1 /* 2 * Copyright (C) 2013 Altera Corporation <www.altera.com> 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/clock_manager.h> 10 11 DECLARE_GLOBAL_DATA_PTR; 12 13 static const struct socfpga_clock_manager *clock_manager_base = 14 (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS; 15 16 static void cm_wait_for_lock(uint32_t mask) 17 { 18 register uint32_t inter_val; 19 uint32_t retry = 0; 20 do { 21 inter_val = readl(&clock_manager_base->inter) & mask; 22 if (inter_val == mask) 23 retry++; 24 else 25 retry = 0; 26 if (retry >= 10) 27 break; 28 } while (1); 29 } 30 31 /* function to poll in the fsm busy bit */ 32 static void cm_wait_for_fsm(void) 33 { 34 while (readl(&clock_manager_base->stat) & CLKMGR_STAT_BUSY) 35 ; 36 } 37 38 /* 39 * function to write the bypass register which requires a poll of the 40 * busy bit 41 */ 42 static void cm_write_bypass(uint32_t val) 43 { 44 writel(val, &clock_manager_base->bypass); 45 cm_wait_for_fsm(); 46 } 47 48 /* function to write the ctrl register which requires a poll of the busy bit */ 49 static void cm_write_ctrl(uint32_t val) 50 { 51 writel(val, &clock_manager_base->ctrl); 52 cm_wait_for_fsm(); 53 } 54 55 /* function to write a clock register that has phase information */ 56 static void cm_write_with_phase(uint32_t value, 57 uint32_t reg_address, uint32_t mask) 58 { 59 /* poll until phase is zero */ 60 while (readl(reg_address) & mask) 61 ; 62 63 writel(value, reg_address); 64 65 while (readl(reg_address) & mask) 66 ; 67 } 68 69 /* 70 * Setup clocks while making no assumptions about previous state of the clocks. 71 * 72 * Start by being paranoid and gate all sw managed clocks 73 * Put all plls in bypass 74 * Put all plls VCO registers back to reset value (bandgap power down). 75 * Put peripheral and main pll src to reset value to avoid glitch. 76 * Delay 5 us. 77 * Deassert bandgap power down and set numerator and denominator 78 * Start 7 us timer. 79 * set internal dividers 80 * Wait for 7 us timer. 81 * Enable plls 82 * Set external dividers while plls are locking 83 * Wait for pll lock 84 * Assert/deassert outreset all. 85 * Take all pll's out of bypass 86 * Clear safe mode 87 * set source main and peripheral clocks 88 * Ungate clocks 89 */ 90 91 void cm_basic_init(const struct cm_config * const cfg) 92 { 93 uint32_t start, timeout; 94 95 /* Start by being paranoid and gate all sw managed clocks */ 96 97 /* 98 * We need to disable nandclk 99 * and then do another apb access before disabling 100 * gatting off the rest of the periperal clocks. 101 */ 102 writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK & 103 readl(&clock_manager_base->per_pll.en), 104 &clock_manager_base->per_pll.en); 105 106 /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */ 107 writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK | 108 CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK | 109 CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK | 110 CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK | 111 CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK | 112 CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK, 113 &clock_manager_base->main_pll.en); 114 115 writel(0, &clock_manager_base->sdr_pll.en); 116 117 /* now we can gate off the rest of the peripheral clocks */ 118 writel(0, &clock_manager_base->per_pll.en); 119 120 /* Put all plls in bypass */ 121 cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL | 122 CLKMGR_BYPASS_MAINPLL); 123 124 /* Put all plls VCO registers back to reset value. */ 125 writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE & 126 ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK, 127 &clock_manager_base->main_pll.vco); 128 writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE & 129 ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK, 130 &clock_manager_base->per_pll.vco); 131 writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE & 132 ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK, 133 &clock_manager_base->sdr_pll.vco); 134 135 /* 136 * The clocks to the flash devices and the L4_MAIN clocks can 137 * glitch when coming out of safe mode if their source values 138 * are different from their reset value. So the trick it to 139 * put them back to their reset state, and change input 140 * after exiting safe mode but before ungating the clocks. 141 */ 142 writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE, 143 &clock_manager_base->per_pll.src); 144 writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE, 145 &clock_manager_base->main_pll.l4src); 146 147 /* read back for the required 5 us delay. */ 148 readl(&clock_manager_base->main_pll.vco); 149 readl(&clock_manager_base->per_pll.vco); 150 readl(&clock_manager_base->sdr_pll.vco); 151 152 153 /* 154 * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN 155 * with numerator and denominator. 156 */ 157 writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco); 158 writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco); 159 writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco); 160 161 /* 162 * Time starts here 163 * must wait 7 us from BGPWRDN_SET(0) to VCO_ENABLE_SET(1) 164 */ 165 start = get_timer(0); 166 /* timeout in unit of us as CONFIG_SYS_HZ = 1000*1000 */ 167 timeout = 7; 168 169 /* main mpu */ 170 writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk); 171 172 /* main main clock */ 173 writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk); 174 175 /* main for dbg */ 176 writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk); 177 178 /* main for cfgs2fuser0clk */ 179 writel(cfg->cfg2fuser0clk, 180 &clock_manager_base->main_pll.cfgs2fuser0clk); 181 182 /* Peri emac0 50 MHz default to RMII */ 183 writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk); 184 185 /* Peri emac1 50 MHz default to RMII */ 186 writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk); 187 188 /* Peri QSPI */ 189 writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk); 190 191 writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk); 192 193 /* Peri pernandsdmmcclk */ 194 writel(cfg->mainnandsdmmcclk, 195 &clock_manager_base->main_pll.mainnandsdmmcclk); 196 197 writel(cfg->pernandsdmmcclk, 198 &clock_manager_base->per_pll.pernandsdmmcclk); 199 200 /* Peri perbaseclk */ 201 writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk); 202 203 /* Peri s2fuser1clk */ 204 writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk); 205 206 /* 7 us must have elapsed before we can enable the VCO */ 207 while (get_timer(start) < timeout) 208 ; 209 210 /* Enable vco */ 211 /* main pll vco */ 212 writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 213 &clock_manager_base->main_pll.vco); 214 215 /* periferal pll */ 216 writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 217 &clock_manager_base->per_pll.vco); 218 219 /* sdram pll vco */ 220 writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 221 &clock_manager_base->sdr_pll.vco); 222 223 /* L3 MP and L3 SP */ 224 writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv); 225 226 writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv); 227 228 writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv); 229 230 /* L4 MP, L4 SP, can0, and can1 */ 231 writel(cfg->perdiv, &clock_manager_base->per_pll.div); 232 233 writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv); 234 235 #define LOCKED_MASK \ 236 (CLKMGR_INTER_SDRPLLLOCKED_MASK | \ 237 CLKMGR_INTER_PERPLLLOCKED_MASK | \ 238 CLKMGR_INTER_MAINPLLLOCKED_MASK) 239 240 cm_wait_for_lock(LOCKED_MASK); 241 242 /* write the sdram clock counters before toggling outreset all */ 243 writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK, 244 &clock_manager_base->sdr_pll.ddrdqsclk); 245 246 writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK, 247 &clock_manager_base->sdr_pll.ddr2xdqsclk); 248 249 writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK, 250 &clock_manager_base->sdr_pll.ddrdqclk); 251 252 writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK, 253 &clock_manager_base->sdr_pll.s2fuser2clk); 254 255 /* 256 * after locking, but before taking out of bypass 257 * assert/deassert outresetall 258 */ 259 uint32_t mainvco = readl(&clock_manager_base->main_pll.vco); 260 261 /* assert main outresetall */ 262 writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, 263 &clock_manager_base->main_pll.vco); 264 265 uint32_t periphvco = readl(&clock_manager_base->per_pll.vco); 266 267 /* assert pheriph outresetall */ 268 writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, 269 &clock_manager_base->per_pll.vco); 270 271 /* assert sdram outresetall */ 272 writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN| 273 CLKMGR_SDRPLLGRP_VCO_OUTRESETALL, 274 &clock_manager_base->sdr_pll.vco); 275 276 /* deassert main outresetall */ 277 writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, 278 &clock_manager_base->main_pll.vco); 279 280 /* deassert pheriph outresetall */ 281 writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, 282 &clock_manager_base->per_pll.vco); 283 284 /* deassert sdram outresetall */ 285 writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, 286 &clock_manager_base->sdr_pll.vco); 287 288 /* 289 * now that we've toggled outreset all, all the clocks 290 * are aligned nicely; so we can change any phase. 291 */ 292 cm_write_with_phase(cfg->ddrdqsclk, 293 (uint32_t)&clock_manager_base->sdr_pll.ddrdqsclk, 294 CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK); 295 296 /* SDRAM DDR2XDQSCLK */ 297 cm_write_with_phase(cfg->ddr2xdqsclk, 298 (uint32_t)&clock_manager_base->sdr_pll.ddr2xdqsclk, 299 CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK); 300 301 cm_write_with_phase(cfg->ddrdqclk, 302 (uint32_t)&clock_manager_base->sdr_pll.ddrdqclk, 303 CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK); 304 305 cm_write_with_phase(cfg->s2fuser2clk, 306 (uint32_t)&clock_manager_base->sdr_pll.s2fuser2clk, 307 CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK); 308 309 /* Take all three PLLs out of bypass when safe mode is cleared. */ 310 cm_write_bypass(0); 311 312 /* clear safe mode */ 313 cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE); 314 315 /* 316 * now that safe mode is clear with clocks gated 317 * it safe to change the source mux for the flashes the the L4_MAIN 318 */ 319 writel(cfg->persrc, &clock_manager_base->per_pll.src); 320 writel(cfg->l4src, &clock_manager_base->main_pll.l4src); 321 322 /* Now ungate non-hw-managed clocks */ 323 writel(~0, &clock_manager_base->main_pll.en); 324 writel(~0, &clock_manager_base->per_pll.en); 325 writel(~0, &clock_manager_base->sdr_pll.en); 326 327 /* Clear the loss of lock bits (write 1 to clear) */ 328 writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK | 329 CLKMGR_INTER_MAINPLLLOST_MASK, 330 &clock_manager_base->inter); 331 } 332 333 static unsigned int cm_get_main_vco_clk_hz(void) 334 { 335 uint32_t reg, clock; 336 337 /* get the main VCO clock */ 338 reg = readl(&clock_manager_base->main_pll.vco); 339 clock = cm_get_osc_clk_hz(1); 340 clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >> 341 CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1; 342 clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >> 343 CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1; 344 345 return clock; 346 } 347 348 static unsigned int cm_get_per_vco_clk_hz(void) 349 { 350 uint32_t reg, clock = 0; 351 352 /* identify PER PLL clock source */ 353 reg = readl(&clock_manager_base->per_pll.vco); 354 reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >> 355 CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET; 356 if (reg == CLKMGR_VCO_SSRC_EOSC1) 357 clock = cm_get_osc_clk_hz(1); 358 else if (reg == CLKMGR_VCO_SSRC_EOSC2) 359 clock = cm_get_osc_clk_hz(2); 360 else if (reg == CLKMGR_VCO_SSRC_F2S) 361 clock = cm_get_f2s_per_ref_clk_hz(); 362 363 /* get the PER VCO clock */ 364 reg = readl(&clock_manager_base->per_pll.vco); 365 clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >> 366 CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1; 367 clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >> 368 CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1; 369 370 return clock; 371 } 372 373 unsigned long cm_get_mpu_clk_hz(void) 374 { 375 uint32_t reg, clock; 376 377 clock = cm_get_main_vco_clk_hz(); 378 379 /* get the MPU clock */ 380 reg = readl(&clock_manager_base->altera.mpuclk); 381 clock /= (reg + 1); 382 reg = readl(&clock_manager_base->main_pll.mpuclk); 383 clock /= (reg + 1); 384 return clock; 385 } 386 387 unsigned long cm_get_sdram_clk_hz(void) 388 { 389 uint32_t reg, clock = 0; 390 391 /* identify SDRAM PLL clock source */ 392 reg = readl(&clock_manager_base->sdr_pll.vco); 393 reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >> 394 CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET; 395 if (reg == CLKMGR_VCO_SSRC_EOSC1) 396 clock = cm_get_osc_clk_hz(1); 397 else if (reg == CLKMGR_VCO_SSRC_EOSC2) 398 clock = cm_get_osc_clk_hz(2); 399 else if (reg == CLKMGR_VCO_SSRC_F2S) 400 clock = cm_get_f2s_sdr_ref_clk_hz(); 401 402 /* get the SDRAM VCO clock */ 403 reg = readl(&clock_manager_base->sdr_pll.vco); 404 clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >> 405 CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1; 406 clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >> 407 CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1; 408 409 /* get the SDRAM (DDR_DQS) clock */ 410 reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk); 411 reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >> 412 CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET; 413 clock /= (reg + 1); 414 415 return clock; 416 } 417 418 unsigned int cm_get_l4_sp_clk_hz(void) 419 { 420 uint32_t reg, clock = 0; 421 422 /* identify the source of L4 SP clock */ 423 reg = readl(&clock_manager_base->main_pll.l4src); 424 reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >> 425 CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET; 426 427 if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) { 428 clock = cm_get_main_vco_clk_hz(); 429 430 /* get the clock prior L4 SP divider (main clk) */ 431 reg = readl(&clock_manager_base->altera.mainclk); 432 clock /= (reg + 1); 433 reg = readl(&clock_manager_base->main_pll.mainclk); 434 clock /= (reg + 1); 435 } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) { 436 clock = cm_get_per_vco_clk_hz(); 437 438 /* get the clock prior L4 SP divider (periph_base_clk) */ 439 reg = readl(&clock_manager_base->per_pll.perbaseclk); 440 clock /= (reg + 1); 441 } 442 443 /* get the L4 SP clock which supplied to UART */ 444 reg = readl(&clock_manager_base->main_pll.maindiv); 445 reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >> 446 CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET; 447 clock = clock / (1 << reg); 448 449 return clock; 450 } 451 452 unsigned int cm_get_mmc_controller_clk_hz(void) 453 { 454 uint32_t reg, clock = 0; 455 456 /* identify the source of MMC clock */ 457 reg = readl(&clock_manager_base->per_pll.src); 458 reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >> 459 CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET; 460 461 if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) { 462 clock = cm_get_f2s_per_ref_clk_hz(); 463 } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) { 464 clock = cm_get_main_vco_clk_hz(); 465 466 /* get the SDMMC clock */ 467 reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk); 468 clock /= (reg + 1); 469 } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) { 470 clock = cm_get_per_vco_clk_hz(); 471 472 /* get the SDMMC clock */ 473 reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk); 474 clock /= (reg + 1); 475 } 476 477 /* further divide by 4 as we have fixed divider at wrapper */ 478 clock /= 4; 479 return clock; 480 } 481 482 unsigned int cm_get_qspi_controller_clk_hz(void) 483 { 484 uint32_t reg, clock = 0; 485 486 /* identify the source of QSPI clock */ 487 reg = readl(&clock_manager_base->per_pll.src); 488 reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >> 489 CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET; 490 491 if (reg == CLKMGR_QSPI_CLK_SRC_F2S) { 492 clock = cm_get_f2s_per_ref_clk_hz(); 493 } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) { 494 clock = cm_get_main_vco_clk_hz(); 495 496 /* get the qspi clock */ 497 reg = readl(&clock_manager_base->main_pll.mainqspiclk); 498 clock /= (reg + 1); 499 } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) { 500 clock = cm_get_per_vco_clk_hz(); 501 502 /* get the qspi clock */ 503 reg = readl(&clock_manager_base->per_pll.perqspiclk); 504 clock /= (reg + 1); 505 } 506 507 return clock; 508 } 509 510 unsigned int cm_get_spi_controller_clk_hz(void) 511 { 512 uint32_t reg, clock = 0; 513 514 clock = cm_get_per_vco_clk_hz(); 515 516 /* get the clock prior L4 SP divider (periph_base_clk) */ 517 reg = readl(&clock_manager_base->per_pll.perbaseclk); 518 clock /= (reg + 1); 519 520 return clock; 521 } 522 523 static void cm_print_clock_quick_summary(void) 524 { 525 printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000); 526 printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000); 527 printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000); 528 printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000); 529 printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000); 530 printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000); 531 printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000); 532 printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000); 533 printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000); 534 printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000); 535 } 536 537 int set_cpu_clk_info(void) 538 { 539 /* Calculate the clock frequencies required for drivers */ 540 cm_get_l4_sp_clk_hz(); 541 cm_get_mmc_controller_clk_hz(); 542 543 gd->bd->bi_arm_freq = cm_get_mpu_clk_hz() / 1000000; 544 gd->bd->bi_dsp_freq = 0; 545 gd->bd->bi_ddr_freq = cm_get_sdram_clk_hz() / 1000000; 546 547 return 0; 548 } 549 550 int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 551 { 552 cm_print_clock_quick_summary(); 553 return 0; 554 } 555 556 U_BOOT_CMD( 557 clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks, 558 "display clocks", 559 "" 560 ); 561