1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2013-2017 Altera Corporation <www.altera.com> 4 */ 5 6 #include <common.h> 7 #include <asm/io.h> 8 #include <dm.h> 9 #include <asm/arch/clock_manager.h> 10 #include <wait_bit.h> 11 12 static const struct socfpga_clock_manager *clock_manager_base = 13 (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS; 14 15 /* 16 * function to write the bypass register which requires a poll of the 17 * busy bit 18 */ 19 static void cm_write_bypass(u32 val) 20 { 21 writel(val, &clock_manager_base->bypass); 22 cm_wait_for_fsm(); 23 } 24 25 /* function to write the ctrl register which requires a poll of the busy bit */ 26 static void cm_write_ctrl(u32 val) 27 { 28 writel(val, &clock_manager_base->ctrl); 29 cm_wait_for_fsm(); 30 } 31 32 /* function to write a clock register that has phase information */ 33 static int cm_write_with_phase(u32 value, const void *reg_address, u32 mask) 34 { 35 int ret; 36 37 /* poll until phase is zero */ 38 ret = wait_for_bit_le32(reg_address, mask, false, 20000, false); 39 if (ret) 40 return ret; 41 42 writel(value, reg_address); 43 44 return wait_for_bit_le32(reg_address, mask, false, 20000, false); 45 } 46 47 /* 48 * Setup clocks while making no assumptions about previous state of the clocks. 49 * 50 * Start by being paranoid and gate all sw managed clocks 51 * Put all plls in bypass 52 * Put all plls VCO registers back to reset value (bandgap power down). 53 * Put peripheral and main pll src to reset value to avoid glitch. 54 * Delay 5 us. 55 * Deassert bandgap power down and set numerator and denominator 56 * Start 7 us timer. 57 * set internal dividers 58 * Wait for 7 us timer. 59 * Enable plls 60 * Set external dividers while plls are locking 61 * Wait for pll lock 62 * Assert/deassert outreset all. 63 * Take all pll's out of bypass 64 * Clear safe mode 65 * set source main and peripheral clocks 66 * Ungate clocks 67 */ 68 69 int cm_basic_init(const struct cm_config * const cfg) 70 { 71 unsigned long end; 72 int ret; 73 74 /* Start by being paranoid and gate all sw managed clocks */ 75 76 /* 77 * We need to disable nandclk 78 * and then do another apb access before disabling 79 * gatting off the rest of the periperal clocks. 80 */ 81 writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK & 82 readl(&clock_manager_base->per_pll.en), 83 &clock_manager_base->per_pll.en); 84 85 /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */ 86 writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK | 87 CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK | 88 CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK | 89 CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK | 90 CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK | 91 CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK, 92 &clock_manager_base->main_pll.en); 93 94 writel(0, &clock_manager_base->sdr_pll.en); 95 96 /* now we can gate off the rest of the peripheral clocks */ 97 writel(0, &clock_manager_base->per_pll.en); 98 99 /* Put all plls in bypass */ 100 cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL | 101 CLKMGR_BYPASS_MAINPLL); 102 103 /* Put all plls VCO registers back to reset value. */ 104 writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE & 105 ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK, 106 &clock_manager_base->main_pll.vco); 107 writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE & 108 ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK, 109 &clock_manager_base->per_pll.vco); 110 writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE & 111 ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK, 112 &clock_manager_base->sdr_pll.vco); 113 114 /* 115 * The clocks to the flash devices and the L4_MAIN clocks can 116 * glitch when coming out of safe mode if their source values 117 * are different from their reset value. So the trick it to 118 * put them back to their reset state, and change input 119 * after exiting safe mode but before ungating the clocks. 120 */ 121 writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE, 122 &clock_manager_base->per_pll.src); 123 writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE, 124 &clock_manager_base->main_pll.l4src); 125 126 /* read back for the required 5 us delay. */ 127 readl(&clock_manager_base->main_pll.vco); 128 readl(&clock_manager_base->per_pll.vco); 129 readl(&clock_manager_base->sdr_pll.vco); 130 131 132 /* 133 * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN 134 * with numerator and denominator. 135 */ 136 writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco); 137 writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco); 138 writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco); 139 140 /* 141 * Time starts here. Must wait 7 us from 142 * BGPWRDN_SET(0) to VCO_ENABLE_SET(1). 143 */ 144 end = timer_get_us() + 7; 145 146 /* main mpu */ 147 writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk); 148 149 /* altera group mpuclk */ 150 writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk); 151 152 /* main main clock */ 153 writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk); 154 155 /* main for dbg */ 156 writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk); 157 158 /* main for cfgs2fuser0clk */ 159 writel(cfg->cfg2fuser0clk, 160 &clock_manager_base->main_pll.cfgs2fuser0clk); 161 162 /* Peri emac0 50 MHz default to RMII */ 163 writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk); 164 165 /* Peri emac1 50 MHz default to RMII */ 166 writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk); 167 168 /* Peri QSPI */ 169 writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk); 170 171 writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk); 172 173 /* Peri pernandsdmmcclk */ 174 writel(cfg->mainnandsdmmcclk, 175 &clock_manager_base->main_pll.mainnandsdmmcclk); 176 177 writel(cfg->pernandsdmmcclk, 178 &clock_manager_base->per_pll.pernandsdmmcclk); 179 180 /* Peri perbaseclk */ 181 writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk); 182 183 /* Peri s2fuser1clk */ 184 writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk); 185 186 /* 7 us must have elapsed before we can enable the VCO */ 187 while (timer_get_us() < end) 188 ; 189 190 /* Enable vco */ 191 /* main pll vco */ 192 writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 193 &clock_manager_base->main_pll.vco); 194 195 /* periferal pll */ 196 writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 197 &clock_manager_base->per_pll.vco); 198 199 /* sdram pll vco */ 200 writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 201 &clock_manager_base->sdr_pll.vco); 202 203 /* L3 MP and L3 SP */ 204 writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv); 205 206 writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv); 207 208 writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv); 209 210 /* L4 MP, L4 SP, can0, and can1 */ 211 writel(cfg->perdiv, &clock_manager_base->per_pll.div); 212 213 writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv); 214 215 cm_wait_for_lock(LOCKED_MASK); 216 217 /* write the sdram clock counters before toggling outreset all */ 218 writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK, 219 &clock_manager_base->sdr_pll.ddrdqsclk); 220 221 writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK, 222 &clock_manager_base->sdr_pll.ddr2xdqsclk); 223 224 writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK, 225 &clock_manager_base->sdr_pll.ddrdqclk); 226 227 writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK, 228 &clock_manager_base->sdr_pll.s2fuser2clk); 229 230 /* 231 * after locking, but before taking out of bypass 232 * assert/deassert outresetall 233 */ 234 u32 mainvco = readl(&clock_manager_base->main_pll.vco); 235 236 /* assert main outresetall */ 237 writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, 238 &clock_manager_base->main_pll.vco); 239 240 u32 periphvco = readl(&clock_manager_base->per_pll.vco); 241 242 /* assert pheriph outresetall */ 243 writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, 244 &clock_manager_base->per_pll.vco); 245 246 /* assert sdram outresetall */ 247 writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN| 248 CLKMGR_SDRPLLGRP_VCO_OUTRESETALL, 249 &clock_manager_base->sdr_pll.vco); 250 251 /* deassert main outresetall */ 252 writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, 253 &clock_manager_base->main_pll.vco); 254 255 /* deassert pheriph outresetall */ 256 writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, 257 &clock_manager_base->per_pll.vco); 258 259 /* deassert sdram outresetall */ 260 writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 261 &clock_manager_base->sdr_pll.vco); 262 263 /* 264 * now that we've toggled outreset all, all the clocks 265 * are aligned nicely; so we can change any phase. 266 */ 267 ret = cm_write_with_phase(cfg->ddrdqsclk, 268 &clock_manager_base->sdr_pll.ddrdqsclk, 269 CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK); 270 if (ret) 271 return ret; 272 273 /* SDRAM DDR2XDQSCLK */ 274 ret = cm_write_with_phase(cfg->ddr2xdqsclk, 275 &clock_manager_base->sdr_pll.ddr2xdqsclk, 276 CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK); 277 if (ret) 278 return ret; 279 280 ret = cm_write_with_phase(cfg->ddrdqclk, 281 &clock_manager_base->sdr_pll.ddrdqclk, 282 CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK); 283 if (ret) 284 return ret; 285 286 ret = cm_write_with_phase(cfg->s2fuser2clk, 287 &clock_manager_base->sdr_pll.s2fuser2clk, 288 CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK); 289 if (ret) 290 return ret; 291 292 /* Take all three PLLs out of bypass when safe mode is cleared. */ 293 cm_write_bypass(0); 294 295 /* clear safe mode */ 296 cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE); 297 298 /* 299 * now that safe mode is clear with clocks gated 300 * it safe to change the source mux for the flashes the the L4_MAIN 301 */ 302 writel(cfg->persrc, &clock_manager_base->per_pll.src); 303 writel(cfg->l4src, &clock_manager_base->main_pll.l4src); 304 305 /* Now ungate non-hw-managed clocks */ 306 writel(~0, &clock_manager_base->main_pll.en); 307 writel(~0, &clock_manager_base->per_pll.en); 308 writel(~0, &clock_manager_base->sdr_pll.en); 309 310 /* Clear the loss of lock bits (write 1 to clear) */ 311 writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK | 312 CLKMGR_INTER_MAINPLLLOST_MASK, 313 &clock_manager_base->inter); 314 315 return 0; 316 } 317 318 static unsigned int cm_get_main_vco_clk_hz(void) 319 { 320 u32 reg, clock; 321 322 /* get the main VCO clock */ 323 reg = readl(&clock_manager_base->main_pll.vco); 324 clock = cm_get_osc_clk_hz(1); 325 clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >> 326 CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1; 327 clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >> 328 CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1; 329 330 return clock; 331 } 332 333 static unsigned int cm_get_per_vco_clk_hz(void) 334 { 335 u32 reg, clock = 0; 336 337 /* identify PER PLL clock source */ 338 reg = readl(&clock_manager_base->per_pll.vco); 339 reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >> 340 CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET; 341 if (reg == CLKMGR_VCO_SSRC_EOSC1) 342 clock = cm_get_osc_clk_hz(1); 343 else if (reg == CLKMGR_VCO_SSRC_EOSC2) 344 clock = cm_get_osc_clk_hz(2); 345 else if (reg == CLKMGR_VCO_SSRC_F2S) 346 clock = cm_get_f2s_per_ref_clk_hz(); 347 348 /* get the PER VCO clock */ 349 reg = readl(&clock_manager_base->per_pll.vco); 350 clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >> 351 CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1; 352 clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >> 353 CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1; 354 355 return clock; 356 } 357 358 unsigned long cm_get_mpu_clk_hz(void) 359 { 360 u32 reg, clock; 361 362 clock = cm_get_main_vco_clk_hz(); 363 364 /* get the MPU clock */ 365 reg = readl(&clock_manager_base->altera.mpuclk); 366 clock /= (reg + 1); 367 reg = readl(&clock_manager_base->main_pll.mpuclk); 368 clock /= (reg + 1); 369 return clock; 370 } 371 372 unsigned long cm_get_sdram_clk_hz(void) 373 { 374 u32 reg, clock = 0; 375 376 /* identify SDRAM PLL clock source */ 377 reg = readl(&clock_manager_base->sdr_pll.vco); 378 reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >> 379 CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET; 380 if (reg == CLKMGR_VCO_SSRC_EOSC1) 381 clock = cm_get_osc_clk_hz(1); 382 else if (reg == CLKMGR_VCO_SSRC_EOSC2) 383 clock = cm_get_osc_clk_hz(2); 384 else if (reg == CLKMGR_VCO_SSRC_F2S) 385 clock = cm_get_f2s_sdr_ref_clk_hz(); 386 387 /* get the SDRAM VCO clock */ 388 reg = readl(&clock_manager_base->sdr_pll.vco); 389 clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >> 390 CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1; 391 clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >> 392 CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1; 393 394 /* get the SDRAM (DDR_DQS) clock */ 395 reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk); 396 reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >> 397 CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET; 398 clock /= (reg + 1); 399 400 return clock; 401 } 402 403 unsigned int cm_get_l4_sp_clk_hz(void) 404 { 405 u32 reg, clock = 0; 406 407 /* identify the source of L4 SP clock */ 408 reg = readl(&clock_manager_base->main_pll.l4src); 409 reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >> 410 CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET; 411 412 if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) { 413 clock = cm_get_main_vco_clk_hz(); 414 415 /* get the clock prior L4 SP divider (main clk) */ 416 reg = readl(&clock_manager_base->altera.mainclk); 417 clock /= (reg + 1); 418 reg = readl(&clock_manager_base->main_pll.mainclk); 419 clock /= (reg + 1); 420 } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) { 421 clock = cm_get_per_vco_clk_hz(); 422 423 /* get the clock prior L4 SP divider (periph_base_clk) */ 424 reg = readl(&clock_manager_base->per_pll.perbaseclk); 425 clock /= (reg + 1); 426 } 427 428 /* get the L4 SP clock which supplied to UART */ 429 reg = readl(&clock_manager_base->main_pll.maindiv); 430 reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >> 431 CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET; 432 clock = clock / (1 << reg); 433 434 return clock; 435 } 436 437 unsigned int cm_get_mmc_controller_clk_hz(void) 438 { 439 u32 reg, clock = 0; 440 441 /* identify the source of MMC clock */ 442 reg = readl(&clock_manager_base->per_pll.src); 443 reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >> 444 CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET; 445 446 if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) { 447 clock = cm_get_f2s_per_ref_clk_hz(); 448 } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) { 449 clock = cm_get_main_vco_clk_hz(); 450 451 /* get the SDMMC clock */ 452 reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk); 453 clock /= (reg + 1); 454 } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) { 455 clock = cm_get_per_vco_clk_hz(); 456 457 /* get the SDMMC clock */ 458 reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk); 459 clock /= (reg + 1); 460 } 461 462 /* further divide by 4 as we have fixed divider at wrapper */ 463 clock /= 4; 464 return clock; 465 } 466 467 unsigned int cm_get_qspi_controller_clk_hz(void) 468 { 469 u32 reg, clock = 0; 470 471 /* identify the source of QSPI clock */ 472 reg = readl(&clock_manager_base->per_pll.src); 473 reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >> 474 CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET; 475 476 if (reg == CLKMGR_QSPI_CLK_SRC_F2S) { 477 clock = cm_get_f2s_per_ref_clk_hz(); 478 } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) { 479 clock = cm_get_main_vco_clk_hz(); 480 481 /* get the qspi clock */ 482 reg = readl(&clock_manager_base->main_pll.mainqspiclk); 483 clock /= (reg + 1); 484 } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) { 485 clock = cm_get_per_vco_clk_hz(); 486 487 /* get the qspi clock */ 488 reg = readl(&clock_manager_base->per_pll.perqspiclk); 489 clock /= (reg + 1); 490 } 491 492 return clock; 493 } 494 495 unsigned int cm_get_spi_controller_clk_hz(void) 496 { 497 u32 reg, clock = 0; 498 499 clock = cm_get_per_vco_clk_hz(); 500 501 /* get the clock prior L4 SP divider (periph_base_clk) */ 502 reg = readl(&clock_manager_base->per_pll.perbaseclk); 503 clock /= (reg + 1); 504 505 return clock; 506 } 507 508 /* Override weak dw_spi_get_clk implementation in designware_spi.c driver */ 509 int dw_spi_get_clk(struct udevice *bus, ulong *rate) 510 { 511 *rate = cm_get_spi_controller_clk_hz(); 512 513 return 0; 514 } 515 516 void cm_print_clock_quick_summary(void) 517 { 518 printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000); 519 printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000); 520 printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000); 521 printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000); 522 printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000); 523 printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000); 524 printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000); 525 printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000); 526 printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000); 527 printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000); 528 } 529