1 /*
2  *  Copyright (C) 2013-2017 Altera Corporation <www.altera.com>
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <dm.h>
10 #include <asm/arch/clock_manager.h>
11 #include <wait_bit.h>
12 
13 static const struct socfpga_clock_manager *clock_manager_base =
14 	(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
15 
16 /*
17  * function to write the bypass register which requires a poll of the
18  * busy bit
19  */
20 static void cm_write_bypass(u32 val)
21 {
22 	writel(val, &clock_manager_base->bypass);
23 	cm_wait_for_fsm();
24 }
25 
26 /* function to write the ctrl register which requires a poll of the busy bit */
27 static void cm_write_ctrl(u32 val)
28 {
29 	writel(val, &clock_manager_base->ctrl);
30 	cm_wait_for_fsm();
31 }
32 
33 /* function to write a clock register that has phase information */
34 static int cm_write_with_phase(u32 value, const void *reg_address, u32 mask)
35 {
36 	int ret;
37 
38 	/* poll until phase is zero */
39 	ret = wait_for_bit_le32(reg_address, mask, false, 20000, false);
40 	if (ret)
41 		return ret;
42 
43 	writel(value, reg_address);
44 
45 	return wait_for_bit_le32(reg_address, mask, false, 20000, false);
46 }
47 
48 /*
49  * Setup clocks while making no assumptions about previous state of the clocks.
50  *
51  * Start by being paranoid and gate all sw managed clocks
52  * Put all plls in bypass
53  * Put all plls VCO registers back to reset value (bandgap power down).
54  * Put peripheral and main pll src to reset value to avoid glitch.
55  * Delay 5 us.
56  * Deassert bandgap power down and set numerator and denominator
57  * Start 7 us timer.
58  * set internal dividers
59  * Wait for 7 us timer.
60  * Enable plls
61  * Set external dividers while plls are locking
62  * Wait for pll lock
63  * Assert/deassert outreset all.
64  * Take all pll's out of bypass
65  * Clear safe mode
66  * set source main and peripheral clocks
67  * Ungate clocks
68  */
69 
70 int cm_basic_init(const struct cm_config * const cfg)
71 {
72 	unsigned long end;
73 	int ret;
74 
75 	/* Start by being paranoid and gate all sw managed clocks */
76 
77 	/*
78 	 * We need to disable nandclk
79 	 * and then do another apb access before disabling
80 	 * gatting off the rest of the periperal clocks.
81 	 */
82 	writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
83 		readl(&clock_manager_base->per_pll.en),
84 		&clock_manager_base->per_pll.en);
85 
86 	/* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
87 	writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
88 		CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
89 		CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
90 		CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
91 		CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
92 		CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
93 		&clock_manager_base->main_pll.en);
94 
95 	writel(0, &clock_manager_base->sdr_pll.en);
96 
97 	/* now we can gate off the rest of the peripheral clocks */
98 	writel(0, &clock_manager_base->per_pll.en);
99 
100 	/* Put all plls in bypass */
101 	cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
102 			CLKMGR_BYPASS_MAINPLL);
103 
104 	/* Put all plls VCO registers back to reset value. */
105 	writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
106 	       ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
107 	       &clock_manager_base->main_pll.vco);
108 	writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
109 	       ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
110 	       &clock_manager_base->per_pll.vco);
111 	writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
112 	       ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
113 	       &clock_manager_base->sdr_pll.vco);
114 
115 	/*
116 	 * The clocks to the flash devices and the L4_MAIN clocks can
117 	 * glitch when coming out of safe mode if their source values
118 	 * are different from their reset value.  So the trick it to
119 	 * put them back to their reset state, and change input
120 	 * after exiting safe mode but before ungating the clocks.
121 	 */
122 	writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
123 	       &clock_manager_base->per_pll.src);
124 	writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
125 	       &clock_manager_base->main_pll.l4src);
126 
127 	/* read back for the required 5 us delay. */
128 	readl(&clock_manager_base->main_pll.vco);
129 	readl(&clock_manager_base->per_pll.vco);
130 	readl(&clock_manager_base->sdr_pll.vco);
131 
132 
133 	/*
134 	 * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
135 	 * with numerator and denominator.
136 	 */
137 	writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
138 	writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
139 	writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
140 
141 	/*
142 	 * Time starts here. Must wait 7 us from
143 	 * BGPWRDN_SET(0) to VCO_ENABLE_SET(1).
144 	 */
145 	end = timer_get_us() + 7;
146 
147 	/* main mpu */
148 	writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
149 
150 	/* altera group mpuclk */
151 	writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk);
152 
153 	/* main main clock */
154 	writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
155 
156 	/* main for dbg */
157 	writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
158 
159 	/* main for cfgs2fuser0clk */
160 	writel(cfg->cfg2fuser0clk,
161 	       &clock_manager_base->main_pll.cfgs2fuser0clk);
162 
163 	/* Peri emac0 50 MHz default to RMII */
164 	writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
165 
166 	/* Peri emac1 50 MHz default to RMII */
167 	writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
168 
169 	/* Peri QSPI */
170 	writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
171 
172 	writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
173 
174 	/* Peri pernandsdmmcclk */
175 	writel(cfg->mainnandsdmmcclk,
176 	       &clock_manager_base->main_pll.mainnandsdmmcclk);
177 
178 	writel(cfg->pernandsdmmcclk,
179 	       &clock_manager_base->per_pll.pernandsdmmcclk);
180 
181 	/* Peri perbaseclk */
182 	writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
183 
184 	/* Peri s2fuser1clk */
185 	writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
186 
187 	/* 7 us must have elapsed before we can enable the VCO */
188 	while (timer_get_us() < end)
189 		;
190 
191 	/* Enable vco */
192 	/* main pll vco */
193 	writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
194 	       &clock_manager_base->main_pll.vco);
195 
196 	/* periferal pll */
197 	writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
198 	       &clock_manager_base->per_pll.vco);
199 
200 	/* sdram pll vco */
201 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
202 	       &clock_manager_base->sdr_pll.vco);
203 
204 	/* L3 MP and L3 SP */
205 	writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
206 
207 	writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
208 
209 	writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
210 
211 	/* L4 MP, L4 SP, can0, and can1 */
212 	writel(cfg->perdiv, &clock_manager_base->per_pll.div);
213 
214 	writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
215 
216 	cm_wait_for_lock(LOCKED_MASK);
217 
218 	/* write the sdram clock counters before toggling outreset all */
219 	writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
220 	       &clock_manager_base->sdr_pll.ddrdqsclk);
221 
222 	writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
223 	       &clock_manager_base->sdr_pll.ddr2xdqsclk);
224 
225 	writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
226 	       &clock_manager_base->sdr_pll.ddrdqclk);
227 
228 	writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
229 	       &clock_manager_base->sdr_pll.s2fuser2clk);
230 
231 	/*
232 	 * after locking, but before taking out of bypass
233 	 * assert/deassert outresetall
234 	 */
235 	u32 mainvco = readl(&clock_manager_base->main_pll.vco);
236 
237 	/* assert main outresetall */
238 	writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
239 	       &clock_manager_base->main_pll.vco);
240 
241 	u32 periphvco = readl(&clock_manager_base->per_pll.vco);
242 
243 	/* assert pheriph outresetall */
244 	writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
245 	       &clock_manager_base->per_pll.vco);
246 
247 	/* assert sdram outresetall */
248 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
249 		CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
250 		&clock_manager_base->sdr_pll.vco);
251 
252 	/* deassert main outresetall */
253 	writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
254 	       &clock_manager_base->main_pll.vco);
255 
256 	/* deassert pheriph outresetall */
257 	writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
258 	       &clock_manager_base->per_pll.vco);
259 
260 	/* deassert sdram outresetall */
261 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
262 	       &clock_manager_base->sdr_pll.vco);
263 
264 	/*
265 	 * now that we've toggled outreset all, all the clocks
266 	 * are aligned nicely; so we can change any phase.
267 	 */
268 	ret = cm_write_with_phase(cfg->ddrdqsclk,
269 				  &clock_manager_base->sdr_pll.ddrdqsclk,
270 				  CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
271 	if (ret)
272 		return ret;
273 
274 	/* SDRAM DDR2XDQSCLK */
275 	ret = cm_write_with_phase(cfg->ddr2xdqsclk,
276 				  &clock_manager_base->sdr_pll.ddr2xdqsclk,
277 				  CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
278 	if (ret)
279 		return ret;
280 
281 	ret = cm_write_with_phase(cfg->ddrdqclk,
282 				  &clock_manager_base->sdr_pll.ddrdqclk,
283 				  CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
284 	if (ret)
285 		return ret;
286 
287 	ret = cm_write_with_phase(cfg->s2fuser2clk,
288 				  &clock_manager_base->sdr_pll.s2fuser2clk,
289 				  CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
290 	if (ret)
291 		return ret;
292 
293 	/* Take all three PLLs out of bypass when safe mode is cleared. */
294 	cm_write_bypass(0);
295 
296 	/* clear safe mode */
297 	cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
298 
299 	/*
300 	 * now that safe mode is clear with clocks gated
301 	 * it safe to change the source mux for the flashes the the L4_MAIN
302 	 */
303 	writel(cfg->persrc, &clock_manager_base->per_pll.src);
304 	writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
305 
306 	/* Now ungate non-hw-managed clocks */
307 	writel(~0, &clock_manager_base->main_pll.en);
308 	writel(~0, &clock_manager_base->per_pll.en);
309 	writel(~0, &clock_manager_base->sdr_pll.en);
310 
311 	/* Clear the loss of lock bits (write 1 to clear) */
312 	writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
313 	       CLKMGR_INTER_MAINPLLLOST_MASK,
314 	       &clock_manager_base->inter);
315 
316 	return 0;
317 }
318 
319 static unsigned int cm_get_main_vco_clk_hz(void)
320 {
321 	u32 reg, clock;
322 
323 	/* get the main VCO clock */
324 	reg = readl(&clock_manager_base->main_pll.vco);
325 	clock = cm_get_osc_clk_hz(1);
326 	clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
327 		  CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
328 	clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
329 		  CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
330 
331 	return clock;
332 }
333 
334 static unsigned int cm_get_per_vco_clk_hz(void)
335 {
336 	u32 reg, clock = 0;
337 
338 	/* identify PER PLL clock source */
339 	reg = readl(&clock_manager_base->per_pll.vco);
340 	reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
341 	      CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
342 	if (reg == CLKMGR_VCO_SSRC_EOSC1)
343 		clock = cm_get_osc_clk_hz(1);
344 	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
345 		clock = cm_get_osc_clk_hz(2);
346 	else if (reg == CLKMGR_VCO_SSRC_F2S)
347 		clock = cm_get_f2s_per_ref_clk_hz();
348 
349 	/* get the PER VCO clock */
350 	reg = readl(&clock_manager_base->per_pll.vco);
351 	clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
352 		  CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
353 	clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
354 		  CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
355 
356 	return clock;
357 }
358 
359 unsigned long cm_get_mpu_clk_hz(void)
360 {
361 	u32 reg, clock;
362 
363 	clock = cm_get_main_vco_clk_hz();
364 
365 	/* get the MPU clock */
366 	reg = readl(&clock_manager_base->altera.mpuclk);
367 	clock /= (reg + 1);
368 	reg = readl(&clock_manager_base->main_pll.mpuclk);
369 	clock /= (reg + 1);
370 	return clock;
371 }
372 
373 unsigned long cm_get_sdram_clk_hz(void)
374 {
375 	u32 reg, clock = 0;
376 
377 	/* identify SDRAM PLL clock source */
378 	reg = readl(&clock_manager_base->sdr_pll.vco);
379 	reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
380 	      CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
381 	if (reg == CLKMGR_VCO_SSRC_EOSC1)
382 		clock = cm_get_osc_clk_hz(1);
383 	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
384 		clock = cm_get_osc_clk_hz(2);
385 	else if (reg == CLKMGR_VCO_SSRC_F2S)
386 		clock = cm_get_f2s_sdr_ref_clk_hz();
387 
388 	/* get the SDRAM VCO clock */
389 	reg = readl(&clock_manager_base->sdr_pll.vco);
390 	clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
391 		  CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
392 	clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
393 		  CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
394 
395 	/* get the SDRAM (DDR_DQS) clock */
396 	reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
397 	reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
398 	      CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
399 	clock /= (reg + 1);
400 
401 	return clock;
402 }
403 
404 unsigned int cm_get_l4_sp_clk_hz(void)
405 {
406 	u32 reg, clock = 0;
407 
408 	/* identify the source of L4 SP clock */
409 	reg = readl(&clock_manager_base->main_pll.l4src);
410 	reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
411 	      CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
412 
413 	if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
414 		clock = cm_get_main_vco_clk_hz();
415 
416 		/* get the clock prior L4 SP divider (main clk) */
417 		reg = readl(&clock_manager_base->altera.mainclk);
418 		clock /= (reg + 1);
419 		reg = readl(&clock_manager_base->main_pll.mainclk);
420 		clock /= (reg + 1);
421 	} else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
422 		clock = cm_get_per_vco_clk_hz();
423 
424 		/* get the clock prior L4 SP divider (periph_base_clk) */
425 		reg = readl(&clock_manager_base->per_pll.perbaseclk);
426 		clock /= (reg + 1);
427 	}
428 
429 	/* get the L4 SP clock which supplied to UART */
430 	reg = readl(&clock_manager_base->main_pll.maindiv);
431 	reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
432 	      CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
433 	clock = clock / (1 << reg);
434 
435 	return clock;
436 }
437 
438 unsigned int cm_get_mmc_controller_clk_hz(void)
439 {
440 	u32 reg, clock = 0;
441 
442 	/* identify the source of MMC clock */
443 	reg = readl(&clock_manager_base->per_pll.src);
444 	reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
445 	      CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
446 
447 	if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
448 		clock = cm_get_f2s_per_ref_clk_hz();
449 	} else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
450 		clock = cm_get_main_vco_clk_hz();
451 
452 		/* get the SDMMC clock */
453 		reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
454 		clock /= (reg + 1);
455 	} else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
456 		clock = cm_get_per_vco_clk_hz();
457 
458 		/* get the SDMMC clock */
459 		reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
460 		clock /= (reg + 1);
461 	}
462 
463 	/* further divide by 4 as we have fixed divider at wrapper */
464 	clock /= 4;
465 	return clock;
466 }
467 
468 unsigned int cm_get_qspi_controller_clk_hz(void)
469 {
470 	u32 reg, clock = 0;
471 
472 	/* identify the source of QSPI clock */
473 	reg = readl(&clock_manager_base->per_pll.src);
474 	reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
475 	      CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
476 
477 	if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
478 		clock = cm_get_f2s_per_ref_clk_hz();
479 	} else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
480 		clock = cm_get_main_vco_clk_hz();
481 
482 		/* get the qspi clock */
483 		reg = readl(&clock_manager_base->main_pll.mainqspiclk);
484 		clock /= (reg + 1);
485 	} else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
486 		clock = cm_get_per_vco_clk_hz();
487 
488 		/* get the qspi clock */
489 		reg = readl(&clock_manager_base->per_pll.perqspiclk);
490 		clock /= (reg + 1);
491 	}
492 
493 	return clock;
494 }
495 
496 unsigned int cm_get_spi_controller_clk_hz(void)
497 {
498 	u32 reg, clock = 0;
499 
500 	clock = cm_get_per_vco_clk_hz();
501 
502 	/* get the clock prior L4 SP divider (periph_base_clk) */
503 	reg = readl(&clock_manager_base->per_pll.perbaseclk);
504 	clock /= (reg + 1);
505 
506 	return clock;
507 }
508 
509 /* Override weak dw_spi_get_clk implementation in designware_spi.c driver */
510 int dw_spi_get_clk(struct udevice *bus, ulong *rate)
511 {
512 	*rate = cm_get_spi_controller_clk_hz();
513 
514 	return 0;
515 }
516 
517 void cm_print_clock_quick_summary(void)
518 {
519 	printf("MPU       %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
520 	printf("DDR       %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
521 	printf("EOSC1       %8d kHz\n", cm_get_osc_clk_hz(1) / 1000);
522 	printf("EOSC2       %8d kHz\n", cm_get_osc_clk_hz(2) / 1000);
523 	printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000);
524 	printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000);
525 	printf("MMC         %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
526 	printf("QSPI        %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
527 	printf("UART        %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
528 	printf("SPI         %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
529 }
530