xref: /openbmc/u-boot/arch/arm/mach-sunxi/dram_sun9i.c (revision d024236e5a31a2b4b82cbcc98b31b8170fc88d28)
1 /*
2  * sun9i dram controller initialisation
3  *
4  * (C) Copyright 2007-2015
5  * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
6  * Jerry Wang <wangflord@allwinnertech.com>
7  *
8  * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
9  *                    Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
10  *
11  * SPDX-License-Identifier:	GPL-2.0+
12  */
13 
14 #include <common.h>
15 #include <dm.h>
16 #include <errno.h>
17 #include <ram.h>
18 #include <asm/io.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/dram.h>
21 #include <asm/arch/sys_proto.h>
22 
23 #define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
24 
25 /*
26  * The following amounts to an extensive rewrite of the code received from
27  * Allwinner as part of the open-source bootloader release (refer to
28  * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
29  * sources (which act as the primary reference point for the inner workings
30  * of the 'underdocumented' DRAM controller in the A80) using the following
31  * documentation for other memory controllers based on the (Synopsys)
32  * Designware IP (DDR memory protocol controller and DDR PHY)
33  *   * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
34  *     Document 'SPRUHN7C', Oct 2013 (revised March 2015)
35  *   * Xilinx Zynq UltraScale+ MPSoC Register Reference
36  *     document ug1087 (v1.0)
37  * Note that the Zynq-documentation provides a very close match for the DDR
38  * memory protocol controller (and provides a very good guide to the rounding
39  * rules for various timings), whereas the TI Keystone II document should be
40  * referred to for DDR PHY specifics only.
41  *
42  * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
43  * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
44  *
45  * Known limitations
46  * =================
47  * In the current state, the following features are not fully supported and
48  * a number of simplifying assumptions have been made:
49  *   1) Only DDR3 support is implemented, as our test platform (the A80-Q7
50  *      module) is designed to accomodate DDR3/DDR3L.
51  *   2) Only 2T-mode has been implemented and tested.
52  *   3) The controller supports two different clocking strategies (PLL6 can
53  *      either be 2*CK or CK/2)... we only support the 2*CK clock at this
54  *      time and haven't verified whether the alternative clocking strategy
55  *      works.  If you are interested in porting this over/testing this,
56  *      please refer to cases where bit 0 of 'dram_tpr8' is tested in the
57  *      original code from Allwinner.
58  *   4) Support for 2 ranks per controller is not implemented (as we don't
59  *      the hardware to test it).
60  *
61  * Future directions
62  * =================
63  * The driver should be driven from a device-tree based configuration that
64  * can dynamically provide the necessary timing parameters (i.e. target
65  * frequency and speed-bin information)---the data structures used in the
66  * calculation of the timing parameters are already designed to capture
67  * similar information as the device tree would provide.
68  *
69  * To enable a device-tree based configuration of the sun9i platform, we
70  * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
71  * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
72  * stage to initialise the platform via the device-tree---before having
73  * the full U-Boot run from DDR.
74  */
75 
76 /*
77  * A number of DDR3 timings are given as "the greater of a fixed number of
78  * clock cycles (CK) or nanoseconds.  We express these using a structure
79  * that holds a cycle count and a duration in picoseconds (so we can model
80  * sub-ns timings, such as 7.5ns without losing precision or resorting to
81  * rounding up early.
82  */
83 struct dram_sun9i_timing {
84 	u32 ck;
85 	u32 ps;
86 };
87 
88 /* */
89 struct dram_sun9i_cl_cwl_timing {
90 	u32 CL;
91 	u32 CWL;
92 	u32 tCKmin;  /* in ps */
93 	u32 tCKmax;  /* in ps */
94 };
95 
96 struct dram_sun9i_para {
97 	u32 dram_type;
98 
99 	u8 bus_width;
100 	u8 chan;
101 	u8 rank;
102 	u8 rows;
103 	u16 page_size;
104 
105 	/* Timing information for each speed-bin */
106 	struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
107 	u32 cl_cwl_numentries;
108 
109 	/*
110 	 * For the timings, we try to keep the order and grouping used in
111 	 * JEDEC Standard No. 79-3F
112 	 */
113 
114 	/* timings */
115 	u32 tREFI; /* in ns */
116 	u32 tRFC;  /* in ns */
117 
118 	u32 tRAS;  /* in ps */
119 
120 	/* command and address timing */
121 	u32 tDLLK; /* in nCK */
122 	struct dram_sun9i_timing tRTP;
123 	struct dram_sun9i_timing tWTR;
124 	u32 tWR;   /* in nCK */
125 	u32 tMRD;  /* in nCK */
126 	struct dram_sun9i_timing tMOD;
127 	u32 tRCD;  /* in ps */
128 	u32 tRP;   /* in ps */
129 	u32 tRC;   /* in ps */
130 	u32 tCCD;  /* in nCK */
131 	struct dram_sun9i_timing tRRD;
132 	u32 tFAW;  /* in ps */
133 
134 	/* calibration timing */
135 	/* struct dram_sun9i_timing tZQinit; */
136 	struct dram_sun9i_timing tZQoper;
137 	struct dram_sun9i_timing tZQCS;
138 
139 	/* reset timing */
140 	/* struct dram_sun9i_timing tXPR; */
141 
142 	/* self-refresh timings */
143 	struct dram_sun9i_timing tXS;
144 	u32 tXSDLL; /* in nCK */
145 	/* struct dram_sun9i_timing tCKESR; */
146 	struct dram_sun9i_timing tCKSRE;
147 	struct dram_sun9i_timing tCKSRX;
148 
149 	/* power-down timings */
150 	struct dram_sun9i_timing tXP;
151 	struct dram_sun9i_timing tXPDLL;
152 	struct dram_sun9i_timing tCKE;
153 
154 	/* write leveling timings */
155 	u32 tWLMRD;    /* min, in nCK */
156 	/* u32 tWLDQSEN;  min, in nCK */
157 	u32 tWLO;      /* max, in ns */
158 	/* u32 tWLOE;     max, in ns */
159 
160 	/* u32 tCKDPX;    in nCK */
161 	/* u32 tCKCSX;    in nCK */
162 };
163 
164 static void mctl_sys_init(void);
165 
166 #define SCHED_RDWR_IDLE_GAP(n)            ((n & 0xff) << 24)
167 #define SCHED_GO2CRITICAL_HYSTERESIS(n)   ((n & 0xff) << 16)
168 #define SCHED_LPR_NUM_ENTRIES(n)          ((n & 0xff) <<  8)
169 #define SCHED_PAGECLOSE                   (1 << 2)
170 #define SCHED_PREFER_WRITE                (1 << 1)
171 #define SCHED_FORCE_LOW_PRI_N             (1 << 0)
172 
173 #define SCHED_CONFIG		(SCHED_RDWR_IDLE_GAP(0xf) | \
174 				 SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
175 				 SCHED_LPR_NUM_ENTRIES(0x20) | \
176 				 SCHED_FORCE_LOW_PRI_N)
177 #define PERFHPR0_CONFIG                   0x0000001f
178 #define PERFHPR1_CONFIG                   0x1f00001f
179 #define PERFLPR0_CONFIG                   0x000000ff
180 #define PERFLPR1_CONFIG                   0x0f0000ff
181 #define PERFWR0_CONFIG                    0x000000ff
182 #define PERFWR1_CONFIG                    0x0f0001ff
183 
184 static void mctl_ctl_sched_init(unsigned long  base)
185 {
186 	struct sunxi_mctl_ctl_reg *mctl_ctl =
187 		(struct sunxi_mctl_ctl_reg *)base;
188 
189 	/* Needs to be done before the global clk enable... */
190 	writel(SCHED_CONFIG, &mctl_ctl->sched);
191 	writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
192 	writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
193 	writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
194 	writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
195 	writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
196 	writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
197 }
198 
199 static void mctl_sys_init(void)
200 {
201 	struct sunxi_ccm_reg * const ccm =
202 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
203 	struct sunxi_mctl_com_reg * const mctl_com =
204 		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
205 
206 	debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
207 	clock_set_pll6(DRAM_CLK * 2);
208 
209 	/* Original dram init code which may come in handy later
210 	********************************************************
211 	clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
212 					 (DRAM_CLK / 2), false);
213 
214 	if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
215 		 * PLL6 should be 2*CK *
216 		 * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
217 		ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
218 	} else {
219 		 * PLL6 should be CK/2 *
220 		ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
221 	}
222 
223 	if (para->dram_tpr13 & (0xf<<18)) {
224 		 *
225 		 * bit21:bit18=0001:pll swing 0.4
226 		 * bit21:bit18=0010:pll swing 0.3
227 		 * bit21:bit18=0100:pll swing 0.2
228 		 * bit21:bit18=1000:pll swing 0.1
229 		 *
230 		dram_dbg("DRAM fre extend open !\n");
231 		reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
232 		reg_val&=(0x1<<16);
233 		reg_val=reg_val>>16;
234 
235 		if(para->dram_tpr13 & (0x1<<18))
236 		{
237 			mctl_write_w(CCM_PLL_BASE + 0x114,
238 				(0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
239 				(0x2U<<29)|(0x1U<<31)));
240 		}
241 		else if(para->dram_tpr13 & (0x1<<19))
242 		{
243 			mctl_write_w(CCM_PLL_BASE + 0x114,
244 				(0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
245 				(0x2U<<29)|(0x1U<<31)));
246 		}
247 		else if(para->dram_tpr13 & (0x1<<20))
248 		{
249 			mctl_write_w(CCM_PLL_BASE + 0x114,
250 				(0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
251 				(0x2U<<29)|(0x1U<<31)));
252 		}
253 		else if(para->dram_tpr13 & (0x1<<21))
254 		{
255 			mctl_write_w(CCM_PLL_BASE + 0x114,
256 				(0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
257 				(0x2U<<29)|(0x1U<<31)));
258 		}
259 
260 		//frequency extend open
261 		reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
262 		reg_val |= ((0x1<<24)|(0x1<<30));
263 		mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
264 
265 
266 		while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
267 	}
268 
269 	aw_delay(0x20000);	//make some delay
270 	********************************************************
271 	*/
272 
273 	/* assert mctl reset */
274 	clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
275 	/* stop mctl clock */
276 	clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
277 
278 	sdelay(2000);
279 
280 	/* deassert mctl reset */
281 	setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
282 	/* enable mctl clock */
283 	setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
284 
285 	/* set up the transactions scheduling before enabling the global clk */
286 	mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
287 	mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
288 	sdelay(1000);
289 
290 	debug("2\n");
291 
292 	/* (3 << 12): PLL_DDR */
293 	writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
294 	do {
295 		debug("Waiting for DRAM_CLK_CFG\n");
296 		sdelay(10000);
297 	} while (readl(&ccm->dram_clk_cfg) & (1 << 16));
298 	setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
299 
300 	/* TODO: we only support the common case ... i.e. 2*CK */
301 	setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
302 	writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
303 
304 	sdelay(2000);
305 
306 	/* Original dram init code which may come in handy later
307 	********************************************************
308 	if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
309 		 * PLL6 should be 2*CK *
310 		 * gating 2 channel pll *
311 		reg_val = mctl_read_w(MC_CCR);
312 		reg_val |= ((0x1 << 14) | (0x1U << 30));
313 		mctl_write_w(MC_CCR, reg_val);
314 		mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
315 	} else {
316 		 * enable 2 channel pll *
317 		reg_val = mctl_read_w(MC_CCR);
318 		reg_val &= ~((0x1 << 14) | (0x1U << 30));
319 		mctl_write_w(MC_CCR, reg_val);
320 		mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
321 	}
322 
323 	reg_val = mctl_read_w(MC_CCR);
324 	reg_val &= ~((0x1<<15)|(0x1U<<31));
325 	mctl_write_w(MC_CCR, reg_val);
326 	aw_delay(20);
327 	//aw_delay(0x10);
328 	********************************************************
329 	*/
330 
331 	clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
332 	sdelay(1000);
333 
334 	setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
335 	/* TODO if (para->chan == 2) */
336 	setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
337 }
338 
339 static void mctl_com_init(struct dram_sun9i_para *para)
340 {
341 	struct sunxi_mctl_com_reg * const mctl_com =
342 		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
343 
344 	/* TODO: hard-wired for DDR3 now */
345 	writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
346 				    MCTL_CR_CHANNEL_SINGLE)
347 	       | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
348 	       | MCTL_CR_ROW(para->rows)
349 	       | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
350 	       | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
351 	       &mctl_com->cr);
352 
353 	debug("CR: %d\n", readl(&mctl_com->cr));
354 }
355 
356 static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
357 {
358 	struct sunxi_mctl_ctl_reg *mctl_ctl;
359 	struct sunxi_mctl_phy_reg *mctl_phy;
360 
361 	u32 CL = 0;
362 	u32 CWL = 0;
363 	u16 mr[4] = { 0, };
364 
365 #define PS2CYCLES_FLOOR(n)    ((n * CONFIG_DRAM_CLK) / 1000000)
366 #define PS2CYCLES_ROUNDUP(n)  ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
367 #define NS2CYCLES_FLOOR(n)    ((n * CONFIG_DRAM_CLK) / 1000)
368 #define NS2CYCLES_ROUNDUP(n)  ((n * CONFIG_DRAM_CLK + 999) / 1000)
369 #define MAX(a, b)             ((a) > (b) ? (a) : (b))
370 
371 	/*
372 	 * Convert the values to cycle counts (nCK) from what is provided
373 	 * by the definition of each speed bin.
374 	 */
375 	/* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
376 	const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
377 	const u32 tRFC  = NS2CYCLES_ROUNDUP(para->tRFC);
378 	const u32 tRCD  = PS2CYCLES_ROUNDUP(para->tRCD);
379 	const u32 tRP   = PS2CYCLES_ROUNDUP(para->tRP);
380 	const u32 tRC   = PS2CYCLES_ROUNDUP(para->tRC);
381 	const u32 tRAS  = PS2CYCLES_ROUNDUP(para->tRAS);
382 
383 	/* command and address timing */
384 	const u32 tDLLK = para->tDLLK;
385 	const u32 tRTP  = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
386 	const u32 tWTR  = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
387 	const u32 tWR   = NS2CYCLES_FLOOR(para->tWR);
388 	const u32 tMRD  = para->tMRD;
389 	const u32 tMOD  = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
390 	const u32 tCCD  = para->tCCD;
391 	const u32 tRRD  = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
392 	const u32 tFAW  = PS2CYCLES_ROUNDUP(para->tFAW);
393 
394 	/* calibration timings */
395 	/* const u32 tZQinit = MAX(para->tZQinit.ck,
396 				PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
397 	const u32 tZQoper = MAX(para->tZQoper.ck,
398 				PS2CYCLES_ROUNDUP(para->tZQoper.ps));
399 	const u32 tZQCS   = MAX(para->tZQCS.ck,
400 				PS2CYCLES_ROUNDUP(para->tZQCS.ps));
401 
402 	/* reset timing */
403 	/* const u32 tXPR  = MAX(para->tXPR.ck,
404 				PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
405 
406 	/* power-down timings */
407 	const u32 tXP    = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
408 	const u32 tXPDLL = MAX(para->tXPDLL.ck,
409 			       PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
410 	const u32 tCKE   = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
411 
412 	/*
413 	 * self-refresh timings (keep below power-down timings, as tCKESR
414 	 * needs to be calculated based on the nCK value of tCKE)
415 	 */
416 	const u32 tXS    = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
417 	const u32 tXSDLL = para->tXSDLL;
418 	const u32 tCKSRE = MAX(para->tCKSRE.ck,
419 			       PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
420 	const u32 tCKESR = tCKE + 1;
421 	const u32 tCKSRX = MAX(para->tCKSRX.ck,
422 			       PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
423 
424 	/* write leveling timings */
425 	const u32 tWLMRD = para->tWLMRD;
426 	/* const u32 tWLDQSEN = para->tWLDQSEN; */
427 	const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
428 	/* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
429 
430 	const u32 tRASmax = tREFI * 9;
431 	int i;
432 
433 	for (i = 0; i < para->cl_cwl_numentries; ++i) {
434 		const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
435 
436 		if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
437 		    (tCK < para->cl_cwl_table[i].tCKmax)) {
438 			CL = para->cl_cwl_table[i].CL;
439 			CWL = para->cl_cwl_table[i].CWL;
440 
441 			debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
442 			break;
443 		}
444 	}
445 
446 	if ((CL == 0) && (CWL == 0)) {
447 		printf("failed to find valid CL/CWL for operating point %d MHz\n",
448 		       CONFIG_DRAM_CLK);
449 		return 0;
450 	}
451 
452 	if (ch_index == 0) {
453 		mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
454 		mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
455 	} else {
456 		mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
457 		mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
458 	}
459 
460 	if (para->dram_type == DRAM_TYPE_DDR3) {
461 		mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
462 			DDR3_MR0_CL(CL);
463 		mr[1] = DDR3_MR1_RTT120OHM;
464 		mr[2] = DDR3_MR2_TWL(CWL);
465 		mr[3] = 0;
466 
467 		/*
468 		 * DRAM3 initialisation requires holding CKE LOW for
469 		 * at least 500us prior to starting the initialisation
470 		 * sequence and at least 10ns after driving CKE HIGH
471 		 * before the initialisation sequence may be started).
472 		 *
473 		 * Refer to Micron document "TN-41-07: DDR3 Power-Up,
474 		 * Initialization, and Reset DDR3 Initialization
475 		 * Routine" for details).
476 		 */
477 		writel(MCTL_INIT0_POST_CKE_x1024(1) |
478 		       MCTL_INIT0_PRE_CKE_x1024(
479 			    (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
480 		       &mctl_ctl->init[0]);
481 		writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
482 		       &mctl_ctl->init[1]);
483 		/* INIT2 is not used for DDR3 */
484 		writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
485 		       &mctl_ctl->init[3]);
486 		writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
487 		       &mctl_ctl->init[4]);
488 		writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
489 		       &mctl_ctl->init[5]);
490 	} else {
491 		/* !!! UNTESTED !!! */
492 		/*
493 		 * LPDDR2 and/or LPDDR3 require a 200us minimum delay
494 		 * after driving CKE HIGH in the initialisation sequence.
495 		 */
496 		writel(MCTL_INIT0_POST_CKE_x1024(
497 				(200 * CONFIG_DRAM_CLK + 1023) / 1024),
498 		       &mctl_ctl->init[0]);
499 		writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
500 		       &mctl_ctl->init[1]);
501 		writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
502 				(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
503 		       | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5),  /* 5 cycles */
504 		       &mctl_ctl->init[2]);
505 		writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
506 		       &mctl_ctl->init[3]);
507 		writel(MCTL_INIT4_EMR2(mr[3]),
508 		       &mctl_ctl->init[4]);
509 		writel(MCTL_INIT5_DEV_ZQINIT_x32(
510 				(CONFIG_DRAM_CLK + 31) / 32) /* 1us */
511 		       | MCTL_INIT5_MAX_AUTO_INIT_x1024(
512 				(10 * CONFIG_DRAM_CLK + 1023) / 1024),
513 		       &mctl_ctl->init[5]);
514 	}
515 
516 	/* (DDR3) We always use a burst-length of 8. */
517 #define MCTL_BL               8
518 	/* wr2pre: WL + BL/2 + tWR */
519 #define WR2PRE           (MCTL_BL/2 + CWL + tWTR)
520 	/* wr2rd = CWL + BL/2 + tWTR */
521 #define WR2RD            (MCTL_BL/2 + CWL + tWTR)
522 	/*
523 	 * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
524 	 * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
525 	 */
526 #define RD2WR            (CL + MCTL_BL/2 + 2 - CWL)
527 #define MCTL_PHY_TRTW        0
528 #define MCTL_PHY_TRTODT      0
529 
530 #define MCTL_DIV2(n)         ((n + 1)/2)
531 #define MCTL_DIV32(n)        (n/32)
532 #define MCTL_DIV1024(n)      (n/1024)
533 
534 	writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
535 	       (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
536 	       &mctl_ctl->dramtmg[0]);
537 	writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
538 	       (MCTL_DIV2(tRC) << 0),
539 	       &mctl_ctl->dramtmg[1]);
540 	writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
541 	       (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
542 	       &mctl_ctl->dramtmg[2]);
543 	/*
544 	 * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
545 	 * this is only relevant for LPDDR2/LPDDR3
546 	 */
547 	writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
548 	       &mctl_ctl->dramtmg[3]);
549 	writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
550 	       (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
551 	       &mctl_ctl->dramtmg[4]);
552 	writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
553 	       (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
554 	       &mctl_ctl->dramtmg[5]);
555 
556 	/* These timings are relevant for LPDDR2/LPDDR3 only */
557 	/* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
558 	       (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
559 
560 	/* printf("DRAMTMG7 reset value: 0x%x\n",
561 		readl(&mctl_ctl->dramtmg[7])); */
562 	/* DRAMTMG7 reset value: 0x202 */
563 	/* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
564 	/* printf("DRAMTMG8 reset value: 0x%x\n",
565 		readl(&mctl_ctl->dramtmg[8])); */
566 	/* DRAMTMG8 reset value: 0x44 */
567 
568 	writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
569 
570 	writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
571 	       &mctl_ctl->rfshtmg);
572 
573 	if (para->dram_type == DRAM_TYPE_DDR3) {
574 		writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
575 		       (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
576 			&mctl_ctl->dfitmg[0]);
577 	} else {
578 		/* TODO */
579 	}
580 
581 	/* TODO: handle the case of the write latency domain going to 0 ... */
582 
583 	/*
584 	 * Disable dfi_init_complete_en (the triggering of the SDRAM
585 	 * initialisation when the PHY initialisation completes).
586 	 */
587 	clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
588 	/* Disable the automatic generation of DLL calibration requests */
589 	setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
590 
591 	/* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
592 	/* TODO: make 2T and BUSWIDTH configurable  */
593 	writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
594 	       MCTL_MSTR_BURSTLENGTH(para->dram_type) |
595 	       MCTL_MSTR_ACTIVERANKS(para->rank) |
596 	       MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
597 	       &mctl_ctl->mstr);
598 
599 	if (para->dram_type == DRAM_TYPE_DDR3) {
600 		writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
601 		       (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
602 		/*
603 		 * TODO: is the following really necessary as the bottom
604 		 * half should already be 0x100 and the upper half should
605 		 * be ignored for a DDR3 device???
606 		 */
607 		writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
608 		       &mctl_ctl->zqctrl[1]);
609 	} else {
610 		writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
611 		       &mctl_ctl->zqctrl[0]);
612 		writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
613 		       MCTL_ZQCTRL1_TZQSI_x1024(0x100),
614 		       &mctl_ctl->zqctrl[1]);
615 	}
616 
617 	/* Assert dfi_init_complete signal */
618 	setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
619 	/* Disable auto-refresh */
620 	setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
621 
622 	/* PHY initialisation */
623 
624 	/* TODO: make 2T and 8-bank mode configurable  */
625 	writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
626 	       MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
627 	       &mctl_phy->dcr);
628 
629 	/* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
630 	if (para->dram_type != DRAM_TYPE_DDR3)
631 		clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
632 
633 	writel(mr[0], &mctl_phy->mr0);
634 	writel(mr[1], &mctl_phy->mr1);
635 	writel(mr[2], &mctl_phy->mr2);
636 	writel(mr[3], &mctl_phy->mr3);
637 
638 	/*
639 	 * The DFI PHY is running at full rate. We thus use the actual
640 	 * timings in clock cycles here.
641 	 */
642 	writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
643 	       (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
644 		&mctl_phy->dtpr[0]);
645 	writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
646 	       (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
647 	       &mctl_phy->dtpr[1]);
648 	writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
649 	       (tCKE << 15) | (tDLLK << 19) |
650 	       (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
651 	       (((tCCD - 4) & 0x1) << 31),
652 	       &mctl_phy->dtpr[2]);
653 
654 	/* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
655 	/* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
656 
657 	/*
658 	 * We use the same values used by Allwinner's Boot0 for the PTR
659 	 * (PHY timing register) configuration that is tied to the PHY
660 	 * implementation.
661 	 */
662 	writel(0x42C21590, &mctl_phy->ptr[0]);
663 	writel(0xD05612C0, &mctl_phy->ptr[1]);
664 	if (para->dram_type == DRAM_TYPE_DDR3) {
665 		const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
666 		const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
667 			1000; /* 360ns */
668 		const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
669 		const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
670 
671 		writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
672 		writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
673 	} else {
674 		/* LPDDR2 or LPDDR3 */
675 		const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
676 			1000; /* 100ns */
677 		const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
678 		const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
679 		const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
680 
681 		writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
682 		writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
683 	}
684 
685 	/* TEST ME */
686 	writel(0x00203131, &mctl_phy->acmdlr);
687 
688 	/* TODO: can we enable this for 2 ranks, even when we don't know yet */
689 	writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
690 	       &mctl_phy->dtcr);
691 
692 	/* TODO: half width */
693 	debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
694 	writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
695 	writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
696 
697 	clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
698 			(CONFIG_DRAM_ZQ >>  0) & 0xff);  /* CK/CA */
699 	clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
700 			(CONFIG_DRAM_ZQ >>  8) & 0xff);  /* DX0/DX1 */
701 	clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
702 			(CONFIG_DRAM_ZQ >> 16) & 0xff);  /* DX2/DX3 */
703 
704 	/* TODO: make configurable & implement non-ODT path */
705 	if (1) {
706 		int lane;
707 		for (lane = 0; lane < 4; ++lane) {
708 			clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
709 			clrbits_le32(&mctl_phy->dx[lane].gcr[3],
710 				     (0x3<<12) | (0x3<<4));
711 		}
712 	} else {
713 		/* TODO: check */
714 		int lane;
715 		for (lane = 0; lane < 4; ++lane) {
716 			clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
717 					0xaaaa);
718 			if (para->dram_type == DRAM_TYPE_DDR3)
719 				setbits_le32(&mctl_phy->dx[lane].gcr[3],
720 					     (0x3<<12) | (0x3<<4));
721 			else
722 				setbits_le32(&mctl_phy->dx[lane].gcr[3],
723 					     0x00000012);
724 		}
725 	}
726 
727 	writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
728 	writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
729 	writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
730 
731 	/* Disable auto-refresh prior to data training */
732 	setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
733 
734 	setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
735 	/* TODO: IODDRM (IO DDR-MODE) for DDR3L */
736 	clrsetbits_le32(&mctl_phy->pgcr[1],
737 			MCTL_PGCR1_ZCKSEL_MASK,
738 			MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
739 
740 	setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
741 	/* TODO: single-channel PLL mode??? missing */
742 	setbits_le32(&mctl_phy->pllcr,
743 		     MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
744 	/* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
745 
746 	/* Disable VT compensation */
747 	clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
748 
749 	/* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
750 	if (para->dram_type == DRAM_TYPE_DDR3)
751 		clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
752 	else
753 		clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
754 
755 	sdelay(10000); /* XXX necessary? */
756 
757 	/* Wait for the INIT bit to clear itself... */
758 	while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
759 		/* not done yet -- keep spinning */
760 		debug("MCTL_PIR_INIT not set\n");
761 		sdelay(1000);
762 		/* TODO: implement timeout */
763 	}
764 
765 	/* TODO: not used --- there's a "2rank debug" section here */
766 
767 	/* Original dram init code which may come in handy later
768 	********************************************************
769 	 * LPDDR2 and LPDDR3 *
770 	if ((para->dram_type) == 6 || (para->dram_type) == 7) {
771 		reg_val = mctl_read_w(P0_DSGCR + ch_offset);
772 		reg_val &= (~(0x3<<6));		* set DQSGX to 1 *
773 		reg_val |= (0x1<<6);		* dqs gate extend *
774 		mctl_write_w(P0_DSGCR + ch_offset, reg_val);
775 		dram_dbg("DQS Gate Extend Enable!\n", ch_index);
776 	}
777 
778 	 * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
779 	if (para->dram_tpr13 & (0x1<<31)) {
780 		reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
781 		reg_val |= (0x7<<11);
782 		mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
783 	}
784 	********************************************************
785 	*/
786 
787 	/*
788 	 * TODO: more 2-rank support
789 	 * (setting the "dqs gate delay to average between 2 rank")
790 	 */
791 
792 	/* check if any errors are set */
793 	if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
794 		debug("Channel %d unavailable!\n", ch_index);
795 		return 0;
796 	} else{
797 		/* initial OK */
798 		debug("Channel %d OK!\n", ch_index);
799 		/* return 1; */
800 	}
801 
802 	while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
803 		debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
804 		sdelay(100000);
805 		/* init not done */
806 		/* TODO: implement time-out */
807 	}
808 	debug("done\n");
809 
810 	/* "DDR is controller by contoller" */
811 	clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
812 
813 	/* TODO: is the following necessary? */
814 	debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
815 	writel(0, &mctl_ctl->dfimisc);
816 
817 	/* Enable auto-refresh */
818 	clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
819 
820 	debug("channel_init complete\n");
821 	return 1;
822 }
823 
824 signed int DRAMC_get_dram_size(void)
825 {
826 	struct sunxi_mctl_com_reg * const mctl_com =
827 		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
828 
829 	unsigned int reg_val;
830 	unsigned int dram_size;
831 	unsigned int temp;
832 
833 	reg_val = readl(&mctl_com->cr);
834 
835 	temp = (reg_val >> 8) & 0xf;	/* page size code */
836 	dram_size = (temp - 6);		/* (1 << dram_size) * 512Bytes */
837 
838 	temp = (reg_val >> 4) & 0xf;	/* row width code */
839 	dram_size += (temp + 1);	/* (1 << dram_size) * 512Bytes */
840 
841 	temp = (reg_val >> 2) & 0x3;	/* bank number code */
842 	dram_size += (temp + 2);	/* (1 << dram_size) * 512Bytes */
843 
844 	temp = reg_val & 0x3;		/* rank number code */
845 	dram_size += temp;		/* (1 << dram_size) * 512Bytes */
846 
847 	temp = (reg_val >> 19) & 0x1;	/* channel number code */
848 	dram_size += temp;		/* (1 << dram_size) * 512Bytes */
849 
850 	dram_size = dram_size - 11;	/* (1 << dram_size) MBytes */
851 
852 	return 1 << dram_size;
853 }
854 
855 unsigned long sunxi_dram_init(void)
856 {
857 	struct sunxi_mctl_com_reg * const mctl_com =
858 		(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
859 
860 	struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
861 		{ .CL =  5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
862 		{ .CL =  6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
863 		{ .CL =  8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
864 		{ .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
865 		{ .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
866 	};
867 
868 	/* Set initial parameters, these get modified by the autodetect code */
869 	struct dram_sun9i_para para = {
870 		.dram_type = DRAM_TYPE_DDR3,
871 		.bus_width = 32,
872 		.chan = 2,
873 		.rank = 1,
874 		/* .rank = 2, */
875 		.page_size = 4096,
876 		/* .rows = 16, */
877 		.rows = 15,
878 
879 		/* CL/CWL table for the speed bin */
880 		.cl_cwl_table = cl_cwl,
881 		.cl_cwl_numentries = sizeof(cl_cwl) /
882 			sizeof(struct dram_sun9i_cl_cwl_timing),
883 
884 		/* timings */
885 		.tREFI = 7800,	/* 7.8us (up to 85 degC) */
886 		.tRFC  = 260,	/* 260ns for 4GBit devices */
887 				/* 350ns @ 8GBit */
888 
889 		.tRCD  = 13750,
890 		.tRP   = 13750,
891 		.tRC   = 48750,
892 		.tRAS  = 35000,
893 
894 		.tDLLK = 512,
895 		.tRTP  = { .ck = 4, .ps = 7500 },
896 		.tWTR  = { .ck = 4, .ps = 7500 },
897 		.tWR   = 15,
898 		.tMRD  = 4,
899 		.tMOD  = { .ck = 12, .ps = 15000 },
900 		.tCCD  = 4,
901 		.tRRD  = { .ck = 4, .ps = 7500 },
902 		.tFAW  = 40,
903 
904 		/* calibration timing */
905 		/* .tZQinit = { .ck = 512, .ps = 640000 }, */
906 		.tZQoper = { .ck = 256, .ps = 320000 },
907 		.tZQCS   = { .ck = 64,  .ps = 80000 },
908 
909 		/* reset timing */
910 		/* .tXPR  = { .ck = 5, .ps = 10000 }, */
911 
912 		/* self-refresh timings */
913 		.tXS  = { .ck = 5, .ps = 10000 },
914 		.tXSDLL = 512,
915 		.tCKSRE = { .ck = 5, .ps = 10000 },
916 		.tCKSRX = { .ck = 5, .ps = 10000 },
917 
918 		/* power-down timings */
919 		.tXP = { .ck = 3, .ps = 6000 },
920 		.tXPDLL = { .ck = 10, .ps = 24000 },
921 		.tCKE = { .ck = 3, .ps = 5000 },
922 
923 		/* write leveling timings */
924 		.tWLMRD = 40,
925 		/* .tWLDQSEN = 25, */
926 		.tWLO = 7500,
927 		/* .tWLOE = 2000, */
928 	};
929 
930 	/*
931 	 * Disable A80 internal 240 ohm resistor.
932 	 *
933 	 * This code sequence is adapated from Allwinner's Boot0 (see
934 	 * https://github.com/allwinner-zh/bootloader.git), as there
935 	 * is no documentation for these two registers in the R_PRCM
936 	 * block.
937 	 */
938 	setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
939 	writel(0, SUNXI_PRCM_BASE + 0x1e8);
940 
941 	mctl_sys_init();
942 
943 	if (!mctl_channel_init(0, &para))
944 		return 0;
945 
946 	/* dual-channel */
947 	if (!mctl_channel_init(1, &para)) {
948 		/* disable channel 1 */
949 		clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
950 				MCTL_CR_CHANNEL_SINGLE);
951 		/* disable channel 1 global clock */
952 		clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
953 	}
954 
955 	mctl_com_init(&para);
956 
957 	/* return the proper RAM size */
958 	return DRAMC_get_dram_size() << 20;
959 }
960