xref: /openbmc/u-boot/arch/arm/mach-tegra/clock.c (revision 5cbbd9bd)
1 /*
2  * Copyright (c) 2010-2014, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /* Tegra SoC common clock control functions */
18 
19 #include <common.h>
20 #include <asm/io.h>
21 #include <asm/arch/clock.h>
22 #include <asm/arch/tegra.h>
23 #include <asm/arch-tegra/ap.h>
24 #include <asm/arch-tegra/clk_rst.h>
25 #include <asm/arch-tegra/timer.h>
26 #include <div64.h>
27 #include <fdtdec.h>
28 
29 /*
30  * This is our record of the current clock rate of each clock. We don't
31  * fill all of these in since we are only really interested in clocks which
32  * we use as parents.
33  */
34 static unsigned pll_rate[CLOCK_ID_COUNT];
35 
36 /*
37  * The oscillator frequency is fixed to one of four set values. Based on this
38  * the other clocks are set up appropriately.
39  */
40 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
41 	13000000,
42 	19200000,
43 	12000000,
44 	26000000,
45 };
46 
47 /* return 1 if a peripheral ID is in range */
48 #define clock_type_id_isvalid(id) ((id) >= 0 && \
49 		(id) < CLOCK_TYPE_COUNT)
50 
51 char pllp_valid = 1;	/* PLLP is set up correctly */
52 
53 /* return 1 if a periphc_internal_id is in range */
54 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
55 		(id) < PERIPHC_COUNT)
56 
57 /* number of clock outputs of a PLL */
58 static const u8 pll_num_clkouts[] = {
59 	1,	/* PLLC */
60 	1,	/* PLLM */
61 	4,	/* PLLP */
62 	1,	/* PLLA */
63 	0,	/* PLLU */
64 	0,	/* PLLD */
65 };
66 
67 int clock_get_osc_bypass(void)
68 {
69 	struct clk_rst_ctlr *clkrst =
70 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
71 	u32 reg;
72 
73 	reg = readl(&clkrst->crc_osc_ctrl);
74 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
75 }
76 
77 /* Returns a pointer to the registers of the given pll */
78 static struct clk_pll *get_pll(enum clock_id clkid)
79 {
80 	struct clk_rst_ctlr *clkrst =
81 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
82 
83 	assert(clock_id_is_pll(clkid));
84 	return &clkrst->crc_pll[clkid];
85 }
86 
87 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
88 		u32 *divp, u32 *cpcon, u32 *lfcon)
89 {
90 	struct clk_pll *pll = get_pll(clkid);
91 	u32 data;
92 
93 	assert(clkid != CLOCK_ID_USB);
94 
95 	/* Safety check, adds to code size but is small */
96 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
97 		return -1;
98 	data = readl(&pll->pll_base);
99 	*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
100 	*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
101 	*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
102 	data = readl(&pll->pll_misc);
103 	*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
104 	*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
105 
106 	return 0;
107 }
108 
109 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
110 		u32 divp, u32 cpcon, u32 lfcon)
111 {
112 	struct clk_pll *pll = get_pll(clkid);
113 	u32 data;
114 
115 	/*
116 	 * We cheat by treating all PLL (except PLLU) in the same fashion.
117 	 * This works only because:
118 	 * - same fields are always mapped at same offsets, except DCCON
119 	 * - DCCON is always 0, doesn't conflict
120 	 * - M,N, P of PLLP values are ignored for PLLP
121 	 */
122 	data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
123 	writel(data, &pll->pll_misc);
124 
125 	data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
126 			(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
127 
128 	if (clkid == CLOCK_ID_USB)
129 		data |= divp << PLLU_VCO_FREQ_SHIFT;
130 	else
131 		data |= divp << PLL_DIVP_SHIFT;
132 	writel(data, &pll->pll_base);
133 
134 	/* calculate the stable time */
135 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
136 }
137 
138 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
139 			unsigned divisor)
140 {
141 	u32 *reg = get_periph_source_reg(periph_id);
142 	u32 value;
143 
144 	value = readl(reg);
145 
146 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
147 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
148 
149 	value &= ~OUT_CLK_DIVISOR_MASK;
150 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
151 
152 	writel(value, reg);
153 }
154 
155 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
156 {
157 	u32 *reg = get_periph_source_reg(periph_id);
158 
159 	clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
160 			source << OUT_CLK_SOURCE_31_30_SHIFT);
161 }
162 
163 /**
164  * Given the parent's rate and the required rate for the children, this works
165  * out the peripheral clock divider to use, in 7.1 binary format.
166  *
167  * @param divider_bits	number of divider bits (8 or 16)
168  * @param parent_rate	clock rate of parent clock in Hz
169  * @param rate		required clock rate for this clock
170  * @return divider which should be used
171  */
172 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
173 			   unsigned long rate)
174 {
175 	u64 divider = parent_rate * 2;
176 	unsigned max_divider = 1 << divider_bits;
177 
178 	divider += rate - 1;
179 	do_div(divider, rate);
180 
181 	if ((s64)divider - 2 < 0)
182 		return 0;
183 
184 	if ((s64)divider - 2 >= max_divider)
185 		return -1;
186 
187 	return divider - 2;
188 }
189 
190 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
191 {
192 	struct clk_pll *pll = get_pll(clkid);
193 	int data = 0, div = 0, offset = 0;
194 
195 	if (!clock_id_is_pll(clkid))
196 		return -1;
197 
198 	if (pllout + 1 > pll_num_clkouts[clkid])
199 		return -1;
200 
201 	div = clk_get_divider(8, pll_rate[clkid], rate);
202 
203 	if (div < 0)
204 		return -1;
205 
206 	/* out2 and out4 are in the high part of the register */
207 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
208 		offset = 16;
209 
210 	data = (div << PLL_OUT_RATIO_SHIFT) |
211 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
212 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
213 			PLL_OUT_RATIO_MASK << offset, data << offset);
214 
215 	return 0;
216 }
217 
218 /**
219  * Given the parent's rate and the divider in 7.1 format, this works out the
220  * resulting peripheral clock rate.
221  *
222  * @param parent_rate	clock rate of parent clock in Hz
223  * @param divider which should be used in 7.1 format
224  * @return effective clock rate of peripheral
225  */
226 static unsigned long get_rate_from_divider(unsigned long parent_rate,
227 					   int divider)
228 {
229 	u64 rate;
230 
231 	rate = (u64)parent_rate * 2;
232 	do_div(rate, divider + 2);
233 	return rate;
234 }
235 
236 unsigned long clock_get_periph_rate(enum periph_id periph_id,
237 		enum clock_id parent)
238 {
239 	u32 *reg = get_periph_source_reg(periph_id);
240 
241 	return get_rate_from_divider(pll_rate[parent],
242 		(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
243 }
244 
245 /**
246  * Find the best available 7.1 format divisor given a parent clock rate and
247  * required child clock rate. This function assumes that a second-stage
248  * divisor is available which can divide by powers of 2 from 1 to 256.
249  *
250  * @param divider_bits	number of divider bits (8 or 16)
251  * @param parent_rate	clock rate of parent clock in Hz
252  * @param rate		required clock rate for this clock
253  * @param extra_div	value for the second-stage divisor (not set if this
254  *			function returns -1.
255  * @return divider which should be used, or -1 if nothing is valid
256  *
257  */
258 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
259 				unsigned long rate, int *extra_div)
260 {
261 	int shift;
262 	int best_divider = -1;
263 	int best_error = rate;
264 
265 	/* try dividers from 1 to 256 and find closest match */
266 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
267 		unsigned divided_parent = parent_rate >> shift;
268 		int divider = clk_get_divider(divider_bits, divided_parent,
269 						rate);
270 		unsigned effective_rate = get_rate_from_divider(divided_parent,
271 						divider);
272 		int error = rate - effective_rate;
273 
274 		/* Given a valid divider, look for the lowest error */
275 		if (divider != -1 && error < best_error) {
276 			best_error = error;
277 			*extra_div = 1 << shift;
278 			best_divider = divider;
279 		}
280 	}
281 
282 	/* return what we found - *extra_div will already be set */
283 	return best_divider;
284 }
285 
286 /**
287  * Adjust peripheral PLL to use the given divider and source.
288  *
289  * @param periph_id	peripheral to adjust
290  * @param source	Source number (0-3 or 0-7)
291  * @param mux_bits	Number of mux bits (2 or 4)
292  * @param divider	Required divider in 7.1 or 15.1 format
293  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
294  *		for this peripheral)
295  */
296 static int adjust_periph_pll(enum periph_id periph_id, int source,
297 				int mux_bits, unsigned divider)
298 {
299 	u32 *reg = get_periph_source_reg(periph_id);
300 
301 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
302 			divider << OUT_CLK_DIVISOR_SHIFT);
303 	udelay(1);
304 
305 	/* work out the source clock and set it */
306 	if (source < 0)
307 		return -1;
308 
309 	switch (mux_bits) {
310 	case MASK_BITS_31_30:
311 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
312 				source << OUT_CLK_SOURCE_31_30_SHIFT);
313 		break;
314 
315 	case MASK_BITS_31_29:
316 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
317 				source << OUT_CLK_SOURCE_31_29_SHIFT);
318 		break;
319 
320 	case MASK_BITS_31_28:
321 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
322 				source << OUT_CLK_SOURCE_31_28_SHIFT);
323 		break;
324 
325 	default:
326 		return -1;
327 	}
328 
329 	udelay(2);
330 	return 0;
331 }
332 
333 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
334 		enum clock_id parent, unsigned rate, int *extra_div)
335 {
336 	unsigned effective_rate;
337 	int mux_bits, divider_bits, source;
338 	int divider;
339 	int xdiv = 0;
340 
341 	/* work out the source clock and set it */
342 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
343 					 &divider_bits);
344 
345 	divider = find_best_divider(divider_bits, pll_rate[parent],
346 				    rate, &xdiv);
347 	if (extra_div)
348 		*extra_div = xdiv;
349 
350 	assert(divider >= 0);
351 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
352 		return -1U;
353 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
354 		get_periph_source_reg(periph_id),
355 		readl(get_periph_source_reg(periph_id)));
356 
357 	/* Check what we ended up with. This shouldn't matter though */
358 	effective_rate = clock_get_periph_rate(periph_id, parent);
359 	if (extra_div)
360 		effective_rate /= *extra_div;
361 	if (rate != effective_rate)
362 		debug("Requested clock rate %u not honored (got %u)\n",
363 			rate, effective_rate);
364 	return effective_rate;
365 }
366 
367 unsigned clock_start_periph_pll(enum periph_id periph_id,
368 		enum clock_id parent, unsigned rate)
369 {
370 	unsigned effective_rate;
371 
372 	reset_set_enable(periph_id, 1);
373 	clock_enable(periph_id);
374 
375 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
376 						 NULL);
377 
378 	reset_set_enable(periph_id, 0);
379 	return effective_rate;
380 }
381 
382 void clock_enable(enum periph_id clkid)
383 {
384 	clock_set_enable(clkid, 1);
385 }
386 
387 void clock_disable(enum periph_id clkid)
388 {
389 	clock_set_enable(clkid, 0);
390 }
391 
392 void reset_periph(enum periph_id periph_id, int us_delay)
393 {
394 	/* Put peripheral into reset */
395 	reset_set_enable(periph_id, 1);
396 	udelay(us_delay);
397 
398 	/* Remove reset */
399 	reset_set_enable(periph_id, 0);
400 
401 	udelay(us_delay);
402 }
403 
404 void reset_cmplx_set_enable(int cpu, int which, int reset)
405 {
406 	struct clk_rst_ctlr *clkrst =
407 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
408 	u32 mask;
409 
410 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
411 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
412 	mask = which << cpu;
413 
414 	/* either enable or disable those reset for that CPU */
415 	if (reset)
416 		writel(mask, &clkrst->crc_cpu_cmplx_set);
417 	else
418 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
419 }
420 
421 unsigned clock_get_rate(enum clock_id clkid)
422 {
423 	struct clk_pll *pll;
424 	u32 base;
425 	u32 divm;
426 	u64 parent_rate;
427 	u64 rate;
428 
429 	parent_rate = osc_freq[clock_get_osc_freq()];
430 	if (clkid == CLOCK_ID_OSC)
431 		return parent_rate;
432 
433 	pll = get_pll(clkid);
434 	base = readl(&pll->pll_base);
435 
436 	/* Oh for bf_unpack()... */
437 	rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
438 	divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
439 	if (clkid == CLOCK_ID_USB)
440 		divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
441 	else
442 		divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
443 	do_div(rate, divm);
444 	return rate;
445 }
446 
447 /**
448  * Set the output frequency you want for each PLL clock.
449  * PLL output frequencies are programmed by setting their N, M and P values.
450  * The governing equations are:
451  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
452  *     where Fo is the output frequency from the PLL.
453  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
454  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
455  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
456  *
457  * @param n PLL feedback divider(DIVN)
458  * @param m PLL input divider(DIVN)
459  * @param p post divider(DIVP)
460  * @param cpcon base PLL charge pump(CPCON)
461  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
462  *		be overriden), 1 if PLL is already correct
463  */
464 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
465 {
466 	u32 base_reg;
467 	u32 misc_reg;
468 	struct clk_pll *pll;
469 
470 	pll = get_pll(clkid);
471 
472 	base_reg = readl(&pll->pll_base);
473 
474 	/* Set BYPASS, m, n and p to PLL_BASE */
475 	base_reg &= ~PLL_DIVM_MASK;
476 	base_reg |= m << PLL_DIVM_SHIFT;
477 
478 	base_reg &= ~PLL_DIVN_MASK;
479 	base_reg |= n << PLL_DIVN_SHIFT;
480 
481 	base_reg &= ~PLL_DIVP_MASK;
482 	base_reg |= p << PLL_DIVP_SHIFT;
483 
484 	if (clkid == CLOCK_ID_PERIPH) {
485 		/*
486 		 * If the PLL is already set up, check that it is correct
487 		 * and record this info for clock_verify() to check.
488 		 */
489 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
490 			base_reg |= PLL_ENABLE_MASK;
491 			if (base_reg != readl(&pll->pll_base))
492 				pllp_valid = 0;
493 			return pllp_valid ? 1 : -1;
494 		}
495 		base_reg |= PLL_BASE_OVRRIDE_MASK;
496 	}
497 
498 	base_reg |= PLL_BYPASS_MASK;
499 	writel(base_reg, &pll->pll_base);
500 
501 	/* Set cpcon to PLL_MISC */
502 	misc_reg = readl(&pll->pll_misc);
503 	misc_reg &= ~PLL_CPCON_MASK;
504 	misc_reg |= cpcon << PLL_CPCON_SHIFT;
505 	writel(misc_reg, &pll->pll_misc);
506 
507 	/* Enable PLL */
508 	base_reg |= PLL_ENABLE_MASK;
509 	writel(base_reg, &pll->pll_base);
510 
511 	/* Disable BYPASS */
512 	base_reg &= ~PLL_BYPASS_MASK;
513 	writel(base_reg, &pll->pll_base);
514 
515 	return 0;
516 }
517 
518 void clock_ll_start_uart(enum periph_id periph_id)
519 {
520 	/* Assert UART reset and enable clock */
521 	reset_set_enable(periph_id, 1);
522 	clock_enable(periph_id);
523 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
524 
525 	/* wait for 2us */
526 	udelay(2);
527 
528 	/* De-assert reset to UART */
529 	reset_set_enable(periph_id, 0);
530 }
531 
532 #ifdef CONFIG_OF_CONTROL
533 int clock_decode_periph_id(const void *blob, int node)
534 {
535 	enum periph_id id;
536 	u32 cell[2];
537 	int err;
538 
539 	err = fdtdec_get_int_array(blob, node, "clocks", cell,
540 				   ARRAY_SIZE(cell));
541 	if (err)
542 		return -1;
543 	id = clk_id_to_periph_id(cell[1]);
544 	assert(clock_periph_id_isvalid(id));
545 	return id;
546 }
547 #endif /* CONFIG_OF_CONTROL */
548 
549 int clock_verify(void)
550 {
551 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
552 	u32 reg = readl(&pll->pll_base);
553 
554 	if (!pllp_valid) {
555 		printf("Warning: PLLP %x is not correct\n", reg);
556 		return -1;
557 	}
558 	debug("PLLP %x is correct\n", reg);
559 	return 0;
560 }
561 
562 void clock_init(void)
563 {
564 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
565 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
566 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
567 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
568 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
569 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
570 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
571 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
572 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
573 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
574 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
575 
576 	/* Do any special system timer/TSC setup */
577 #if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
578 	if (!tegra_cpu_is_non_secure())
579 #endif
580 		arch_timer_init();
581 }
582 
583 static void set_avp_clock_source(u32 src)
584 {
585 	struct clk_rst_ctlr *clkrst =
586 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
587 	u32 val;
588 
589 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
590 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
591 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
592 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
593 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
594 	writel(val, &clkrst->crc_sclk_brst_pol);
595 	udelay(3);
596 }
597 
598 /*
599  * This function is useful on Tegra30, and any later SoCs that have compatible
600  * PLLP configuration registers.
601  */
602 void tegra30_set_up_pllp(void)
603 {
604 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
605 	u32 reg;
606 
607 	/*
608 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
609 	 * run up to 275MHz. On power on, the default sytem clock source is set
610 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
611 	 * 408MHz which is beyond system clock's upper limit.
612 	 *
613 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
614 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
615 	 * configured, after PLLP has been configured
616 	 */
617 	set_avp_clock_source(SCLK_SOURCE_CLKM);
618 
619 	/*
620 	 * PLLP output frequency set to 408Mhz
621 	 * PLLC output frequency set to 228Mhz
622 	 */
623 	switch (clock_get_osc_freq()) {
624 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
625 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
626 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
627 		break;
628 
629 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
630 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
631 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
632 		break;
633 
634 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
635 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
636 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
637 		break;
638 	case CLOCK_OSC_FREQ_19_2:
639 	default:
640 		/*
641 		 * These are not supported. It is too early to print a
642 		 * message and the UART likely won't work anyway due to the
643 		 * oscillator being wrong.
644 		 */
645 		break;
646 	}
647 
648 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
649 
650 	/* OUT1, 2 */
651 	/* Assert RSTN before enable */
652 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
653 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
654 	/* Set divisor and reenable */
655 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
656 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
657 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
658 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
659 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
660 
661 	/* OUT3, 4 */
662 	/* Assert RSTN before enable */
663 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
664 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
665 	/* Set divisor and reenable */
666 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
667 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
668 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
669 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
670 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
671 
672 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
673 }
674