1 
2 /*
3  * sun9i specific clock code
4  *
5  * (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com>
6  *
7  * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
8  *                    Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
9  *
10  * SPDX-License-Identifier:	GPL-2.0+
11  */
12 
13 #include <common.h>
14 #include <asm/io.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/prcm.h>
17 #include <asm/arch/sys_proto.h>
18 
19 
20 #ifdef CONFIG_SPL_BUILD
21 
22 void clock_init_safe(void)
23 {
24 	struct sunxi_ccm_reg * const ccm =
25 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
26 
27 	/* Set up PLL12 (peripheral 1) */
28 	clock_set_pll12(1200000000);
29 
30 	/* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */
31 	clock_set_pll1(408000000);
32 	clock_set_pll2(408000000);
33 
34 	/* Set up PLL4 (peripheral 0) */
35 	clock_set_pll4(960000000);
36 
37 	/* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */
38 	writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) |
39 	       C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg);
40 
41 	/* AHB0: 120 MHz (PLL_PERIPH0 / 8) */
42 	writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
43 	       &ccm->ahb0_cfg);
44 	/* AHB1: 240 MHz (PLL_PERIPH0 / 4) */
45 	writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4),
46 	       &ccm->ahb1_cfg);
47 	/* AHB2: 120 MHz (PLL_PERIPH0 / 8) */
48 	writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
49 	       &ccm->ahb2_cfg);
50 	/* APB0: 120 MHz (PLL_PERIPH0 / 8) */
51 	writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8),
52 	       &ccm->apb0_cfg);
53 
54 	/* GTBUS: 400MHz (PERIPH0 div 3) */
55 	writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3),
56 	       &ccm->gtbus_cfg);
57 	/* CCI400: 480MHz (PERIPH1 div 2) */
58 	writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2),
59 	       &ccm->cci400_cfg);
60 
61 	/* Deassert DMA reset and open clock gating for DMA */
62 	setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24));
63 	setbits_le32(&ccm->apb1_gate, (1 << 24));
64 
65 	/* set enable-bit in TSTAMP_CTRL_REG */
66 	writel(1, 0x01720000);
67 }
68 #endif
69 
70 void clock_init_uart(void)
71 {
72 	struct sunxi_ccm_reg *const ccm =
73 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
74 
75 	/* open the clock for uart */
76 	setbits_le32(&ccm->apb1_gate,
77 		     CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT +
78 				       CONFIG_CONS_INDEX - 1));
79 	/* deassert uart reset */
80 	setbits_le32(&ccm->apb1_reset_cfg,
81 		     1 << (APB1_RESET_UART_SHIFT +
82 			   CONFIG_CONS_INDEX - 1));
83 }
84 
85 #ifdef CONFIG_SPL_BUILD
86 void clock_set_pll1(unsigned int clk)
87 {
88 	struct sunxi_ccm_reg * const ccm =
89 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
90 	const int p = 0;
91 
92 	/* Switch cluster 0 to 24MHz clock while changing PLL1 */
93 	clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
94 			C0_CPUX_CLK_SRC_OSC24M);
95 
96 	writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) |
97 	       CCM_PLL1_CLOCK_TIME_2 |
98 	       CCM_PLL1_CTRL_N(clk / 24000000),
99 	       &ccm->pll1_c0_cfg);
100 	/*
101 	 * Don't bother with the stable-time registers, as it doesn't
102 	 * wait until the PLL is stable.  Note, that even Allwinner
103 	 * just uses a delay loop (or rather the AVS timer) for this
104 	 * instead of the PLL_STABLE_STATUS register.
105 	 */
106 	sdelay(2000);
107 
108 	/* Switch cluster 0 back to PLL1 */
109 	clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
110 			C0_CPUX_CLK_SRC_PLL1);
111 }
112 
113 void clock_set_pll2(unsigned int clk)
114 {
115 	struct sunxi_ccm_reg * const ccm =
116 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
117 	const int p = 0;
118 
119 	/* Switch cluster 1 to 24MHz clock while changing PLL2 */
120 	clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
121 			C1_CPUX_CLK_SRC_OSC24M);
122 
123 	writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) |
124 	       CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000),
125 	       &ccm->pll2_c1_cfg);
126 
127 	sdelay(2000);
128 
129 	/* Switch cluster 1 back to PLL2 */
130 	clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
131 			C1_CPUX_CLK_SRC_PLL2);
132 }
133 
134 void clock_set_pll6(unsigned int clk)
135 {
136 	struct sunxi_ccm_reg * const ccm =
137 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
138 	const int p = 0;
139 
140 	writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p)
141 	       | CCM_PLL6_CTRL_N(clk / 24000000),
142 	       &ccm->pll6_ddr_cfg);
143 	do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS));
144 
145 	sdelay(2000);
146 }
147 
148 void clock_set_pll12(unsigned int clk)
149 {
150 	struct sunxi_ccm_reg * const ccm =
151 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
152 
153 	if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN)
154 		return;
155 
156 	writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000),
157 	       &ccm->pll12_periph1_cfg);
158 
159 	sdelay(2000);
160 }
161 
162 
163 void clock_set_pll4(unsigned int clk)
164 {
165 	struct sunxi_ccm_reg * const ccm =
166 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
167 
168 	writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000),
169 	       &ccm->pll4_periph0_cfg);
170 
171 	sdelay(2000);
172 }
173 #endif
174 
175 int clock_twi_onoff(int port, int state)
176 {
177 	struct sunxi_ccm_reg *const ccm =
178 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
179 
180 	if (port > 4)
181 		return -1;
182 
183 	/* set the apb reset and clock gate for twi */
184 	if (state) {
185 		setbits_le32(&ccm->apb1_gate,
186 			     CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
187 		setbits_le32(&ccm->apb1_reset_cfg,
188 			     1 << (APB1_RESET_TWI_SHIFT + port));
189 	} else {
190 		clrbits_le32(&ccm->apb1_reset_cfg,
191 			     1 << (APB1_RESET_TWI_SHIFT + port));
192 		clrbits_le32(&ccm->apb1_gate,
193 			     CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
194 	}
195 
196 	return 0;
197 }
198 
199 unsigned int clock_get_pll4_periph0(void)
200 {
201 	struct sunxi_ccm_reg *const ccm =
202 		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
203 	uint32_t rval = readl(&ccm->pll4_periph0_cfg);
204 	int n = ((rval & CCM_PLL4_CTRL_N_MASK) >> CCM_PLL4_CTRL_N_SHIFT);
205 	int p = ((rval & CCM_PLL4_CTRL_P_MASK) >> CCM_PLL4_CTRL_P_SHIFT);
206 	int m = ((rval & CCM_PLL4_CTRL_M_MASK) >> CCM_PLL4_CTRL_M_SHIFT) + 1;
207 	const int k = 1;
208 
209 	return ((24000000 * n * k) >> p) / m;
210 }
211