1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:	GPL-2.0+
10  */
11 
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/omap_sec_common.h>
18 #include <asm/utils.h>
19 #include <linux/compiler.h>
20 #include <asm/ti-common/ti-edma3.h>
21 
22 static int emif1_enabled = -1, emif2_enabled = -1;
23 
24 void set_lpmode_selfrefresh(u32 base)
25 {
26 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
27 	u32 reg;
28 
29 	reg = readl(&emif->emif_pwr_mgmt_ctrl);
30 	reg &= ~EMIF_REG_LP_MODE_MASK;
31 	reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
32 	reg &= ~EMIF_REG_SR_TIM_MASK;
33 	writel(reg, &emif->emif_pwr_mgmt_ctrl);
34 
35 	/* dummy read for the new SR_TIM to be loaded */
36 	readl(&emif->emif_pwr_mgmt_ctrl);
37 }
38 
39 void force_emif_self_refresh()
40 {
41 	set_lpmode_selfrefresh(EMIF1_BASE);
42 	if (!is_dra72x())
43 		set_lpmode_selfrefresh(EMIF2_BASE);
44 }
45 
46 inline u32 emif_num(u32 base)
47 {
48 	if (base == EMIF1_BASE)
49 		return 1;
50 	else if (base == EMIF2_BASE)
51 		return 2;
52 	else
53 		return 0;
54 }
55 
56 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
57 {
58 	u32 mr;
59 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
60 
61 	mr_addr |= cs << EMIF_REG_CS_SHIFT;
62 	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
63 	if (omap_revision() == OMAP4430_ES2_0)
64 		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
65 	else
66 		mr = readl(&emif->emif_lpddr2_mode_reg_data);
67 	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
68 	      cs, mr_addr, mr);
69 	if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
70 	    ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
71 	    ((mr & 0xff000000) >> 24) == (mr & 0xff))
72 		return mr & 0xff;
73 	else
74 		return mr;
75 }
76 
77 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
78 {
79 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
80 
81 	mr_addr |= cs << EMIF_REG_CS_SHIFT;
82 	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
83 	writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
84 }
85 
86 void emif_reset_phy(u32 base)
87 {
88 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
89 	u32 iodft;
90 
91 	iodft = readl(&emif->emif_iodft_tlgc);
92 	iodft |= EMIF_REG_RESET_PHY_MASK;
93 	writel(iodft, &emif->emif_iodft_tlgc);
94 }
95 
96 static void do_lpddr2_init(u32 base, u32 cs)
97 {
98 	u32 mr_addr;
99 	const struct lpddr2_mr_regs *mr_regs;
100 
101 	get_lpddr2_mr_regs(&mr_regs);
102 	/* Wait till device auto initialization is complete */
103 	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
104 		;
105 	set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
106 	/*
107 	 * tZQINIT = 1 us
108 	 * Enough loops assuming a maximum of 2GHz
109 	 */
110 
111 	sdelay(2000);
112 
113 	set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
114 	set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
115 
116 	/*
117 	 * Enable refresh along with writing MR2
118 	 * Encoding of RL in MR2 is (RL - 2)
119 	 */
120 	mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
121 	set_mr(base, cs, mr_addr, mr_regs->mr2);
122 
123 	if (mr_regs->mr3 > 0)
124 		set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
125 }
126 
127 static void lpddr2_init(u32 base, const struct emif_regs *regs)
128 {
129 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
130 
131 	/* Not NVM */
132 	clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
133 
134 	/*
135 	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
136 	 * when EMIF_SDRAM_CONFIG register is written
137 	 */
138 	setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
139 
140 	/*
141 	 * Set the SDRAM_CONFIG and PHY_CTRL for the
142 	 * un-locked frequency & default RL
143 	 */
144 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
145 	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
146 
147 	do_ext_phy_settings(base, regs);
148 
149 	do_lpddr2_init(base, CS0);
150 	if (regs->sdram_config & EMIF_REG_EBANK_MASK)
151 		do_lpddr2_init(base, CS1);
152 
153 	writel(regs->sdram_config, &emif->emif_sdram_config);
154 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
155 
156 	/* Enable refresh now */
157 	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
158 
159 	}
160 
161 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
162 {
163 }
164 
165 void emif_update_timings(u32 base, const struct emif_regs *regs)
166 {
167 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
168 
169 	if (!is_dra7xx())
170 		writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
171 	else
172 		writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
173 
174 	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
175 	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
176 	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
177 	if (omap_revision() == OMAP4430_ES1_0) {
178 		/* ES1 bug EMIF should be in force idle during freq_update */
179 		writel(0, &emif->emif_pwr_mgmt_ctrl);
180 	} else {
181 		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
182 		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
183 	}
184 	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
185 	writel(regs->zq_config, &emif->emif_zq_config);
186 	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
187 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
188 
189 	if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
190 		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
191 			&emif->emif_l3_config);
192 	} else if (omap_revision() >= OMAP4460_ES1_0) {
193 		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
194 			&emif->emif_l3_config);
195 	} else {
196 		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
197 			&emif->emif_l3_config);
198 	}
199 }
200 
201 #ifndef CONFIG_OMAP44XX
202 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
203 {
204 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
205 
206 	/* keep sdram in self-refresh */
207 	writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
208 		& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
209 	__udelay(130);
210 
211 	/*
212 	 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
213 	 * Invert clock adds an additional half cycle delay on the
214 	 * command interface.  The additional half cycle, is usually
215 	 * meant to enable leveling in the situation that DQS is later
216 	 * than CK on the board.It also helps provide some additional
217 	 * margin for leveling.
218 	 */
219 	writel(regs->emif_ddr_phy_ctlr_1,
220 	       &emif->emif_ddr_phy_ctrl_1);
221 
222 	writel(regs->emif_ddr_phy_ctlr_1,
223 	       &emif->emif_ddr_phy_ctrl_1_shdw);
224 	__udelay(130);
225 
226 	writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
227 	       & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
228 
229 	/* Launch Full leveling */
230 	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
231 
232 	/* Wait till full leveling is complete */
233 	readl(&emif->emif_rd_wr_lvl_ctl);
234 	      __udelay(130);
235 
236 	/* Read data eye leveling no of samples */
237 	config_data_eye_leveling_samples(base);
238 
239 	/*
240 	 * Launch 8 incremental WR_LVL- to compensate for
241 	 * PHY limitation.
242 	 */
243 	writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
244 	       &emif->emif_rd_wr_lvl_ctl);
245 
246 	__udelay(130);
247 
248 	/* Launch Incremental leveling */
249 	writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
250 	       __udelay(130);
251 }
252 
253 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
254 {
255 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
256 	u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
257 	u32 reg, i, phy;
258 
259 	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
260 	phy = readl(&emif->emif_ddr_phy_ctrl_1);
261 
262 	/* Update PHY_REG_RDDQS_RATIO */
263 	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
264 	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
265 		for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
266 			reg = readl(emif_phy_status++);
267 			writel(reg, emif_ext_phy_ctrl_reg++);
268 			writel(reg, emif_ext_phy_ctrl_reg++);
269 		}
270 
271 	/* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
272 	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
273 	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
274 	if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
275 		for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
276 			reg = readl(emif_phy_status++);
277 			writel(reg, emif_ext_phy_ctrl_reg++);
278 			writel(reg, emif_ext_phy_ctrl_reg++);
279 		}
280 
281 	/* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
282 	emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
283 	emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
284 	if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
285 		for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
286 			reg = readl(emif_phy_status++);
287 			writel(reg, emif_ext_phy_ctrl_reg++);
288 			writel(reg, emif_ext_phy_ctrl_reg++);
289 		}
290 
291 	/* Disable Leveling */
292 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
293 	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
294 	writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
295 }
296 
297 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
298 {
299 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
300 
301 	/* Clear Error Status */
302 	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
303 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
304 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
305 
306 	clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
307 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
308 			EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
309 
310 	/* Disable refreshed before leveling */
311 	clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
312 			EMIF_REG_INITREF_DIS_MASK);
313 
314 	/* Start Full leveling */
315 	writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
316 
317 	__udelay(300);
318 
319 	/* Check for leveling timeout */
320 	if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
321 		printf("Leveling timeout on EMIF%d\n", emif_num(base));
322 		return;
323 	}
324 
325 	/* Enable refreshes after leveling */
326 	clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
327 
328 	debug("HW leveling success\n");
329 	/*
330 	 * Update slave ratios in EXT_PHY_CTRLx registers
331 	 * as per HW leveling output
332 	 */
333 	update_hwleveling_output(base, regs);
334 }
335 
336 static void dra7_reset_ddr_data(u32 base, u32 size)
337 {
338 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
339 	enable_edma3_clocks();
340 
341 	edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
342 
343 	disable_edma3_clocks();
344 #else
345 	memset((void *)base, 0, size);
346 #endif
347 }
348 
349 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
350 {
351 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
352 	u32 rgn, size;
353 
354 	/* ECC available only on dra76x EMIF1 */
355 	if ((base != EMIF1_BASE) || !is_dra76x())
356 		return;
357 
358 	if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
359 		writel(regs->emif_ecc_address_range_1,
360 		       &emif->emif_ecc_address_range_1);
361 		writel(regs->emif_ecc_address_range_2,
362 		       &emif->emif_ecc_address_range_2);
363 		writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
364 
365 		/* Set region1 memory with 0 */
366 		rgn = ((regs->emif_ecc_address_range_1 &
367 			EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
368 		       CONFIG_SYS_SDRAM_BASE;
369 		size = (regs->emif_ecc_address_range_1 &
370 			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
371 
372 		if (regs->emif_ecc_ctrl_reg &
373 		    EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
374 			dra7_reset_ddr_data(rgn, size);
375 
376 		/* Set region2 memory with 0 */
377 		rgn = ((regs->emif_ecc_address_range_2 &
378 			EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
379 		       CONFIG_SYS_SDRAM_BASE;
380 		size = (regs->emif_ecc_address_range_2 &
381 			EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
382 
383 		if (regs->emif_ecc_ctrl_reg &
384 		    EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
385 			dra7_reset_ddr_data(rgn, size);
386 
387 #ifdef CONFIG_DRA7XX
388 		/* Clear the status flags and other history */
389 		writel(readl(&emif->emif_1b_ecc_err_cnt),
390 		       &emif->emif_1b_ecc_err_cnt);
391 		writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
392 		writel(0x1, &emif->emif_2b_ecc_err_addr_log);
393 		writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
394 		       EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
395 		       EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
396 		       &emif->emif_irqstatus_sys);
397 #endif
398 	}
399 }
400 
401 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
402 {
403 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
404 
405 	if (warm_reset()) {
406 		emif_reset_phy(base);
407 		writel(0x0, &emif->emif_pwr_mgmt_ctrl);
408 	}
409 	do_ext_phy_settings(base, regs);
410 
411 	writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
412 	       &emif->emif_sdram_ref_ctrl);
413 	/* Update timing registers */
414 	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
415 	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
416 	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
417 
418 	writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
419 	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
420 	writel(regs->zq_config, &emif->emif_zq_config);
421 	writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
422 	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
423 	writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
424 
425 	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
426 	writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
427 
428 	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
429 
430 	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
431 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
432 
433 	__udelay(1000);
434 
435 	writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
436 
437 	if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
438 		/*
439 		 * Perform Dummy ECC setup just to allow hardware
440 		 * leveling of ECC memories
441 		 */
442 		if (is_dra76x() && (base == EMIF1_BASE) &&
443 		    (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
444 			writel(0, &emif->emif_ecc_address_range_1);
445 			writel(0, &emif->emif_ecc_address_range_2);
446 			writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
447 			       EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
448 			       &emif->emif_ecc_ctrl_reg);
449 		}
450 
451 		dra7_ddr3_leveling(base, regs);
452 
453 		/* Disable ECC */
454 		if (is_dra76x())
455 			writel(0, &emif->emif_ecc_ctrl_reg);
456 	}
457 
458 	/* Enable ECC as necessary */
459 	dra7_enable_ecc(base, regs);
460 }
461 
462 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
463 {
464 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
465 
466 	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
467 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
468 	/*
469 	 * Set SDRAM_CONFIG and PHY control registers to locked frequency
470 	 * and RL =7. As the default values of the Mode Registers are not
471 	 * defined, contents of mode Registers must be fully initialized.
472 	 * H/W takes care of this initialization
473 	 */
474 	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
475 
476 	/* Update timing registers */
477 	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
478 	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
479 	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
480 
481 	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
482 
483 	writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
484 	writel(regs->sdram_config_init, &emif->emif_sdram_config);
485 	do_ext_phy_settings(base, regs);
486 
487 	writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
488 	omap5_ddr3_leveling(base, regs);
489 }
490 
491 static void ddr3_init(u32 base, const struct emif_regs *regs)
492 {
493 	if (is_omap54xx())
494 		omap5_ddr3_init(base, regs);
495 	else
496 		dra7_ddr3_init(base, regs);
497 }
498 #endif
499 
500 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
501 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
502 
503 /*
504  * Organization and refresh requirements for LPDDR2 devices of different
505  * types and densities. Derived from JESD209-2 section 2.4
506  */
507 const struct lpddr2_addressing addressing_table[] = {
508 	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */
509 	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
510 	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
511 	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
512 	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
513 	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
514 	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
515 	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
516 	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
517 	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
518 	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
519 };
520 
521 static const u32 lpddr2_density_2_size_in_mbytes[] = {
522 	8,			/* 64Mb */
523 	16,			/* 128Mb */
524 	32,			/* 256Mb */
525 	64,			/* 512Mb */
526 	128,			/* 1Gb   */
527 	256,			/* 2Gb   */
528 	512,			/* 4Gb   */
529 	1024,			/* 8Gb   */
530 	2048,			/* 16Gb  */
531 	4096			/* 32Gb  */
532 };
533 
534 /*
535  * Calculate the period of DDR clock from frequency value and set the
536  * denominator and numerator in global variables for easy access later
537  */
538 static void set_ddr_clk_period(u32 freq)
539 {
540 	/*
541 	 * period = 1/freq
542 	 * period_in_ns = 10^9/freq
543 	 */
544 	*T_num = 1000000000;
545 	*T_den = freq;
546 	cancel_out(T_num, T_den, 200);
547 
548 }
549 
550 /*
551  * Convert time in nano seconds to number of cycles of DDR clock
552  */
553 static inline u32 ns_2_cycles(u32 ns)
554 {
555 	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
556 }
557 
558 /*
559  * ns_2_cycles with the difference that the time passed is 2 times the actual
560  * value(to avoid fractions). The cycles returned is for the original value of
561  * the timing parameter
562  */
563 static inline u32 ns_x2_2_cycles(u32 ns)
564 {
565 	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
566 }
567 
568 /*
569  * Find addressing table index based on the device's type(S2 or S4) and
570  * density
571  */
572 s8 addressing_table_index(u8 type, u8 density, u8 width)
573 {
574 	u8 index;
575 	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
576 		return -1;
577 
578 	/*
579 	 * Look at the way ADDR_TABLE_INDEX* values have been defined
580 	 * in emif.h compared to LPDDR2_DENSITY_* values
581 	 * The table is layed out in the increasing order of density
582 	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
583 	 * at the end
584 	 */
585 	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
586 		index = ADDR_TABLE_INDEX1GS2;
587 	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
588 		index = ADDR_TABLE_INDEX2GS2;
589 	else
590 		index = density;
591 
592 	debug("emif: addressing table index %d\n", index);
593 
594 	return index;
595 }
596 
597 /*
598  * Find the the right timing table from the array of timing
599  * tables of the device using DDR clock frequency
600  */
601 static const struct lpddr2_ac_timings *get_timings_table(const struct
602 			lpddr2_ac_timings const *const *device_timings,
603 			u32 freq)
604 {
605 	u32 i, temp, freq_nearest;
606 	const struct lpddr2_ac_timings *timings = 0;
607 
608 	emif_assert(freq <= MAX_LPDDR2_FREQ);
609 	emif_assert(device_timings);
610 
611 	/*
612 	 * Start with the maximum allowed frequency - that is always safe
613 	 */
614 	freq_nearest = MAX_LPDDR2_FREQ;
615 	/*
616 	 * Find the timings table that has the max frequency value:
617 	 *   i.  Above or equal to the DDR frequency - safe
618 	 *   ii. The lowest that satisfies condition (i) - optimal
619 	 */
620 	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
621 		temp = device_timings[i]->max_freq;
622 		if ((temp >= freq) && (temp <= freq_nearest)) {
623 			freq_nearest = temp;
624 			timings = device_timings[i];
625 		}
626 	}
627 	debug("emif: timings table: %d\n", freq_nearest);
628 	return timings;
629 }
630 
631 /*
632  * Finds the value of emif_sdram_config_reg
633  * All parameters are programmed based on the device on CS0.
634  * If there is a device on CS1, it will be same as that on CS0 or
635  * it will be NVM. We don't support NVM yet.
636  * If cs1_device pointer is NULL it is assumed that there is no device
637  * on CS1
638  */
639 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
640 				const struct lpddr2_device_details *cs1_device,
641 				const struct lpddr2_addressing *addressing,
642 				u8 RL)
643 {
644 	u32 config_reg = 0;
645 
646 	config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
647 	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
648 			EMIF_REG_IBANK_POS_SHIFT;
649 
650 	config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
651 
652 	config_reg |= RL << EMIF_REG_CL_SHIFT;
653 
654 	config_reg |= addressing->row_sz[cs0_device->io_width] <<
655 			EMIF_REG_ROWSIZE_SHIFT;
656 
657 	config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
658 
659 	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
660 			EMIF_REG_EBANK_SHIFT;
661 
662 	config_reg |= addressing->col_sz[cs0_device->io_width] <<
663 			EMIF_REG_PAGESIZE_SHIFT;
664 
665 	return config_reg;
666 }
667 
668 static u32 get_sdram_ref_ctrl(u32 freq,
669 			      const struct lpddr2_addressing *addressing)
670 {
671 	u32 ref_ctrl = 0, val = 0, freq_khz;
672 	freq_khz = freq / 1000;
673 	/*
674 	 * refresh rate to be set is 'tREFI * freq in MHz
675 	 * division by 10000 to account for khz and x10 in t_REFI_us_x10
676 	 */
677 	val = addressing->t_REFI_us_x10 * freq_khz / 10000;
678 	ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
679 
680 	return ref_ctrl;
681 }
682 
683 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
684 			       const struct lpddr2_min_tck *min_tck,
685 			       const struct lpddr2_addressing *addressing)
686 {
687 	u32 tim1 = 0, val = 0;
688 	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
689 	tim1 |= val << EMIF_REG_T_WTR_SHIFT;
690 
691 	if (addressing->num_banks == BANKS8)
692 		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
693 							(4 * (*T_num)) - 1;
694 	else
695 		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
696 
697 	tim1 |= val << EMIF_REG_T_RRD_SHIFT;
698 
699 	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
700 	tim1 |= val << EMIF_REG_T_RC_SHIFT;
701 
702 	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
703 	tim1 |= val << EMIF_REG_T_RAS_SHIFT;
704 
705 	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
706 	tim1 |= val << EMIF_REG_T_WR_SHIFT;
707 
708 	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
709 	tim1 |= val << EMIF_REG_T_RCD_SHIFT;
710 
711 	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
712 	tim1 |= val << EMIF_REG_T_RP_SHIFT;
713 
714 	return tim1;
715 }
716 
717 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
718 			       const struct lpddr2_min_tck *min_tck)
719 {
720 	u32 tim2 = 0, val = 0;
721 	val = max(min_tck->tCKE, timings->tCKE) - 1;
722 	tim2 |= val << EMIF_REG_T_CKE_SHIFT;
723 
724 	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
725 	tim2 |= val << EMIF_REG_T_RTP_SHIFT;
726 
727 	/*
728 	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
729 	 * same value
730 	 */
731 	val = ns_2_cycles(timings->tXSR) - 1;
732 	tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
733 	tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
734 
735 	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
736 	tim2 |= val << EMIF_REG_T_XP_SHIFT;
737 
738 	return tim2;
739 }
740 
741 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
742 			       const struct lpddr2_min_tck *min_tck,
743 			       const struct lpddr2_addressing *addressing)
744 {
745 	u32 tim3 = 0, val = 0;
746 	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
747 	tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
748 
749 	val = ns_2_cycles(timings->tRFCab) - 1;
750 	tim3 |= val << EMIF_REG_T_RFC_SHIFT;
751 
752 	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
753 	tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
754 
755 	val = ns_2_cycles(timings->tZQCS) - 1;
756 	tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
757 
758 	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
759 	tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
760 
761 	return tim3;
762 }
763 
764 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
765 			     const struct lpddr2_addressing *addressing,
766 			     u8 volt_ramp)
767 {
768 	u32 zq = 0, val = 0;
769 	if (volt_ramp)
770 		val =
771 		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
772 		    addressing->t_REFI_us_x10;
773 	else
774 		val =
775 		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
776 		    addressing->t_REFI_us_x10;
777 	zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
778 
779 	zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
780 
781 	zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
782 
783 	zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
784 
785 	/*
786 	 * Assuming that two chipselects have a single calibration resistor
787 	 * If there are indeed two calibration resistors, then this flag should
788 	 * be enabled to take advantage of dual calibration feature.
789 	 * This data should ideally come from board files. But considering
790 	 * that none of the boards today have calibration resistors per CS,
791 	 * it would be an unnecessary overhead.
792 	 */
793 	zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
794 
795 	zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
796 
797 	zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
798 
799 	return zq;
800 }
801 
802 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
803 				 const struct lpddr2_addressing *addressing,
804 				 u8 is_derated)
805 {
806 	u32 alert = 0, interval;
807 	interval =
808 	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
809 	if (is_derated)
810 		interval *= 4;
811 	alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
812 
813 	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
814 
815 	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
816 
817 	alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
818 
819 	alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
820 
821 	alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
822 
823 	return alert;
824 }
825 
826 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
827 {
828 	u32 idle = 0, val = 0;
829 	if (volt_ramp)
830 		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
831 	else
832 		/*Maximum value in normal conditions - suggested by hw team */
833 		val = 0x1FF;
834 	idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
835 
836 	idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
837 
838 	return idle;
839 }
840 
841 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
842 {
843 	u32 phy = 0, val = 0;
844 
845 	phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
846 
847 	if (freq <= 100000000)
848 		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
849 	else if (freq <= 200000000)
850 		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
851 	else
852 		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
853 	phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
854 
855 	/* Other fields are constant magic values. Hardcode them together */
856 	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
857 		EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
858 
859 	return phy;
860 }
861 
862 static u32 get_emif_mem_size(u32 base)
863 {
864 	u32 size_mbytes = 0, temp;
865 	struct emif_device_details dev_details;
866 	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
867 	u32 emif_nr = emif_num(base);
868 
869 	emif_reset_phy(base);
870 	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
871 						&cs0_dev_details);
872 	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
873 						&cs1_dev_details);
874 	emif_reset_phy(base);
875 
876 	if (dev_details.cs0_device_details) {
877 		temp = dev_details.cs0_device_details->density;
878 		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
879 	}
880 
881 	if (dev_details.cs1_device_details) {
882 		temp = dev_details.cs1_device_details->density;
883 		size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
884 	}
885 	/* convert to bytes */
886 	return size_mbytes << 20;
887 }
888 
889 /* Gets the encoding corresponding to a given DMM section size */
890 u32 get_dmm_section_size_map(u32 section_size)
891 {
892 	/*
893 	 * Section size mapping:
894 	 * 0x0: 16-MiB section
895 	 * 0x1: 32-MiB section
896 	 * 0x2: 64-MiB section
897 	 * 0x3: 128-MiB section
898 	 * 0x4: 256-MiB section
899 	 * 0x5: 512-MiB section
900 	 * 0x6: 1-GiB section
901 	 * 0x7: 2-GiB section
902 	 */
903 	section_size >>= 24; /* divide by 16 MB */
904 	return log_2_n_round_down(section_size);
905 }
906 
907 static void emif_calculate_regs(
908 		const struct emif_device_details *emif_dev_details,
909 		u32 freq, struct emif_regs *regs)
910 {
911 	u32 temp, sys_freq;
912 	const struct lpddr2_addressing *addressing;
913 	const struct lpddr2_ac_timings *timings;
914 	const struct lpddr2_min_tck *min_tck;
915 	const struct lpddr2_device_details *cs0_dev_details =
916 					emif_dev_details->cs0_device_details;
917 	const struct lpddr2_device_details *cs1_dev_details =
918 					emif_dev_details->cs1_device_details;
919 	const struct lpddr2_device_timings *cs0_dev_timings =
920 					emif_dev_details->cs0_device_timings;
921 
922 	emif_assert(emif_dev_details);
923 	emif_assert(regs);
924 	/*
925 	 * You can not have a device on CS1 without one on CS0
926 	 * So configuring EMIF without a device on CS0 doesn't
927 	 * make sense
928 	 */
929 	emif_assert(cs0_dev_details);
930 	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
931 	/*
932 	 * If there is a device on CS1 it should be same type as CS0
933 	 * (or NVM. But NVM is not supported in this driver yet)
934 	 */
935 	emif_assert((cs1_dev_details == NULL) ||
936 		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
937 		    (cs0_dev_details->type == cs1_dev_details->type));
938 	emif_assert(freq <= MAX_LPDDR2_FREQ);
939 
940 	set_ddr_clk_period(freq);
941 
942 	/*
943 	 * The device on CS0 is used for all timing calculations
944 	 * There is only one set of registers for timings per EMIF. So, if the
945 	 * second CS(CS1) has a device, it should have the same timings as the
946 	 * device on CS0
947 	 */
948 	timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
949 	emif_assert(timings);
950 	min_tck = cs0_dev_timings->min_tck;
951 
952 	temp = addressing_table_index(cs0_dev_details->type,
953 				      cs0_dev_details->density,
954 				      cs0_dev_details->io_width);
955 
956 	emif_assert((temp >= 0));
957 	addressing = &(addressing_table[temp]);
958 	emif_assert(addressing);
959 
960 	sys_freq = get_sys_clk_freq();
961 
962 	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
963 							cs1_dev_details,
964 							addressing, RL_BOOT);
965 
966 	regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
967 						cs1_dev_details,
968 						addressing, RL_FINAL);
969 
970 	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
971 
972 	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
973 
974 	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
975 
976 	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
977 
978 	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
979 
980 	regs->temp_alert_config =
981 	    get_temp_alert_config(cs1_dev_details, addressing, 0);
982 
983 	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
984 					    LPDDR2_VOLTAGE_STABLE);
985 
986 	regs->emif_ddr_phy_ctlr_1_init =
987 			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
988 
989 	regs->emif_ddr_phy_ctlr_1 =
990 			get_ddr_phy_ctrl_1(freq, RL_FINAL);
991 
992 	regs->freq = freq;
993 
994 	print_timing_reg(regs->sdram_config_init);
995 	print_timing_reg(regs->sdram_config);
996 	print_timing_reg(regs->ref_ctrl);
997 	print_timing_reg(regs->sdram_tim1);
998 	print_timing_reg(regs->sdram_tim2);
999 	print_timing_reg(regs->sdram_tim3);
1000 	print_timing_reg(regs->read_idle_ctrl);
1001 	print_timing_reg(regs->temp_alert_config);
1002 	print_timing_reg(regs->zq_config);
1003 	print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1004 	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1005 }
1006 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1007 
1008 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1009 const char *get_lpddr2_type(u8 type_id)
1010 {
1011 	switch (type_id) {
1012 	case LPDDR2_TYPE_S4:
1013 		return "LPDDR2-S4";
1014 	case LPDDR2_TYPE_S2:
1015 		return "LPDDR2-S2";
1016 	default:
1017 		return NULL;
1018 	}
1019 }
1020 
1021 const char *get_lpddr2_io_width(u8 width_id)
1022 {
1023 	switch (width_id) {
1024 	case LPDDR2_IO_WIDTH_8:
1025 		return "x8";
1026 	case LPDDR2_IO_WIDTH_16:
1027 		return "x16";
1028 	case LPDDR2_IO_WIDTH_32:
1029 		return "x32";
1030 	default:
1031 		return NULL;
1032 	}
1033 }
1034 
1035 const char *get_lpddr2_manufacturer(u32 manufacturer)
1036 {
1037 	switch (manufacturer) {
1038 	case LPDDR2_MANUFACTURER_SAMSUNG:
1039 		return "Samsung";
1040 	case LPDDR2_MANUFACTURER_QIMONDA:
1041 		return "Qimonda";
1042 	case LPDDR2_MANUFACTURER_ELPIDA:
1043 		return "Elpida";
1044 	case LPDDR2_MANUFACTURER_ETRON:
1045 		return "Etron";
1046 	case LPDDR2_MANUFACTURER_NANYA:
1047 		return "Nanya";
1048 	case LPDDR2_MANUFACTURER_HYNIX:
1049 		return "Hynix";
1050 	case LPDDR2_MANUFACTURER_MOSEL:
1051 		return "Mosel";
1052 	case LPDDR2_MANUFACTURER_WINBOND:
1053 		return "Winbond";
1054 	case LPDDR2_MANUFACTURER_ESMT:
1055 		return "ESMT";
1056 	case LPDDR2_MANUFACTURER_SPANSION:
1057 		return "Spansion";
1058 	case LPDDR2_MANUFACTURER_SST:
1059 		return "SST";
1060 	case LPDDR2_MANUFACTURER_ZMOS:
1061 		return "ZMOS";
1062 	case LPDDR2_MANUFACTURER_INTEL:
1063 		return "Intel";
1064 	case LPDDR2_MANUFACTURER_NUMONYX:
1065 		return "Numonyx";
1066 	case LPDDR2_MANUFACTURER_MICRON:
1067 		return "Micron";
1068 	default:
1069 		return NULL;
1070 	}
1071 }
1072 
1073 static void display_sdram_details(u32 emif_nr, u32 cs,
1074 				  struct lpddr2_device_details *device)
1075 {
1076 	const char *mfg_str;
1077 	const char *type_str;
1078 	char density_str[10];
1079 	u32 density;
1080 
1081 	debug("EMIF%d CS%d\t", emif_nr, cs);
1082 
1083 	if (!device) {
1084 		debug("None\n");
1085 		return;
1086 	}
1087 
1088 	mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1089 	type_str = get_lpddr2_type(device->type);
1090 
1091 	density = lpddr2_density_2_size_in_mbytes[device->density];
1092 	if ((density / 1024 * 1024) == density) {
1093 		density /= 1024;
1094 		sprintf(density_str, "%d GB", density);
1095 	} else
1096 		sprintf(density_str, "%d MB", density);
1097 	if (mfg_str && type_str)
1098 		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1099 }
1100 
1101 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1102 				  struct lpddr2_device_details *lpddr2_device)
1103 {
1104 	u32 mr = 0, temp;
1105 
1106 	mr = get_mr(base, cs, LPDDR2_MR0);
1107 	if (mr > 0xFF) {
1108 		/* Mode register value bigger than 8 bit */
1109 		return 0;
1110 	}
1111 
1112 	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1113 	if (temp) {
1114 		/* Not SDRAM */
1115 		return 0;
1116 	}
1117 	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1118 
1119 	if (temp) {
1120 		/* DNV supported - But DNV is only supported for NVM */
1121 		return 0;
1122 	}
1123 
1124 	mr = get_mr(base, cs, LPDDR2_MR4);
1125 	if (mr > 0xFF) {
1126 		/* Mode register value bigger than 8 bit */
1127 		return 0;
1128 	}
1129 
1130 	mr = get_mr(base, cs, LPDDR2_MR5);
1131 	if (mr > 0xFF) {
1132 		/* Mode register value bigger than 8 bit */
1133 		return 0;
1134 	}
1135 
1136 	if (!get_lpddr2_manufacturer(mr)) {
1137 		/* Manufacturer not identified */
1138 		return 0;
1139 	}
1140 	lpddr2_device->manufacturer = mr;
1141 
1142 	mr = get_mr(base, cs, LPDDR2_MR6);
1143 	if (mr >= 0xFF) {
1144 		/* Mode register value bigger than 8 bit */
1145 		return 0;
1146 	}
1147 
1148 	mr = get_mr(base, cs, LPDDR2_MR7);
1149 	if (mr >= 0xFF) {
1150 		/* Mode register value bigger than 8 bit */
1151 		return 0;
1152 	}
1153 
1154 	mr = get_mr(base, cs, LPDDR2_MR8);
1155 	if (mr >= 0xFF) {
1156 		/* Mode register value bigger than 8 bit */
1157 		return 0;
1158 	}
1159 
1160 	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1161 	if (!get_lpddr2_type(temp)) {
1162 		/* Not SDRAM */
1163 		return 0;
1164 	}
1165 	lpddr2_device->type = temp;
1166 
1167 	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1168 	if (temp > LPDDR2_DENSITY_32Gb) {
1169 		/* Density not supported */
1170 		return 0;
1171 	}
1172 	lpddr2_device->density = temp;
1173 
1174 	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1175 	if (!get_lpddr2_io_width(temp)) {
1176 		/* IO width unsupported value */
1177 		return 0;
1178 	}
1179 	lpddr2_device->io_width = temp;
1180 
1181 	/*
1182 	 * If all the above tests pass we should
1183 	 * have a device on this chip-select
1184 	 */
1185 	return 1;
1186 }
1187 
1188 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1189 			struct lpddr2_device_details *lpddr2_dev_details)
1190 {
1191 	u32 phy;
1192 	u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1193 
1194 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1195 
1196 	if (!lpddr2_dev_details)
1197 		return NULL;
1198 
1199 	/* Do the minimum init for mode register accesses */
1200 	if (!(running_from_sdram() || warm_reset())) {
1201 		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1202 		writel(phy, &emif->emif_ddr_phy_ctrl_1);
1203 	}
1204 
1205 	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1206 		return NULL;
1207 
1208 	display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1209 
1210 	return lpddr2_dev_details;
1211 }
1212 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1213 
1214 static void do_sdram_init(u32 base)
1215 {
1216 	const struct emif_regs *regs;
1217 	u32 in_sdram, emif_nr;
1218 
1219 	debug(">>do_sdram_init() %x\n", base);
1220 
1221 	in_sdram = running_from_sdram();
1222 	emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1223 
1224 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1225 	emif_get_reg_dump(emif_nr, &regs);
1226 	if (!regs) {
1227 		debug("EMIF: reg dump not provided\n");
1228 		return;
1229 	}
1230 #else
1231 	/*
1232 	 * The user has not provided the register values. We need to
1233 	 * calculate it based on the timings and the DDR frequency
1234 	 */
1235 	struct emif_device_details dev_details;
1236 	struct emif_regs calculated_regs;
1237 
1238 	/*
1239 	 * Get device details:
1240 	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1241 	 * - Obtained from user otherwise
1242 	 */
1243 	struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1244 	emif_reset_phy(base);
1245 	dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1246 						&cs0_dev_details);
1247 	dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1248 						&cs1_dev_details);
1249 	emif_reset_phy(base);
1250 
1251 	/* Return if no devices on this EMIF */
1252 	if (!dev_details.cs0_device_details &&
1253 	    !dev_details.cs1_device_details) {
1254 		return;
1255 	}
1256 
1257 	/*
1258 	 * Get device timings:
1259 	 * - Default timings specified by JESD209-2 if
1260 	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1261 	 * - Obtained from user otherwise
1262 	 */
1263 	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1264 				&dev_details.cs1_device_timings);
1265 
1266 	/* Calculate the register values */
1267 	emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1268 	regs = &calculated_regs;
1269 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1270 
1271 	/*
1272 	 * Initializing the DDR device can not happen from SDRAM.
1273 	 * Changing the timing registers in EMIF can happen(going from one
1274 	 * OPP to another)
1275 	 */
1276 	if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1277 		if (emif_sdram_type(regs->sdram_config) ==
1278 		    EMIF_SDRAM_TYPE_LPDDR2)
1279 			lpddr2_init(base, regs);
1280 #ifndef CONFIG_OMAP44XX
1281 		else
1282 			ddr3_init(base, regs);
1283 #endif
1284 	}
1285 #ifdef CONFIG_OMAP54XX
1286 	if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1287 	    EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1288 		set_lpmode_selfrefresh(base);
1289 		emif_reset_phy(base);
1290 		omap5_ddr3_leveling(base, regs);
1291 	}
1292 #endif
1293 
1294 	/* Write to the shadow registers */
1295 	emif_update_timings(base, regs);
1296 
1297 	debug("<<do_sdram_init() %x\n", base);
1298 }
1299 
1300 void emif_post_init_config(u32 base)
1301 {
1302 	struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1303 	u32 omap_rev = omap_revision();
1304 
1305 	/* reset phy on ES2.0 */
1306 	if (omap_rev == OMAP4430_ES2_0)
1307 		emif_reset_phy(base);
1308 
1309 	/* Put EMIF back in smart idle on ES1.0 */
1310 	if (omap_rev == OMAP4430_ES1_0)
1311 		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1312 }
1313 
1314 void dmm_init(u32 base)
1315 {
1316 	const struct dmm_lisa_map_regs *lisa_map_regs;
1317 	u32 i, section, valid;
1318 
1319 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1320 	emif_get_dmm_regs(&lisa_map_regs);
1321 #else
1322 	u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1323 	u32 section_cnt, sys_addr;
1324 	struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1325 
1326 	mapped_size = 0;
1327 	section_cnt = 3;
1328 	sys_addr = CONFIG_SYS_SDRAM_BASE;
1329 	emif1_size = get_emif_mem_size(EMIF1_BASE);
1330 	emif2_size = get_emif_mem_size(EMIF2_BASE);
1331 	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1332 
1333 	if (!emif1_size && !emif2_size)
1334 		return;
1335 
1336 	/* symmetric interleaved section */
1337 	if (emif1_size && emif2_size) {
1338 		mapped_size = min(emif1_size, emif2_size);
1339 		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1340 		section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1341 		/* only MSB */
1342 		section_map |= (sys_addr >> 24) <<
1343 				EMIF_SYS_ADDR_SHIFT;
1344 		section_map |= get_dmm_section_size_map(mapped_size * 2)
1345 				<< EMIF_SYS_SIZE_SHIFT;
1346 		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1347 		emif1_size -= mapped_size;
1348 		emif2_size -= mapped_size;
1349 		sys_addr += (mapped_size * 2);
1350 		section_cnt--;
1351 	}
1352 
1353 	/*
1354 	 * Single EMIF section(we can have a maximum of 1 single EMIF
1355 	 * section- either EMIF1 or EMIF2 or none, but not both)
1356 	 */
1357 	if (emif1_size) {
1358 		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1359 		section_map |= get_dmm_section_size_map(emif1_size)
1360 				<< EMIF_SYS_SIZE_SHIFT;
1361 		/* only MSB */
1362 		section_map |= (mapped_size >> 24) <<
1363 				EMIF_SDRC_ADDR_SHIFT;
1364 		/* only MSB */
1365 		section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1366 		section_cnt--;
1367 	}
1368 	if (emif2_size) {
1369 		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1370 		section_map |= get_dmm_section_size_map(emif2_size) <<
1371 				EMIF_SYS_SIZE_SHIFT;
1372 		/* only MSB */
1373 		section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1374 		/* only MSB */
1375 		section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1376 		section_cnt--;
1377 	}
1378 
1379 	if (section_cnt == 2) {
1380 		/* Only 1 section - either symmetric or single EMIF */
1381 		lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1382 		lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1383 		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1384 	} else {
1385 		/* 2 sections - 1 symmetric, 1 single EMIF */
1386 		lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1387 		lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1388 	}
1389 
1390 	/* TRAP for invalid TILER mappings in section 0 */
1391 	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1392 
1393 	if (omap_revision() >= OMAP4460_ES1_0)
1394 		lis_map_regs_calculated.is_ma_present = 1;
1395 
1396 	lisa_map_regs = &lis_map_regs_calculated;
1397 #endif
1398 	struct dmm_lisa_map_regs *hw_lisa_map_regs =
1399 	    (struct dmm_lisa_map_regs *)base;
1400 
1401 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1402 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1403 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1404 	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1405 
1406 	writel(lisa_map_regs->dmm_lisa_map_3,
1407 		&hw_lisa_map_regs->dmm_lisa_map_3);
1408 	writel(lisa_map_regs->dmm_lisa_map_2,
1409 		&hw_lisa_map_regs->dmm_lisa_map_2);
1410 	writel(lisa_map_regs->dmm_lisa_map_1,
1411 		&hw_lisa_map_regs->dmm_lisa_map_1);
1412 	writel(lisa_map_regs->dmm_lisa_map_0,
1413 		&hw_lisa_map_regs->dmm_lisa_map_0);
1414 
1415 	if (lisa_map_regs->is_ma_present) {
1416 		hw_lisa_map_regs =
1417 		    (struct dmm_lisa_map_regs *)MA_BASE;
1418 
1419 		writel(lisa_map_regs->dmm_lisa_map_3,
1420 			&hw_lisa_map_regs->dmm_lisa_map_3);
1421 		writel(lisa_map_regs->dmm_lisa_map_2,
1422 			&hw_lisa_map_regs->dmm_lisa_map_2);
1423 		writel(lisa_map_regs->dmm_lisa_map_1,
1424 			&hw_lisa_map_regs->dmm_lisa_map_1);
1425 		writel(lisa_map_regs->dmm_lisa_map_0,
1426 			&hw_lisa_map_regs->dmm_lisa_map_0);
1427 
1428 		setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1429 	}
1430 
1431 	/*
1432 	 * EMIF should be configured only when
1433 	 * memory is mapped on it. Using emif1_enabled
1434 	 * and emif2_enabled variables for this.
1435 	 */
1436 	emif1_enabled = 0;
1437 	emif2_enabled = 0;
1438 	for (i = 0; i < 4; i++) {
1439 		section	= __raw_readl(DMM_BASE + i*4);
1440 		valid = (section & EMIF_SDRC_MAP_MASK) >>
1441 			(EMIF_SDRC_MAP_SHIFT);
1442 		if (valid == 3) {
1443 			emif1_enabled = 1;
1444 			emif2_enabled = 1;
1445 			break;
1446 		}
1447 
1448 		if (valid == 1)
1449 			emif1_enabled = 1;
1450 
1451 		if (valid == 2)
1452 			emif2_enabled = 1;
1453 	}
1454 }
1455 
1456 static void do_bug0039_workaround(u32 base)
1457 {
1458 	u32 val, i, clkctrl;
1459 	struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1460 	const struct read_write_regs *bug_00339_regs;
1461 	u32 iterations;
1462 	u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1463 	u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1464 
1465 	if (is_dra7xx())
1466 		phy_status_base++;
1467 
1468 	bug_00339_regs = get_bug_regs(&iterations);
1469 
1470 	/* Put EMIF in to idle */
1471 	clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1472 	__raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1473 
1474 	/* Copy the phy status registers in to phy ctrl shadow registers */
1475 	for (i = 0; i < iterations; i++) {
1476 		val = __raw_readl(phy_status_base +
1477 				  bug_00339_regs[i].read_reg - 1);
1478 
1479 		__raw_writel(val, phy_ctrl_base +
1480 			     ((bug_00339_regs[i].write_reg - 1) << 1));
1481 
1482 		__raw_writel(val, phy_ctrl_base +
1483 			     (bug_00339_regs[i].write_reg << 1) - 1);
1484 	}
1485 
1486 	/* Disable leveling */
1487 	writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1488 
1489 	__raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1490 }
1491 
1492 /*
1493  * SDRAM initialization:
1494  * SDRAM initialization has two parts:
1495  * 1. Configuring the SDRAM device
1496  * 2. Update the AC timings related parameters in the EMIF module
1497  * (1) should be done only once and should not be done while we are
1498  * running from SDRAM.
1499  * (2) can and should be done more than once if OPP changes.
1500  * Particularly, this may be needed when we boot without SPL and
1501  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1502  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1503  * the frequency. So,
1504  * Doing (1) and (2) makes sense - first time initialization
1505  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1506  * Doing (1) and not (2) doen't make sense
1507  * See do_sdram_init() for the details
1508  */
1509 void sdram_init(void)
1510 {
1511 	u32 in_sdram, size_prog, size_detect;
1512 	struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1513 	u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1514 
1515 	debug(">>sdram_init()\n");
1516 
1517 	if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1518 		return;
1519 
1520 	in_sdram = running_from_sdram();
1521 	debug("in_sdram = %d\n", in_sdram);
1522 
1523 	if (!in_sdram) {
1524 		if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1525 			bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1526 		else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1527 			writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1528 	}
1529 
1530 	if (!in_sdram)
1531 		dmm_init(DMM_BASE);
1532 
1533 	if (emif1_enabled)
1534 		do_sdram_init(EMIF1_BASE);
1535 
1536 	if (emif2_enabled)
1537 		do_sdram_init(EMIF2_BASE);
1538 
1539 	if (!(in_sdram || warm_reset())) {
1540 		if (emif1_enabled)
1541 			emif_post_init_config(EMIF1_BASE);
1542 		if (emif2_enabled)
1543 			emif_post_init_config(EMIF2_BASE);
1544 	}
1545 
1546 	/* for the shadow registers to take effect */
1547 	if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1548 		freq_update_core();
1549 
1550 	/* Do some testing after the init */
1551 	if (!in_sdram) {
1552 		size_prog = omap_sdram_size();
1553 		size_prog = log_2_n_round_down(size_prog);
1554 		size_prog = (1 << size_prog);
1555 
1556 		size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1557 						size_prog);
1558 		/* Compare with the size programmed */
1559 		if (size_detect != size_prog) {
1560 			printf("SDRAM: identified size not same as expected"
1561 				" size identified: %x expected: %x\n",
1562 				size_detect,
1563 				size_prog);
1564 		} else
1565 			debug("get_ram_size() successful");
1566 	}
1567 
1568 #if defined(CONFIG_TI_SECURE_DEVICE)
1569 	/*
1570 	 * On HS devices, do static EMIF firewall configuration
1571 	 * but only do it if not already running in SDRAM
1572 	 */
1573 	if (!in_sdram)
1574 		if (0 != secure_emif_reserve())
1575 			hang();
1576 
1577 	/* On HS devices, ensure static EMIF firewall APIs are locked */
1578 	if (0 != secure_emif_firewall_lock())
1579 		hang();
1580 #endif
1581 
1582 	if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1583 	    (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1584 		if (emif1_enabled)
1585 			do_bug0039_workaround(EMIF1_BASE);
1586 		if (emif2_enabled)
1587 			do_bug0039_workaround(EMIF2_BASE);
1588 	}
1589 
1590 	debug("<<sdram_init()\n");
1591 }
1592