xref: /openbmc/u-boot/arch/arm/mach-tegra/clock.c (revision 11ac2363)
1 /*
2  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /* Tegra SoC common clock control functions */
18 
19 #include <common.h>
20 #include <errno.h>
21 #include <asm/io.h>
22 #include <asm/arch/clock.h>
23 #include <asm/arch/tegra.h>
24 #include <asm/arch-tegra/ap.h>
25 #include <asm/arch-tegra/clk_rst.h>
26 #include <asm/arch-tegra/pmc.h>
27 #include <asm/arch-tegra/timer.h>
28 #include <div64.h>
29 #include <fdtdec.h>
30 
31 /*
32  * This is our record of the current clock rate of each clock. We don't
33  * fill all of these in since we are only really interested in clocks which
34  * we use as parents.
35  */
36 static unsigned pll_rate[CLOCK_ID_COUNT];
37 
38 /*
39  * The oscillator frequency is fixed to one of four set values. Based on this
40  * the other clocks are set up appropriately.
41  */
42 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
43 	13000000,
44 	19200000,
45 	12000000,
46 	26000000,
47 	38400000,
48 	48000000,
49 };
50 
51 /* return 1 if a peripheral ID is in range */
52 #define clock_type_id_isvalid(id) ((id) >= 0 && \
53 		(id) < CLOCK_TYPE_COUNT)
54 
55 char pllp_valid = 1;	/* PLLP is set up correctly */
56 
57 /* return 1 if a periphc_internal_id is in range */
58 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
59 		(id) < PERIPHC_COUNT)
60 
61 /* number of clock outputs of a PLL */
62 static const u8 pll_num_clkouts[] = {
63 	1,	/* PLLC */
64 	1,	/* PLLM */
65 	4,	/* PLLP */
66 	1,	/* PLLA */
67 	0,	/* PLLU */
68 	0,	/* PLLD */
69 };
70 
71 int clock_get_osc_bypass(void)
72 {
73 	struct clk_rst_ctlr *clkrst =
74 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
75 	u32 reg;
76 
77 	reg = readl(&clkrst->crc_osc_ctrl);
78 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
79 }
80 
81 /* Returns a pointer to the registers of the given pll */
82 static struct clk_pll *get_pll(enum clock_id clkid)
83 {
84 	struct clk_rst_ctlr *clkrst =
85 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
86 
87 	assert(clock_id_is_pll(clkid));
88 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
89 		debug("%s: Invalid PLL %d\n", __func__, clkid);
90 		return NULL;
91 	}
92 	return &clkrst->crc_pll[clkid];
93 }
94 
95 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
96 {
97 	return NULL;
98 }
99 
100 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
101 		u32 *divp, u32 *cpcon, u32 *lfcon)
102 {
103 	struct clk_pll *pll = get_pll(clkid);
104 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
105 	u32 data;
106 
107 	assert(clkid != CLOCK_ID_USB);
108 
109 	/* Safety check, adds to code size but is small */
110 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
111 		return -1;
112 	data = readl(&pll->pll_base);
113 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
114 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
115 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
116 	data = readl(&pll->pll_misc);
117 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
118 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
119 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
120 
121 	return 0;
122 }
123 
124 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
125 		u32 divp, u32 cpcon, u32 lfcon)
126 {
127 	struct clk_pll *pll = NULL;
128 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
129 	u32 misc_data, data;
130 
131 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS)
132 		pll = get_pll(clkid);
133 
134 	/*
135 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
136 	 * values for all of the PLLs used in U-Boot, with any
137 	 * SoC differences accounted for.
138 	 */
139 	misc_data = readl(&pll->pll_misc);	/* preserve EN_LOCKDET, etc. */
140 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift) | (cpcon << pllinfo->kcp_shift);
141 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift) | (lfcon << pllinfo->kvco_shift);
142 
143 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
144 	data |= divp << pllinfo->p_shift;
145 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
146 
147 	if (pll) {
148 		writel(misc_data, &pll->pll_misc);
149 		writel(data, &pll->pll_base);
150 	} else {
151 		struct clk_pll_simple *pll = clock_get_simple_pll(clkid);
152 
153 		if (!pll) {
154 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
155 			return 0;
156 		}
157 		writel(misc_data, &pll->pll_misc);
158 		writel(data, &pll->pll_base);
159 	}
160 
161 	/* calculate the stable time */
162 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
163 }
164 
165 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
166 			unsigned divisor)
167 {
168 	u32 *reg = get_periph_source_reg(periph_id);
169 	u32 value;
170 
171 	value = readl(reg);
172 
173 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
174 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
175 
176 	value &= ~OUT_CLK_DIVISOR_MASK;
177 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
178 
179 	writel(value, reg);
180 }
181 
182 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
183 			     unsigned source)
184 {
185 	u32 *reg = get_periph_source_reg(periph_id);
186 
187 	switch (mux_bits) {
188 	case MASK_BITS_31_30:
189 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
190 				source << OUT_CLK_SOURCE_31_30_SHIFT);
191 		break;
192 
193 	case MASK_BITS_31_29:
194 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
195 				source << OUT_CLK_SOURCE_31_29_SHIFT);
196 		break;
197 
198 	case MASK_BITS_31_28:
199 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
200 				source << OUT_CLK_SOURCE_31_28_SHIFT);
201 		break;
202 
203 	default:
204 		return -1;
205 	}
206 
207 	return 0;
208 }
209 
210 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
211 {
212 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
213 }
214 
215 /**
216  * Given the parent's rate and the required rate for the children, this works
217  * out the peripheral clock divider to use, in 7.1 binary format.
218  *
219  * @param divider_bits	number of divider bits (8 or 16)
220  * @param parent_rate	clock rate of parent clock in Hz
221  * @param rate		required clock rate for this clock
222  * @return divider which should be used
223  */
224 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
225 			   unsigned long rate)
226 {
227 	u64 divider = parent_rate * 2;
228 	unsigned max_divider = 1 << divider_bits;
229 
230 	divider += rate - 1;
231 	do_div(divider, rate);
232 
233 	if ((s64)divider - 2 < 0)
234 		return 0;
235 
236 	if ((s64)divider - 2 >= max_divider)
237 		return -1;
238 
239 	return divider - 2;
240 }
241 
242 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
243 {
244 	struct clk_pll *pll = get_pll(clkid);
245 	int data = 0, div = 0, offset = 0;
246 
247 	if (!clock_id_is_pll(clkid))
248 		return -1;
249 
250 	if (pllout + 1 > pll_num_clkouts[clkid])
251 		return -1;
252 
253 	div = clk_get_divider(8, pll_rate[clkid], rate);
254 
255 	if (div < 0)
256 		return -1;
257 
258 	/* out2 and out4 are in the high part of the register */
259 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
260 		offset = 16;
261 
262 	data = (div << PLL_OUT_RATIO_SHIFT) |
263 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
264 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
265 			PLL_OUT_RATIO_MASK << offset, data << offset);
266 
267 	return 0;
268 }
269 
270 /**
271  * Given the parent's rate and the divider in 7.1 format, this works out the
272  * resulting peripheral clock rate.
273  *
274  * @param parent_rate	clock rate of parent clock in Hz
275  * @param divider which should be used in 7.1 format
276  * @return effective clock rate of peripheral
277  */
278 static unsigned long get_rate_from_divider(unsigned long parent_rate,
279 					   int divider)
280 {
281 	u64 rate;
282 
283 	rate = (u64)parent_rate * 2;
284 	do_div(rate, divider + 2);
285 	return rate;
286 }
287 
288 unsigned long clock_get_periph_rate(enum periph_id periph_id,
289 		enum clock_id parent)
290 {
291 	u32 *reg = get_periph_source_reg(periph_id);
292 
293 	return get_rate_from_divider(pll_rate[parent],
294 		(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
295 }
296 
297 /**
298  * Find the best available 7.1 format divisor given a parent clock rate and
299  * required child clock rate. This function assumes that a second-stage
300  * divisor is available which can divide by powers of 2 from 1 to 256.
301  *
302  * @param divider_bits	number of divider bits (8 or 16)
303  * @param parent_rate	clock rate of parent clock in Hz
304  * @param rate		required clock rate for this clock
305  * @param extra_div	value for the second-stage divisor (not set if this
306  *			function returns -1.
307  * @return divider which should be used, or -1 if nothing is valid
308  *
309  */
310 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
311 				unsigned long rate, int *extra_div)
312 {
313 	int shift;
314 	int best_divider = -1;
315 	int best_error = rate;
316 
317 	/* try dividers from 1 to 256 and find closest match */
318 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
319 		unsigned divided_parent = parent_rate >> shift;
320 		int divider = clk_get_divider(divider_bits, divided_parent,
321 						rate);
322 		unsigned effective_rate = get_rate_from_divider(divided_parent,
323 						divider);
324 		int error = rate - effective_rate;
325 
326 		/* Given a valid divider, look for the lowest error */
327 		if (divider != -1 && error < best_error) {
328 			best_error = error;
329 			*extra_div = 1 << shift;
330 			best_divider = divider;
331 		}
332 	}
333 
334 	/* return what we found - *extra_div will already be set */
335 	return best_divider;
336 }
337 
338 /**
339  * Adjust peripheral PLL to use the given divider and source.
340  *
341  * @param periph_id	peripheral to adjust
342  * @param source	Source number (0-3 or 0-7)
343  * @param mux_bits	Number of mux bits (2 or 4)
344  * @param divider	Required divider in 7.1 or 15.1 format
345  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
346  *		for this peripheral)
347  */
348 static int adjust_periph_pll(enum periph_id periph_id, int source,
349 				int mux_bits, unsigned divider)
350 {
351 	u32 *reg = get_periph_source_reg(periph_id);
352 
353 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
354 			divider << OUT_CLK_DIVISOR_SHIFT);
355 	udelay(1);
356 
357 	/* work out the source clock and set it */
358 	if (source < 0)
359 		return -1;
360 
361 	clock_ll_set_source_bits(periph_id, mux_bits, source);
362 
363 	udelay(2);
364 	return 0;
365 }
366 
367 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
368 		enum clock_id parent, unsigned rate, int *extra_div)
369 {
370 	unsigned effective_rate;
371 	int mux_bits, divider_bits, source;
372 	int divider;
373 	int xdiv = 0;
374 
375 	/* work out the source clock and set it */
376 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
377 					 &divider_bits);
378 
379 	divider = find_best_divider(divider_bits, pll_rate[parent],
380 				    rate, &xdiv);
381 	if (extra_div)
382 		*extra_div = xdiv;
383 
384 	assert(divider >= 0);
385 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
386 		return -1U;
387 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
388 		get_periph_source_reg(periph_id),
389 		readl(get_periph_source_reg(periph_id)));
390 
391 	/* Check what we ended up with. This shouldn't matter though */
392 	effective_rate = clock_get_periph_rate(periph_id, parent);
393 	if (extra_div)
394 		effective_rate /= *extra_div;
395 	if (rate != effective_rate)
396 		debug("Requested clock rate %u not honored (got %u)\n",
397 			rate, effective_rate);
398 	return effective_rate;
399 }
400 
401 unsigned clock_start_periph_pll(enum periph_id periph_id,
402 		enum clock_id parent, unsigned rate)
403 {
404 	unsigned effective_rate;
405 
406 	reset_set_enable(periph_id, 1);
407 	clock_enable(periph_id);
408 
409 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
410 						 NULL);
411 
412 	reset_set_enable(periph_id, 0);
413 	return effective_rate;
414 }
415 
416 void clock_enable(enum periph_id clkid)
417 {
418 	clock_set_enable(clkid, 1);
419 }
420 
421 void clock_disable(enum periph_id clkid)
422 {
423 	clock_set_enable(clkid, 0);
424 }
425 
426 void reset_periph(enum periph_id periph_id, int us_delay)
427 {
428 	/* Put peripheral into reset */
429 	reset_set_enable(periph_id, 1);
430 	udelay(us_delay);
431 
432 	/* Remove reset */
433 	reset_set_enable(periph_id, 0);
434 
435 	udelay(us_delay);
436 }
437 
438 void reset_cmplx_set_enable(int cpu, int which, int reset)
439 {
440 	struct clk_rst_ctlr *clkrst =
441 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
442 	u32 mask;
443 
444 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
445 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
446 	mask = which << cpu;
447 
448 	/* either enable or disable those reset for that CPU */
449 	if (reset)
450 		writel(mask, &clkrst->crc_cpu_cmplx_set);
451 	else
452 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
453 }
454 
455 unsigned clock_get_rate(enum clock_id clkid)
456 {
457 	struct clk_pll *pll;
458 	u32 base, divm;
459 	u64 parent_rate, rate;
460 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
461 
462 	parent_rate = osc_freq[clock_get_osc_freq()];
463 	if (clkid == CLOCK_ID_OSC)
464 		return parent_rate;
465 
466 	pll = get_pll(clkid);
467 	if (!pll)
468 		return 0;
469 	base = readl(&pll->pll_base);
470 
471 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
472 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
473 	/*
474 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
475 	 * T210 uses normal DIVP. Handled in pllinfo table.
476 	 */
477 	divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
478 	do_div(rate, divm);
479 	return rate;
480 }
481 
482 /**
483  * Set the output frequency you want for each PLL clock.
484  * PLL output frequencies are programmed by setting their N, M and P values.
485  * The governing equations are:
486  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
487  *     where Fo is the output frequency from the PLL.
488  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
489  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
490  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
491  *
492  * @param n PLL feedback divider(DIVN)
493  * @param m PLL input divider(DIVN)
494  * @param p post divider(DIVP)
495  * @param cpcon base PLL charge pump(CPCON)
496  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
497  *		be overriden), 1 if PLL is already correct
498  */
499 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
500 {
501 	u32 base_reg, misc_reg;
502 	struct clk_pll *pll;
503 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
504 
505 	pll = get_pll(clkid);
506 
507 	base_reg = readl(&pll->pll_base);
508 
509 	/* Set BYPASS, m, n and p to PLL_BASE */
510 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
511 	base_reg |= m << pllinfo->m_shift;
512 
513 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
514 	base_reg |= n << pllinfo->n_shift;
515 
516 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
517 	base_reg |= p << pllinfo->p_shift;
518 
519 	if (clkid == CLOCK_ID_PERIPH) {
520 		/*
521 		 * If the PLL is already set up, check that it is correct
522 		 * and record this info for clock_verify() to check.
523 		 */
524 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
525 			base_reg |= PLL_ENABLE_MASK;
526 			if (base_reg != readl(&pll->pll_base))
527 				pllp_valid = 0;
528 			return pllp_valid ? 1 : -1;
529 		}
530 		base_reg |= PLL_BASE_OVRRIDE_MASK;
531 	}
532 
533 	base_reg |= PLL_BYPASS_MASK;
534 	writel(base_reg, &pll->pll_base);
535 
536 	/* Set cpcon (KCP) to PLL_MISC */
537 	misc_reg = readl(&pll->pll_misc);
538 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
539 	misc_reg |= cpcon << pllinfo->kcp_shift;
540 	writel(misc_reg, &pll->pll_misc);
541 
542 	/* Enable PLL */
543 	base_reg |= PLL_ENABLE_MASK;
544 	writel(base_reg, &pll->pll_base);
545 
546 	/* Disable BYPASS */
547 	base_reg &= ~PLL_BYPASS_MASK;
548 	writel(base_reg, &pll->pll_base);
549 
550 	return 0;
551 }
552 
553 void clock_ll_start_uart(enum periph_id periph_id)
554 {
555 	/* Assert UART reset and enable clock */
556 	reset_set_enable(periph_id, 1);
557 	clock_enable(periph_id);
558 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
559 
560 	/* wait for 2us */
561 	udelay(2);
562 
563 	/* De-assert reset to UART */
564 	reset_set_enable(periph_id, 0);
565 }
566 
567 #ifdef CONFIG_OF_CONTROL
568 int clock_decode_periph_id(const void *blob, int node)
569 {
570 	enum periph_id id;
571 	u32 cell[2];
572 	int err;
573 
574 	err = fdtdec_get_int_array(blob, node, "clocks", cell,
575 				   ARRAY_SIZE(cell));
576 	if (err)
577 		return -1;
578 	id = clk_id_to_periph_id(cell[1]);
579 	assert(clock_periph_id_isvalid(id));
580 	return id;
581 }
582 #endif /* CONFIG_OF_CONTROL */
583 
584 int clock_verify(void)
585 {
586 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
587 	u32 reg = readl(&pll->pll_base);
588 
589 	if (!pllp_valid) {
590 		printf("Warning: PLLP %x is not correct\n", reg);
591 		return -1;
592 	}
593 	debug("PLLP %x is correct\n", reg);
594 	return 0;
595 }
596 
597 void clock_init(void)
598 {
599 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
600 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
601 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
602 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
603 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
604 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
605 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
606 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
607 
608 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
609 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
610 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
611 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
612 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
613 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
614 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
615 }
616 
617 static void set_avp_clock_source(u32 src)
618 {
619 	struct clk_rst_ctlr *clkrst =
620 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
621 	u32 val;
622 
623 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
624 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
625 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
626 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
627 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
628 	writel(val, &clkrst->crc_sclk_brst_pol);
629 	udelay(3);
630 }
631 
632 /*
633  * This function is useful on Tegra30, and any later SoCs that have compatible
634  * PLLP configuration registers.
635  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
636  */
637 void tegra30_set_up_pllp(void)
638 {
639 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
640 	u32 reg;
641 
642 	/*
643 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
644 	 * run up to 275MHz. On power on, the default sytem clock source is set
645 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
646 	 * 408MHz which is beyond system clock's upper limit.
647 	 *
648 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
649 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
650 	 * configured, after PLLP has been configured
651 	 */
652 	set_avp_clock_source(SCLK_SOURCE_CLKM);
653 
654 	/*
655 	 * PLLP output frequency set to 408Mhz
656 	 * PLLC output frequency set to 228Mhz
657 	 */
658 	switch (clock_get_osc_freq()) {
659 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
660 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
661 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
662 		break;
663 
664 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
665 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
666 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
667 		break;
668 
669 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
670 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
671 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
672 		break;
673 	case CLOCK_OSC_FREQ_19_2:
674 	default:
675 		/*
676 		 * These are not supported. It is too early to print a
677 		 * message and the UART likely won't work anyway due to the
678 		 * oscillator being wrong.
679 		 */
680 		break;
681 	}
682 
683 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
684 
685 	/* OUT1, 2 */
686 	/* Assert RSTN before enable */
687 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
688 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
689 	/* Set divisor and reenable */
690 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
691 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
692 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
693 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
694 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
695 
696 	/* OUT3, 4 */
697 	/* Assert RSTN before enable */
698 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
699 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
700 	/* Set divisor and reenable */
701 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
702 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
703 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
704 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
705 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
706 
707 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
708 }
709 
710 int clock_external_output(int clk_id)
711 {
712 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
713 
714 	if (clk_id >= 1 && clk_id <= 3) {
715 		setbits_le32(&pmc->pmc_clk_out_cntrl,
716 			     1 << (2 + (clk_id - 1) * 8));
717 	} else {
718 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
719 		return -EINVAL;
720 	}
721 
722 	return 0;
723 }
724