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
700 		break;
701 	case CLOCK_OSC_FREQ_19_2:
702 	default:
703 		/*
704 		 * These are not supported. It is too early to print a
705 		 * message and the UART likely won't work anyway due to the
706 		 * oscillator being wrong.
707 		 */
708 		break;
709 	}
710 
711 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
712 
713 	/* OUT1, 2 */
714 	/* Assert RSTN before enable */
715 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
716 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
717 	/* Set divisor and reenable */
718 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
719 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
720 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
721 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
722 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
723 
724 	/* OUT3, 4 */
725 	/* Assert RSTN before enable */
726 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
727 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
728 	/* Set divisor and reenable */
729 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
730 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
731 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
732 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
733 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
734 
735 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
736 }
737 
738 int clock_external_output(int clk_id)
739 {
740 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
741 
742 	if (clk_id >= 1 && clk_id <= 3) {
743 		setbits_le32(&pmc->pmc_clk_out_cntrl,
744 			     1 << (2 + (clk_id - 1) * 8));
745 	} else {
746 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
747 		return -EINVAL;
748 	}
749 
750 	return 0;
751 }
752