1 /* 2 * Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved. 3 * 4 * SPDX-License-Identifier: GPL-2.0 5 */ 6 7 /* Tegra SoC common clock control functions */ 8 9 #include <common.h> 10 #include <errno.h> 11 #include <asm/io.h> 12 #include <asm/arch/clock.h> 13 #include <asm/arch/tegra.h> 14 #include <asm/arch-tegra/ap.h> 15 #include <asm/arch-tegra/clk_rst.h> 16 #include <asm/arch-tegra/pmc.h> 17 #include <asm/arch-tegra/timer.h> 18 #include <div64.h> 19 #include <fdtdec.h> 20 21 /* 22 * This is our record of the current clock rate of each clock. We don't 23 * fill all of these in since we are only really interested in clocks which 24 * we use as parents. 25 */ 26 static unsigned pll_rate[CLOCK_ID_COUNT]; 27 28 /* 29 * The oscillator frequency is fixed to one of four set values. Based on this 30 * the other clocks are set up appropriately. 31 */ 32 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { 33 13000000, 34 19200000, 35 12000000, 36 26000000, 37 38400000, 38 48000000, 39 }; 40 41 /* return 1 if a peripheral ID is in range */ 42 #define clock_type_id_isvalid(id) ((id) >= 0 && \ 43 (id) < CLOCK_TYPE_COUNT) 44 45 char pllp_valid = 1; /* PLLP is set up correctly */ 46 47 /* return 1 if a periphc_internal_id is in range */ 48 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ 49 (id) < PERIPHC_COUNT) 50 51 /* number of clock outputs of a PLL */ 52 static const u8 pll_num_clkouts[] = { 53 1, /* PLLC */ 54 1, /* PLLM */ 55 4, /* PLLP */ 56 1, /* PLLA */ 57 0, /* PLLU */ 58 0, /* PLLD */ 59 }; 60 61 int clock_get_osc_bypass(void) 62 { 63 struct clk_rst_ctlr *clkrst = 64 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 65 u32 reg; 66 67 reg = readl(&clkrst->crc_osc_ctrl); 68 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; 69 } 70 71 /* Returns a pointer to the registers of the given pll */ 72 static struct clk_pll *get_pll(enum clock_id clkid) 73 { 74 struct clk_rst_ctlr *clkrst = 75 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 76 77 assert(clock_id_is_pll(clkid)); 78 if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) { 79 debug("%s: Invalid PLL %d\n", __func__, clkid); 80 return NULL; 81 } 82 return &clkrst->crc_pll[clkid]; 83 } 84 85 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid) 86 { 87 return NULL; 88 } 89 90 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, 91 u32 *divp, u32 *cpcon, u32 *lfcon) 92 { 93 struct clk_pll *pll = get_pll(clkid); 94 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 95 u32 data; 96 97 assert(clkid != CLOCK_ID_USB); 98 99 /* Safety check, adds to code size but is small */ 100 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) 101 return -1; 102 data = readl(&pll->pll_base); 103 *divm = (data >> pllinfo->m_shift) & pllinfo->m_mask; 104 *divn = (data >> pllinfo->n_shift) & pllinfo->n_mask; 105 *divp = (data >> pllinfo->p_shift) & pllinfo->p_mask; 106 data = readl(&pll->pll_misc); 107 /* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */ 108 *cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask; 109 *lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask; 110 111 return 0; 112 } 113 114 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, 115 u32 divp, u32 cpcon, u32 lfcon) 116 { 117 struct clk_pll *pll = NULL; 118 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 119 struct clk_pll_simple *simple_pll = NULL; 120 u32 misc_data, data; 121 122 if (clkid < (enum clock_id)TEGRA_CLK_PLLS) { 123 pll = get_pll(clkid); 124 } else { 125 simple_pll = clock_get_simple_pll(clkid); 126 if (!simple_pll) { 127 debug("%s: Uknown simple PLL %d\n", __func__, clkid); 128 return 0; 129 } 130 } 131 132 /* 133 * pllinfo has the m/n/p and kcp/kvco mask and shift 134 * values for all of the PLLs used in U-Boot, with any 135 * SoC differences accounted for. 136 * 137 * Preserve EN_LOCKDET, etc. 138 */ 139 if (pll) 140 misc_data = readl(&pll->pll_misc); 141 else 142 misc_data = readl(&simple_pll->pll_misc); 143 misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); 144 misc_data |= cpcon << pllinfo->kcp_shift; 145 misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift); 146 misc_data |= lfcon << pllinfo->kvco_shift; 147 148 data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift); 149 data |= divp << pllinfo->p_shift; 150 data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */ 151 152 if (pll) { 153 writel(misc_data, &pll->pll_misc); 154 writel(data, &pll->pll_base); 155 } else { 156 writel(misc_data, &simple_pll->pll_misc); 157 writel(data, &simple_pll->pll_base); 158 } 159 160 /* calculate the stable time */ 161 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; 162 } 163 164 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, 165 unsigned divisor) 166 { 167 u32 *reg = get_periph_source_reg(periph_id); 168 u32 value; 169 170 value = readl(reg); 171 172 value &= ~OUT_CLK_SOURCE_31_30_MASK; 173 value |= source << OUT_CLK_SOURCE_31_30_SHIFT; 174 175 value &= ~OUT_CLK_DIVISOR_MASK; 176 value |= divisor << OUT_CLK_DIVISOR_SHIFT; 177 178 writel(value, reg); 179 } 180 181 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits, 182 unsigned source) 183 { 184 u32 *reg = get_periph_source_reg(periph_id); 185 186 switch (mux_bits) { 187 case MASK_BITS_31_30: 188 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK, 189 source << OUT_CLK_SOURCE_31_30_SHIFT); 190 break; 191 192 case MASK_BITS_31_29: 193 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK, 194 source << OUT_CLK_SOURCE_31_29_SHIFT); 195 break; 196 197 case MASK_BITS_31_28: 198 clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK, 199 source << OUT_CLK_SOURCE_31_28_SHIFT); 200 break; 201 202 default: 203 return -1; 204 } 205 206 return 0; 207 } 208 209 void clock_ll_set_source(enum periph_id periph_id, unsigned source) 210 { 211 clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source); 212 } 213 214 /** 215 * Given the parent's rate and the required rate for the children, this works 216 * out the peripheral clock divider to use, in 7.1 binary format. 217 * 218 * @param divider_bits number of divider bits (8 or 16) 219 * @param parent_rate clock rate of parent clock in Hz 220 * @param rate required clock rate for this clock 221 * @return divider which should be used 222 */ 223 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, 224 unsigned long rate) 225 { 226 u64 divider = parent_rate * 2; 227 unsigned max_divider = 1 << divider_bits; 228 229 divider += rate - 1; 230 do_div(divider, rate); 231 232 if ((s64)divider - 2 < 0) 233 return 0; 234 235 if ((s64)divider - 2 >= max_divider) 236 return -1; 237 238 return divider - 2; 239 } 240 241 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate) 242 { 243 struct clk_pll *pll = get_pll(clkid); 244 int data = 0, div = 0, offset = 0; 245 246 if (!clock_id_is_pll(clkid)) 247 return -1; 248 249 if (pllout + 1 > pll_num_clkouts[clkid]) 250 return -1; 251 252 div = clk_get_divider(8, pll_rate[clkid], rate); 253 254 if (div < 0) 255 return -1; 256 257 /* out2 and out4 are in the high part of the register */ 258 if (pllout == PLL_OUT2 || pllout == PLL_OUT4) 259 offset = 16; 260 261 data = (div << PLL_OUT_RATIO_SHIFT) | 262 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN; 263 clrsetbits_le32(&pll->pll_out[pllout >> 1], 264 PLL_OUT_RATIO_MASK << offset, data << offset); 265 266 return 0; 267 } 268 269 /** 270 * Given the parent's rate and the divider in 7.1 format, this works out the 271 * resulting peripheral clock rate. 272 * 273 * @param parent_rate clock rate of parent clock in Hz 274 * @param divider which should be used in 7.1 format 275 * @return effective clock rate of peripheral 276 */ 277 static unsigned long get_rate_from_divider(unsigned long parent_rate, 278 int divider) 279 { 280 u64 rate; 281 282 rate = (u64)parent_rate * 2; 283 do_div(rate, divider + 2); 284 return rate; 285 } 286 287 unsigned long clock_get_periph_rate(enum periph_id periph_id, 288 enum clock_id parent) 289 { 290 u32 *reg = get_periph_source_reg(periph_id); 291 292 return get_rate_from_divider(pll_rate[parent], 293 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT); 294 } 295 296 /** 297 * Find the best available 7.1 format divisor given a parent clock rate and 298 * required child clock rate. This function assumes that a second-stage 299 * divisor is available which can divide by powers of 2 from 1 to 256. 300 * 301 * @param divider_bits number of divider bits (8 or 16) 302 * @param parent_rate clock rate of parent clock in Hz 303 * @param rate required clock rate for this clock 304 * @param extra_div value for the second-stage divisor (not set if this 305 * function returns -1. 306 * @return divider which should be used, or -1 if nothing is valid 307 * 308 */ 309 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, 310 unsigned long rate, int *extra_div) 311 { 312 int shift; 313 int best_divider = -1; 314 int best_error = rate; 315 316 /* try dividers from 1 to 256 and find closest match */ 317 for (shift = 0; shift <= 8 && best_error > 0; shift++) { 318 unsigned divided_parent = parent_rate >> shift; 319 int divider = clk_get_divider(divider_bits, divided_parent, 320 rate); 321 unsigned effective_rate = get_rate_from_divider(divided_parent, 322 divider); 323 int error = rate - effective_rate; 324 325 /* Given a valid divider, look for the lowest error */ 326 if (divider != -1 && error < best_error) { 327 best_error = error; 328 *extra_div = 1 << shift; 329 best_divider = divider; 330 } 331 } 332 333 /* return what we found - *extra_div will already be set */ 334 return best_divider; 335 } 336 337 /** 338 * Adjust peripheral PLL to use the given divider and source. 339 * 340 * @param periph_id peripheral to adjust 341 * @param source Source number (0-3 or 0-7) 342 * @param mux_bits Number of mux bits (2 or 4) 343 * @param divider Required divider in 7.1 or 15.1 format 344 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid 345 * for this peripheral) 346 */ 347 static int adjust_periph_pll(enum periph_id periph_id, int source, 348 int mux_bits, unsigned divider) 349 { 350 u32 *reg = get_periph_source_reg(periph_id); 351 352 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, 353 divider << OUT_CLK_DIVISOR_SHIFT); 354 udelay(1); 355 356 /* work out the source clock and set it */ 357 if (source < 0) 358 return -1; 359 360 clock_ll_set_source_bits(periph_id, mux_bits, source); 361 362 udelay(2); 363 return 0; 364 } 365 366 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, 367 enum clock_id parent, unsigned rate, int *extra_div) 368 { 369 unsigned effective_rate; 370 int mux_bits, divider_bits, source; 371 int divider; 372 int xdiv = 0; 373 374 /* work out the source clock and set it */ 375 source = get_periph_clock_source(periph_id, parent, &mux_bits, 376 ÷r_bits); 377 378 divider = find_best_divider(divider_bits, pll_rate[parent], 379 rate, &xdiv); 380 if (extra_div) 381 *extra_div = xdiv; 382 383 assert(divider >= 0); 384 if (adjust_periph_pll(periph_id, source, mux_bits, divider)) 385 return -1U; 386 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, 387 get_periph_source_reg(periph_id), 388 readl(get_periph_source_reg(periph_id))); 389 390 /* Check what we ended up with. This shouldn't matter though */ 391 effective_rate = clock_get_periph_rate(periph_id, parent); 392 if (extra_div) 393 effective_rate /= *extra_div; 394 if (rate != effective_rate) 395 debug("Requested clock rate %u not honored (got %u)\n", 396 rate, effective_rate); 397 return effective_rate; 398 } 399 400 unsigned clock_start_periph_pll(enum periph_id periph_id, 401 enum clock_id parent, unsigned rate) 402 { 403 unsigned effective_rate; 404 405 reset_set_enable(periph_id, 1); 406 clock_enable(periph_id); 407 408 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, 409 NULL); 410 411 reset_set_enable(periph_id, 0); 412 return effective_rate; 413 } 414 415 void clock_enable(enum periph_id clkid) 416 { 417 clock_set_enable(clkid, 1); 418 } 419 420 void clock_disable(enum periph_id clkid) 421 { 422 clock_set_enable(clkid, 0); 423 } 424 425 void reset_periph(enum periph_id periph_id, int us_delay) 426 { 427 /* Put peripheral into reset */ 428 reset_set_enable(periph_id, 1); 429 udelay(us_delay); 430 431 /* Remove reset */ 432 reset_set_enable(periph_id, 0); 433 434 udelay(us_delay); 435 } 436 437 void reset_cmplx_set_enable(int cpu, int which, int reset) 438 { 439 struct clk_rst_ctlr *clkrst = 440 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 441 u32 mask; 442 443 /* Form the mask, which depends on the cpu chosen (2 or 4) */ 444 assert(cpu >= 0 && cpu < MAX_NUM_CPU); 445 mask = which << cpu; 446 447 /* either enable or disable those reset for that CPU */ 448 if (reset) 449 writel(mask, &clkrst->crc_cpu_cmplx_set); 450 else 451 writel(mask, &clkrst->crc_cpu_cmplx_clr); 452 } 453 454 unsigned int __weak clk_m_get_rate(unsigned int parent_rate) 455 { 456 return parent_rate; 457 } 458 459 unsigned clock_get_rate(enum clock_id clkid) 460 { 461 struct clk_pll *pll; 462 u32 base, divm; 463 u64 parent_rate, rate; 464 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 465 466 parent_rate = osc_freq[clock_get_osc_freq()]; 467 if (clkid == CLOCK_ID_OSC) 468 return parent_rate; 469 470 if (clkid == CLOCK_ID_CLK_M) 471 return clk_m_get_rate(parent_rate); 472 473 pll = get_pll(clkid); 474 if (!pll) 475 return 0; 476 base = readl(&pll->pll_base); 477 478 rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask); 479 divm = (base >> pllinfo->m_shift) & pllinfo->m_mask; 480 /* 481 * PLLU uses p_mask/p_shift for VCO on all but T210, 482 * T210 uses normal DIVP. Handled in pllinfo table. 483 */ 484 #ifdef CONFIG_TEGRA210 485 /* 486 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is 487 * not applied. pllP_out2 does have divp applied. All other pllP_outN 488 * are divided down from pllP_out0. We only support pllP_out0 in 489 * U-Boot at the time of writing this comment. 490 */ 491 if (clkid != CLOCK_ID_PERIPH) 492 #endif 493 divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask; 494 do_div(rate, divm); 495 return rate; 496 } 497 498 /** 499 * Set the output frequency you want for each PLL clock. 500 * PLL output frequencies are programmed by setting their N, M and P values. 501 * The governing equations are: 502 * VCO = (Fi / m) * n, Fo = VCO / (2^p) 503 * where Fo is the output frequency from the PLL. 504 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) 505 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 506 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming 507 * 508 * @param n PLL feedback divider(DIVN) 509 * @param m PLL input divider(DIVN) 510 * @param p post divider(DIVP) 511 * @param cpcon base PLL charge pump(CPCON) 512 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot 513 * be overridden), 1 if PLL is already correct 514 */ 515 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) 516 { 517 u32 base_reg, misc_reg; 518 struct clk_pll *pll; 519 struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid]; 520 521 pll = get_pll(clkid); 522 523 base_reg = readl(&pll->pll_base); 524 525 /* Set BYPASS, m, n and p to PLL_BASE */ 526 base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift); 527 base_reg |= m << pllinfo->m_shift; 528 529 base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift); 530 base_reg |= n << pllinfo->n_shift; 531 532 base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift); 533 base_reg |= p << pllinfo->p_shift; 534 535 if (clkid == CLOCK_ID_PERIPH) { 536 /* 537 * If the PLL is already set up, check that it is correct 538 * and record this info for clock_verify() to check. 539 */ 540 if (base_reg & PLL_BASE_OVRRIDE_MASK) { 541 base_reg |= PLL_ENABLE_MASK; 542 if (base_reg != readl(&pll->pll_base)) 543 pllp_valid = 0; 544 return pllp_valid ? 1 : -1; 545 } 546 base_reg |= PLL_BASE_OVRRIDE_MASK; 547 } 548 549 base_reg |= PLL_BYPASS_MASK; 550 writel(base_reg, &pll->pll_base); 551 552 /* Set cpcon (KCP) to PLL_MISC */ 553 misc_reg = readl(&pll->pll_misc); 554 misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift); 555 misc_reg |= cpcon << pllinfo->kcp_shift; 556 writel(misc_reg, &pll->pll_misc); 557 558 /* Enable PLL */ 559 base_reg |= PLL_ENABLE_MASK; 560 writel(base_reg, &pll->pll_base); 561 562 /* Disable BYPASS */ 563 base_reg &= ~PLL_BYPASS_MASK; 564 writel(base_reg, &pll->pll_base); 565 566 return 0; 567 } 568 569 void clock_ll_start_uart(enum periph_id periph_id) 570 { 571 /* Assert UART reset and enable clock */ 572 reset_set_enable(periph_id, 1); 573 clock_enable(periph_id); 574 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ 575 576 /* wait for 2us */ 577 udelay(2); 578 579 /* De-assert reset to UART */ 580 reset_set_enable(periph_id, 0); 581 } 582 583 #if CONFIG_IS_ENABLED(OF_CONTROL) 584 int clock_decode_periph_id(const void *blob, int node) 585 { 586 enum periph_id id; 587 u32 cell[2]; 588 int err; 589 590 err = fdtdec_get_int_array(blob, node, "clocks", cell, 591 ARRAY_SIZE(cell)); 592 if (err) 593 return -1; 594 id = clk_id_to_periph_id(cell[1]); 595 assert(clock_periph_id_isvalid(id)); 596 return id; 597 } 598 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ 599 600 int clock_verify(void) 601 { 602 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); 603 u32 reg = readl(&pll->pll_base); 604 605 if (!pllp_valid) { 606 printf("Warning: PLLP %x is not correct\n", reg); 607 return -1; 608 } 609 debug("PLLP %x is correct\n", reg); 610 return 0; 611 } 612 613 void clock_init(void) 614 { 615 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); 616 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); 617 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); 618 pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB); 619 pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY); 620 pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU); 621 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; 622 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); 623 pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M); 624 625 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); 626 debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]); 627 debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]); 628 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); 629 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); 630 debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]); 631 debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]); 632 debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]); 633 } 634 635 static void set_avp_clock_source(u32 src) 636 { 637 struct clk_rst_ctlr *clkrst = 638 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 639 u32 val; 640 641 val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) | 642 (src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) | 643 (src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) | 644 (src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) | 645 (SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT); 646 writel(val, &clkrst->crc_sclk_brst_pol); 647 udelay(3); 648 } 649 650 /* 651 * This function is useful on Tegra30, and any later SoCs that have compatible 652 * PLLP configuration registers. 653 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c 654 */ 655 void tegra30_set_up_pllp(void) 656 { 657 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; 658 u32 reg; 659 660 /* 661 * Based on the Tegra TRM, the system clock (which is the AVP clock) can 662 * run up to 275MHz. On power on, the default sytem clock source is set 663 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to 664 * 408MHz which is beyond system clock's upper limit. 665 * 666 * The fix is to set the system clock to CLK_M before initializing PLLP, 667 * and then switch back to PLLP_OUT4, which has an appropriate divider 668 * configured, after PLLP has been configured 669 */ 670 set_avp_clock_source(SCLK_SOURCE_CLKM); 671 672 /* 673 * PLLP output frequency set to 408Mhz 674 * PLLC output frequency set to 228Mhz 675 */ 676 switch (clock_get_osc_freq()) { 677 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ 678 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8); 679 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8); 680 break; 681 682 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ 683 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8); 684 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); 685 break; 686 687 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ 688 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8); 689 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); 690 break; 691 case CLOCK_OSC_FREQ_19_2: 692 default: 693 /* 694 * These are not supported. It is too early to print a 695 * message and the UART likely won't work anyway due to the 696 * oscillator being wrong. 697 */ 698 break; 699 } 700 701 /* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */ 702 703 /* OUT1, 2 */ 704 /* Assert RSTN before enable */ 705 reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN; 706 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 707 /* Set divisor and reenable */ 708 reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) 709 | PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS 710 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) 711 | PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS; 712 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]); 713 714 /* OUT3, 4 */ 715 /* Assert RSTN before enable */ 716 reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN; 717 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 718 /* Set divisor and reenable */ 719 reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) 720 | PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS 721 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) 722 | PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS; 723 writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]); 724 725 set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4); 726 } 727 728 int clock_external_output(int clk_id) 729 { 730 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; 731 732 if (clk_id >= 1 && clk_id <= 3) { 733 setbits_le32(&pmc->pmc_clk_out_cntrl, 734 1 << (2 + (clk_id - 1) * 8)); 735 } else { 736 printf("%s: Unknown output clock id %d\n", __func__, clk_id); 737 return -EINVAL; 738 } 739 740 return 0; 741 } 742