xref: /openbmc/u-boot/arch/arm/mach-socfpga/clock_manager_gen5.c (revision 53193a4f07c9e7a7d42493863712352cf16f1258)
1 /*
2  *  Copyright (C) 2013-2017 Altera Corporation <www.altera.com>
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/clock_manager.h>
10 #include <wait_bit.h>
11 
12 DECLARE_GLOBAL_DATA_PTR;
13 
14 static const struct socfpga_clock_manager *clock_manager_base =
15 	(struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
16 
17 /*
18  * function to write the bypass register which requires a poll of the
19  * busy bit
20  */
21 static void cm_write_bypass(u32 val)
22 {
23 	writel(val, &clock_manager_base->bypass);
24 	cm_wait_for_fsm();
25 }
26 
27 /* function to write the ctrl register which requires a poll of the busy bit */
28 static void cm_write_ctrl(u32 val)
29 {
30 	writel(val, &clock_manager_base->ctrl);
31 	cm_wait_for_fsm();
32 }
33 
34 /* function to write a clock register that has phase information */
35 static int cm_write_with_phase(u32 value, u32 reg_address, u32 mask)
36 {
37 	int ret;
38 
39 	/* poll until phase is zero */
40 	ret = wait_for_bit(__func__, (const u32 *)reg_address, mask,
41 			   false, 20000, false);
42 	if (ret)
43 		return ret;
44 
45 	writel(value, reg_address);
46 
47 	return wait_for_bit(__func__, (const u32 *)reg_address, mask,
48 			    false, 20000, false);
49 }
50 
51 /*
52  * Setup clocks while making no assumptions about previous state of the clocks.
53  *
54  * Start by being paranoid and gate all sw managed clocks
55  * Put all plls in bypass
56  * Put all plls VCO registers back to reset value (bandgap power down).
57  * Put peripheral and main pll src to reset value to avoid glitch.
58  * Delay 5 us.
59  * Deassert bandgap power down and set numerator and denominator
60  * Start 7 us timer.
61  * set internal dividers
62  * Wait for 7 us timer.
63  * Enable plls
64  * Set external dividers while plls are locking
65  * Wait for pll lock
66  * Assert/deassert outreset all.
67  * Take all pll's out of bypass
68  * Clear safe mode
69  * set source main and peripheral clocks
70  * Ungate clocks
71  */
72 
73 int cm_basic_init(const struct cm_config * const cfg)
74 {
75 	unsigned long end;
76 	int ret;
77 
78 	/* Start by being paranoid and gate all sw managed clocks */
79 
80 	/*
81 	 * We need to disable nandclk
82 	 * and then do another apb access before disabling
83 	 * gatting off the rest of the periperal clocks.
84 	 */
85 	writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
86 		readl(&clock_manager_base->per_pll.en),
87 		&clock_manager_base->per_pll.en);
88 
89 	/* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
90 	writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
91 		CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
92 		CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
93 		CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
94 		CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
95 		CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
96 		&clock_manager_base->main_pll.en);
97 
98 	writel(0, &clock_manager_base->sdr_pll.en);
99 
100 	/* now we can gate off the rest of the peripheral clocks */
101 	writel(0, &clock_manager_base->per_pll.en);
102 
103 	/* Put all plls in bypass */
104 	cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
105 			CLKMGR_BYPASS_MAINPLL);
106 
107 	/* Put all plls VCO registers back to reset value. */
108 	writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
109 	       ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
110 	       &clock_manager_base->main_pll.vco);
111 	writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
112 	       ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
113 	       &clock_manager_base->per_pll.vco);
114 	writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
115 	       ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
116 	       &clock_manager_base->sdr_pll.vco);
117 
118 	/*
119 	 * The clocks to the flash devices and the L4_MAIN clocks can
120 	 * glitch when coming out of safe mode if their source values
121 	 * are different from their reset value.  So the trick it to
122 	 * put them back to their reset state, and change input
123 	 * after exiting safe mode but before ungating the clocks.
124 	 */
125 	writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
126 	       &clock_manager_base->per_pll.src);
127 	writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
128 	       &clock_manager_base->main_pll.l4src);
129 
130 	/* read back for the required 5 us delay. */
131 	readl(&clock_manager_base->main_pll.vco);
132 	readl(&clock_manager_base->per_pll.vco);
133 	readl(&clock_manager_base->sdr_pll.vco);
134 
135 
136 	/*
137 	 * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
138 	 * with numerator and denominator.
139 	 */
140 	writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
141 	writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
142 	writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
143 
144 	/*
145 	 * Time starts here. Must wait 7 us from
146 	 * BGPWRDN_SET(0) to VCO_ENABLE_SET(1).
147 	 */
148 	end = timer_get_us() + 7;
149 
150 	/* main mpu */
151 	writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
152 
153 	/* altera group mpuclk */
154 	writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk);
155 
156 	/* main main clock */
157 	writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
158 
159 	/* main for dbg */
160 	writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
161 
162 	/* main for cfgs2fuser0clk */
163 	writel(cfg->cfg2fuser0clk,
164 	       &clock_manager_base->main_pll.cfgs2fuser0clk);
165 
166 	/* Peri emac0 50 MHz default to RMII */
167 	writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
168 
169 	/* Peri emac1 50 MHz default to RMII */
170 	writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
171 
172 	/* Peri QSPI */
173 	writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
174 
175 	writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
176 
177 	/* Peri pernandsdmmcclk */
178 	writel(cfg->mainnandsdmmcclk,
179 	       &clock_manager_base->main_pll.mainnandsdmmcclk);
180 
181 	writel(cfg->pernandsdmmcclk,
182 	       &clock_manager_base->per_pll.pernandsdmmcclk);
183 
184 	/* Peri perbaseclk */
185 	writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
186 
187 	/* Peri s2fuser1clk */
188 	writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
189 
190 	/* 7 us must have elapsed before we can enable the VCO */
191 	while (timer_get_us() < end)
192 		;
193 
194 	/* Enable vco */
195 	/* main pll vco */
196 	writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
197 	       &clock_manager_base->main_pll.vco);
198 
199 	/* periferal pll */
200 	writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
201 	       &clock_manager_base->per_pll.vco);
202 
203 	/* sdram pll vco */
204 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
205 	       &clock_manager_base->sdr_pll.vco);
206 
207 	/* L3 MP and L3 SP */
208 	writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
209 
210 	writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
211 
212 	writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
213 
214 	/* L4 MP, L4 SP, can0, and can1 */
215 	writel(cfg->perdiv, &clock_manager_base->per_pll.div);
216 
217 	writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
218 
219 	cm_wait_for_lock(LOCKED_MASK);
220 
221 	/* write the sdram clock counters before toggling outreset all */
222 	writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
223 	       &clock_manager_base->sdr_pll.ddrdqsclk);
224 
225 	writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
226 	       &clock_manager_base->sdr_pll.ddr2xdqsclk);
227 
228 	writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
229 	       &clock_manager_base->sdr_pll.ddrdqclk);
230 
231 	writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
232 	       &clock_manager_base->sdr_pll.s2fuser2clk);
233 
234 	/*
235 	 * after locking, but before taking out of bypass
236 	 * assert/deassert outresetall
237 	 */
238 	u32 mainvco = readl(&clock_manager_base->main_pll.vco);
239 
240 	/* assert main outresetall */
241 	writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
242 	       &clock_manager_base->main_pll.vco);
243 
244 	u32 periphvco = readl(&clock_manager_base->per_pll.vco);
245 
246 	/* assert pheriph outresetall */
247 	writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
248 	       &clock_manager_base->per_pll.vco);
249 
250 	/* assert sdram outresetall */
251 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
252 		CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
253 		&clock_manager_base->sdr_pll.vco);
254 
255 	/* deassert main outresetall */
256 	writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
257 	       &clock_manager_base->main_pll.vco);
258 
259 	/* deassert pheriph outresetall */
260 	writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
261 	       &clock_manager_base->per_pll.vco);
262 
263 	/* deassert sdram outresetall */
264 	writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
265 	       &clock_manager_base->sdr_pll.vco);
266 
267 	/*
268 	 * now that we've toggled outreset all, all the clocks
269 	 * are aligned nicely; so we can change any phase.
270 	 */
271 	ret = cm_write_with_phase(cfg->ddrdqsclk,
272 				  (u32)&clock_manager_base->sdr_pll.ddrdqsclk,
273 				  CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
274 	if (ret)
275 		return ret;
276 
277 	/* SDRAM DDR2XDQSCLK */
278 	ret = cm_write_with_phase(cfg->ddr2xdqsclk,
279 				  (u32)&clock_manager_base->sdr_pll.ddr2xdqsclk,
280 				  CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
281 	if (ret)
282 		return ret;
283 
284 	ret = cm_write_with_phase(cfg->ddrdqclk,
285 				  (u32)&clock_manager_base->sdr_pll.ddrdqclk,
286 				  CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
287 	if (ret)
288 		return ret;
289 
290 	ret = cm_write_with_phase(cfg->s2fuser2clk,
291 				  (u32)&clock_manager_base->sdr_pll.s2fuser2clk,
292 				  CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
293 	if (ret)
294 		return ret;
295 
296 	/* Take all three PLLs out of bypass when safe mode is cleared. */
297 	cm_write_bypass(0);
298 
299 	/* clear safe mode */
300 	cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
301 
302 	/*
303 	 * now that safe mode is clear with clocks gated
304 	 * it safe to change the source mux for the flashes the the L4_MAIN
305 	 */
306 	writel(cfg->persrc, &clock_manager_base->per_pll.src);
307 	writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
308 
309 	/* Now ungate non-hw-managed clocks */
310 	writel(~0, &clock_manager_base->main_pll.en);
311 	writel(~0, &clock_manager_base->per_pll.en);
312 	writel(~0, &clock_manager_base->sdr_pll.en);
313 
314 	/* Clear the loss of lock bits (write 1 to clear) */
315 	writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
316 	       CLKMGR_INTER_MAINPLLLOST_MASK,
317 	       &clock_manager_base->inter);
318 
319 	return 0;
320 }
321 
322 static unsigned int cm_get_main_vco_clk_hz(void)
323 {
324 	u32 reg, clock;
325 
326 	/* get the main VCO clock */
327 	reg = readl(&clock_manager_base->main_pll.vco);
328 	clock = cm_get_osc_clk_hz(1);
329 	clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
330 		  CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
331 	clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
332 		  CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
333 
334 	return clock;
335 }
336 
337 static unsigned int cm_get_per_vco_clk_hz(void)
338 {
339 	u32 reg, clock = 0;
340 
341 	/* identify PER PLL clock source */
342 	reg = readl(&clock_manager_base->per_pll.vco);
343 	reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
344 	      CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
345 	if (reg == CLKMGR_VCO_SSRC_EOSC1)
346 		clock = cm_get_osc_clk_hz(1);
347 	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
348 		clock = cm_get_osc_clk_hz(2);
349 	else if (reg == CLKMGR_VCO_SSRC_F2S)
350 		clock = cm_get_f2s_per_ref_clk_hz();
351 
352 	/* get the PER VCO clock */
353 	reg = readl(&clock_manager_base->per_pll.vco);
354 	clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
355 		  CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
356 	clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
357 		  CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
358 
359 	return clock;
360 }
361 
362 unsigned long cm_get_mpu_clk_hz(void)
363 {
364 	u32 reg, clock;
365 
366 	clock = cm_get_main_vco_clk_hz();
367 
368 	/* get the MPU clock */
369 	reg = readl(&clock_manager_base->altera.mpuclk);
370 	clock /= (reg + 1);
371 	reg = readl(&clock_manager_base->main_pll.mpuclk);
372 	clock /= (reg + 1);
373 	return clock;
374 }
375 
376 unsigned long cm_get_sdram_clk_hz(void)
377 {
378 	u32 reg, clock = 0;
379 
380 	/* identify SDRAM PLL clock source */
381 	reg = readl(&clock_manager_base->sdr_pll.vco);
382 	reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
383 	      CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
384 	if (reg == CLKMGR_VCO_SSRC_EOSC1)
385 		clock = cm_get_osc_clk_hz(1);
386 	else if (reg == CLKMGR_VCO_SSRC_EOSC2)
387 		clock = cm_get_osc_clk_hz(2);
388 	else if (reg == CLKMGR_VCO_SSRC_F2S)
389 		clock = cm_get_f2s_sdr_ref_clk_hz();
390 
391 	/* get the SDRAM VCO clock */
392 	reg = readl(&clock_manager_base->sdr_pll.vco);
393 	clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
394 		  CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
395 	clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
396 		  CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
397 
398 	/* get the SDRAM (DDR_DQS) clock */
399 	reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
400 	reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
401 	      CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
402 	clock /= (reg + 1);
403 
404 	return clock;
405 }
406 
407 unsigned int cm_get_l4_sp_clk_hz(void)
408 {
409 	u32 reg, clock = 0;
410 
411 	/* identify the source of L4 SP clock */
412 	reg = readl(&clock_manager_base->main_pll.l4src);
413 	reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
414 	      CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
415 
416 	if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
417 		clock = cm_get_main_vco_clk_hz();
418 
419 		/* get the clock prior L4 SP divider (main clk) */
420 		reg = readl(&clock_manager_base->altera.mainclk);
421 		clock /= (reg + 1);
422 		reg = readl(&clock_manager_base->main_pll.mainclk);
423 		clock /= (reg + 1);
424 	} else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
425 		clock = cm_get_per_vco_clk_hz();
426 
427 		/* get the clock prior L4 SP divider (periph_base_clk) */
428 		reg = readl(&clock_manager_base->per_pll.perbaseclk);
429 		clock /= (reg + 1);
430 	}
431 
432 	/* get the L4 SP clock which supplied to UART */
433 	reg = readl(&clock_manager_base->main_pll.maindiv);
434 	reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
435 	      CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
436 	clock = clock / (1 << reg);
437 
438 	return clock;
439 }
440 
441 unsigned int cm_get_mmc_controller_clk_hz(void)
442 {
443 	u32 reg, clock = 0;
444 
445 	/* identify the source of MMC clock */
446 	reg = readl(&clock_manager_base->per_pll.src);
447 	reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
448 	      CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
449 
450 	if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
451 		clock = cm_get_f2s_per_ref_clk_hz();
452 	} else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
453 		clock = cm_get_main_vco_clk_hz();
454 
455 		/* get the SDMMC clock */
456 		reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
457 		clock /= (reg + 1);
458 	} else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
459 		clock = cm_get_per_vco_clk_hz();
460 
461 		/* get the SDMMC clock */
462 		reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
463 		clock /= (reg + 1);
464 	}
465 
466 	/* further divide by 4 as we have fixed divider at wrapper */
467 	clock /= 4;
468 	return clock;
469 }
470 
471 unsigned int cm_get_qspi_controller_clk_hz(void)
472 {
473 	u32 reg, clock = 0;
474 
475 	/* identify the source of QSPI clock */
476 	reg = readl(&clock_manager_base->per_pll.src);
477 	reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
478 	      CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
479 
480 	if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
481 		clock = cm_get_f2s_per_ref_clk_hz();
482 	} else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
483 		clock = cm_get_main_vco_clk_hz();
484 
485 		/* get the qspi clock */
486 		reg = readl(&clock_manager_base->main_pll.mainqspiclk);
487 		clock /= (reg + 1);
488 	} else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
489 		clock = cm_get_per_vco_clk_hz();
490 
491 		/* get the qspi clock */
492 		reg = readl(&clock_manager_base->per_pll.perqspiclk);
493 		clock /= (reg + 1);
494 	}
495 
496 	return clock;
497 }
498 
499 unsigned int cm_get_spi_controller_clk_hz(void)
500 {
501 	u32 reg, clock = 0;
502 
503 	clock = cm_get_per_vco_clk_hz();
504 
505 	/* get the clock prior L4 SP divider (periph_base_clk) */
506 	reg = readl(&clock_manager_base->per_pll.perbaseclk);
507 	clock /= (reg + 1);
508 
509 	return clock;
510 }
511 
512 void cm_print_clock_quick_summary(void)
513 {
514 	printf("MPU       %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
515 	printf("DDR       %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
516 	printf("EOSC1       %8d kHz\n", cm_get_osc_clk_hz(1) / 1000);
517 	printf("EOSC2       %8d kHz\n", cm_get_osc_clk_hz(2) / 1000);
518 	printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000);
519 	printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000);
520 	printf("MMC         %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
521 	printf("QSPI        %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
522 	printf("UART        %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
523 	printf("SPI         %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
524 }
525