1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Copyright (C) 2012-2017 Altera Corporation <www.altera.com>
4  */
5 
6 #include <common.h>
7 #include <asm/io.h>
8 #include <errno.h>
9 #include <fdtdec.h>
10 #include <linux/libfdt.h>
11 #include <altera.h>
12 #include <miiphy.h>
13 #include <netdev.h>
14 #include <watchdog.h>
15 #include <asm/arch/misc.h>
16 #include <asm/arch/reset_manager.h>
17 #include <asm/arch/scan_manager.h>
18 #include <asm/arch/sdram.h>
19 #include <asm/arch/system_manager.h>
20 #include <asm/arch/nic301.h>
21 #include <asm/arch/scu.h>
22 #include <asm/pl310.h>
23 
24 #include <dt-bindings/reset/altr,rst-mgr.h>
25 
26 DECLARE_GLOBAL_DATA_PTR;
27 
28 static struct pl310_regs *const pl310 =
29 	(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
30 static struct socfpga_system_manager *sysmgr_regs =
31 	(struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS;
32 static struct nic301_registers *nic301_regs =
33 	(struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS;
34 static struct scu_registers *scu_regs =
35 	(struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS;
36 
37 /*
38  * DesignWare Ethernet initialization
39  */
40 #ifdef CONFIG_ETH_DESIGNWARE
41 void dwmac_deassert_reset(const unsigned int of_reset_id,
42 				 const u32 phymode)
43 {
44 	u32 physhift, reset;
45 
46 	if (of_reset_id == EMAC0_RESET) {
47 		physhift = SYSMGR_EMACGRP_CTRL_PHYSEL0_LSB;
48 		reset = SOCFPGA_RESET(EMAC0);
49 	} else if (of_reset_id == EMAC1_RESET) {
50 		physhift = SYSMGR_EMACGRP_CTRL_PHYSEL1_LSB;
51 		reset = SOCFPGA_RESET(EMAC1);
52 	} else {
53 		printf("GMAC: Invalid reset ID (%i)!\n", of_reset_id);
54 		return;
55 	}
56 
57 	/* configure to PHY interface select choosed */
58 	clrsetbits_le32(&sysmgr_regs->emacgrp_ctrl,
59 			SYSMGR_EMACGRP_CTRL_PHYSEL_MASK << physhift,
60 			phymode << physhift);
61 
62 	/* Release the EMAC controller from reset */
63 	socfpga_per_reset(reset, 0);
64 }
65 
66 static u32 dwmac_phymode_to_modereg(const char *phymode, u32 *modereg)
67 {
68 	if (!phymode)
69 		return -EINVAL;
70 
71 	if (!strcmp(phymode, "mii") || !strcmp(phymode, "gmii")) {
72 		*modereg = SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_GMII_MII;
73 		return 0;
74 	}
75 
76 	if (!strcmp(phymode, "rgmii")) {
77 		*modereg = SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_RGMII;
78 		return 0;
79 	}
80 
81 	if (!strcmp(phymode, "rmii")) {
82 		*modereg = SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_RMII;
83 		return 0;
84 	}
85 
86 	return -EINVAL;
87 }
88 
89 static int socfpga_eth_reset(void)
90 {
91 	const void *fdt = gd->fdt_blob;
92 	struct fdtdec_phandle_args args;
93 	const char *phy_mode;
94 	u32 phy_modereg;
95 	int nodes[2];	/* Max. two GMACs */
96 	int ret, count;
97 	int i, node;
98 
99 	/* Put both GMACs into RESET state. */
100 	socfpga_per_reset(SOCFPGA_RESET(EMAC0), 1);
101 	socfpga_per_reset(SOCFPGA_RESET(EMAC1), 1);
102 
103 	count = fdtdec_find_aliases_for_id(fdt, "ethernet",
104 					   COMPAT_ALTERA_SOCFPGA_DWMAC,
105 					   nodes, ARRAY_SIZE(nodes));
106 	for (i = 0; i < count; i++) {
107 		node = nodes[i];
108 		if (node <= 0)
109 			continue;
110 
111 		ret = fdtdec_parse_phandle_with_args(fdt, node, "resets",
112 						     "#reset-cells", 1, 0,
113 						     &args);
114 		if (ret || (args.args_count != 1)) {
115 			debug("GMAC%i: Failed to parse DT 'resets'!\n", i);
116 			continue;
117 		}
118 
119 		phy_mode = fdt_getprop(fdt, node, "phy-mode", NULL);
120 		ret = dwmac_phymode_to_modereg(phy_mode, &phy_modereg);
121 		if (ret) {
122 			debug("GMAC%i: Failed to parse DT 'phy-mode'!\n", i);
123 			continue;
124 		}
125 
126 		dwmac_deassert_reset(args.args[0], phy_modereg);
127 	}
128 
129 	return 0;
130 }
131 #else
132 static int socfpga_eth_reset(void)
133 {
134 	return 0;
135 };
136 #endif
137 
138 static const struct {
139 	const u16	pn;
140 	const char	*name;
141 	const char	*var;
142 } socfpga_fpga_model[] = {
143 	/* Cyclone V E */
144 	{ 0x2b15, "Cyclone V, E/A2", "cv_e_a2" },
145 	{ 0x2b05, "Cyclone V, E/A4", "cv_e_a4" },
146 	{ 0x2b22, "Cyclone V, E/A5", "cv_e_a5" },
147 	{ 0x2b13, "Cyclone V, E/A7", "cv_e_a7" },
148 	{ 0x2b14, "Cyclone V, E/A9", "cv_e_a9" },
149 	/* Cyclone V GX/GT */
150 	{ 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" },
151 	{ 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" },
152 	{ 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" },
153 	{ 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" },
154 	{ 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" },
155 	/* Cyclone V SE/SX/ST */
156 	{ 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" },
157 	{ 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" },
158 	{ 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" },
159 	{ 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" },
160 	/* Arria V */
161 	{ 0x2d03, "Arria V, D5", "av_d5" },
162 };
163 
164 static int socfpga_fpga_id(const bool print_id)
165 {
166 	const u32 altera_mi = 0x6e;
167 	const u32 id = scan_mgr_get_fpga_id();
168 
169 	const u32 lsb = id & 0x00000001;
170 	const u32 mi = (id >> 1) & 0x000007ff;
171 	const u32 pn = (id >> 12) & 0x0000ffff;
172 	const u32 version = (id >> 28) & 0x0000000f;
173 	int i;
174 
175 	if ((mi != altera_mi) || (lsb != 1)) {
176 		printf("FPGA:  Not Altera chip ID\n");
177 		return -EINVAL;
178 	}
179 
180 	for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++)
181 		if (pn == socfpga_fpga_model[i].pn)
182 			break;
183 
184 	if (i == ARRAY_SIZE(socfpga_fpga_model)) {
185 		printf("FPGA:  Unknown Altera chip, ID 0x%08x\n", id);
186 		return -EINVAL;
187 	}
188 
189 	if (print_id)
190 		printf("FPGA:  Altera %s, version 0x%01x\n",
191 		       socfpga_fpga_model[i].name, version);
192 	return i;
193 }
194 
195 /*
196  * Print CPU information
197  */
198 #if defined(CONFIG_DISPLAY_CPUINFO)
199 int print_cpuinfo(void)
200 {
201 	const u32 bsel =
202 		SYSMGR_GET_BOOTINFO_BSEL(readl(&sysmgr_regs->bootinfo));
203 
204 	puts("CPU:   Altera SoCFPGA Platform\n");
205 	socfpga_fpga_id(1);
206 
207 	printf("BOOT:  %s\n", bsel_str[bsel].name);
208 	return 0;
209 }
210 #endif
211 
212 #ifdef CONFIG_ARCH_MISC_INIT
213 int arch_misc_init(void)
214 {
215 	const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7;
216 	const int fpga_id = socfpga_fpga_id(0);
217 	env_set("bootmode", bsel_str[bsel].mode);
218 	if (fpga_id >= 0)
219 		env_set("fpgatype", socfpga_fpga_model[fpga_id].var);
220 	return socfpga_eth_reset();
221 }
222 #endif
223 
224 /*
225  * Convert all NIC-301 AMBA slaves from secure to non-secure
226  */
227 static void socfpga_nic301_slave_ns(void)
228 {
229 	writel(0x1, &nic301_regs->lwhps2fpgaregs);
230 	writel(0x1, &nic301_regs->hps2fpgaregs);
231 	writel(0x1, &nic301_regs->acp);
232 	writel(0x1, &nic301_regs->rom);
233 	writel(0x1, &nic301_regs->ocram);
234 	writel(0x1, &nic301_regs->sdrdata);
235 }
236 
237 static u32 iswgrp_handoff[8];
238 
239 int arch_early_init_r(void)
240 {
241 	int i;
242 
243 	/*
244 	 * Write magic value into magic register to unlock support for
245 	 * issuing warm reset. The ancient kernel code expects this
246 	 * value to be written into the register by the bootloader, so
247 	 * to support that old code, we write it here instead of in the
248 	 * reset_cpu() function just before resetting the CPU.
249 	 */
250 	writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable);
251 
252 	for (i = 0; i < 8; i++)	/* Cache initial SW setting regs */
253 		iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]);
254 
255 	socfpga_bridges_reset(1);
256 
257 	socfpga_nic301_slave_ns();
258 
259 	/*
260 	 * Private components security:
261 	 * U-Boot : configure private timer, global timer and cpu component
262 	 * access as non secure for kernel stage (as required by Linux)
263 	 */
264 	setbits_le32(&scu_regs->sacr, 0xfff);
265 
266 	/* Configure the L2 controller to make SDRAM start at 0 */
267 	writel(0x1, &nic301_regs->remap);	/* remap.mpuzero */
268 	writel(0x1, &pl310->pl310_addr_filter_start);
269 
270 	/* Add device descriptor to FPGA device table */
271 	socfpga_fpga_add();
272 
273 #ifdef CONFIG_DESIGNWARE_SPI
274 	/* Get Designware SPI controller out of reset */
275 	socfpga_per_reset(SOCFPGA_RESET(SPIM0), 0);
276 	socfpga_per_reset(SOCFPGA_RESET(SPIM1), 0);
277 #endif
278 
279 #ifdef CONFIG_NAND_DENALI
280 	socfpga_per_reset(SOCFPGA_RESET(NAND), 0);
281 #endif
282 
283 	return 0;
284 }
285 
286 #ifndef CONFIG_SPL_BUILD
287 static struct socfpga_reset_manager *reset_manager_base =
288 	(struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS;
289 static struct socfpga_sdr_ctrl *sdr_ctrl =
290 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
291 
292 static void socfpga_sdram_apply_static_cfg(void)
293 {
294 	const u32 applymask = 0x8;
295 	u32 val = readl(&sdr_ctrl->static_cfg) | applymask;
296 
297 	/*
298 	 * SDRAM staticcfg register specific:
299 	 * When applying the register setting, the CPU must not access
300 	 * SDRAM. Luckily for us, we can abuse i-cache here to help us
301 	 * circumvent the SDRAM access issue. The idea is to make sure
302 	 * that the code is in one full i-cache line by branching past
303 	 * it and back. Once it is in the i-cache, we execute the core
304 	 * of the code and apply the register settings.
305 	 *
306 	 * The code below uses 7 instructions, while the Cortex-A9 has
307 	 * 32-byte cachelines, thus the limit is 8 instructions total.
308 	 */
309 	asm volatile(
310 		".align	5			\n"
311 		"	b	2f		\n"
312 		"1:	str	%0,	[%1]	\n"
313 		"	dsb			\n"
314 		"	isb			\n"
315 		"	b	3f		\n"
316 		"2:	b	1b		\n"
317 		"3:	nop			\n"
318 	: : "r"(val), "r"(&sdr_ctrl->static_cfg) : "memory", "cc");
319 }
320 
321 static int do_bridge(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
322 {
323 	if (argc != 2)
324 		return CMD_RET_USAGE;
325 
326 	argv++;
327 
328 	switch (*argv[0]) {
329 	case 'e':	/* Enable */
330 		writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module);
331 		socfpga_sdram_apply_static_cfg();
332 		writel(iswgrp_handoff[3], &sdr_ctrl->fpgaport_rst);
333 		writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset);
334 		writel(iswgrp_handoff[1], &nic301_regs->remap);
335 		break;
336 	case 'd':	/* Disable */
337 		writel(0, &sysmgr_regs->fpgaintfgrp_module);
338 		writel(0, &sdr_ctrl->fpgaport_rst);
339 		socfpga_sdram_apply_static_cfg();
340 		writel(0, &reset_manager_base->brg_mod_reset);
341 		writel(1, &nic301_regs->remap);
342 		break;
343 	default:
344 		return CMD_RET_USAGE;
345 	}
346 
347 	return 0;
348 }
349 
350 U_BOOT_CMD(
351 	bridge, 2, 1, do_bridge,
352 	"SoCFPGA HPS FPGA bridge control",
353 	"enable  - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n"
354 	"bridge disable - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n"
355 	""
356 );
357 #endif
358