1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * 4 * Clock initialization for OMAP4 5 * 6 * (C) Copyright 2010 7 * Texas Instruments, <www.ti.com> 8 * 9 * Aneesh V <aneesh@ti.com> 10 * 11 * Based on previous work by: 12 * Santosh Shilimkar <santosh.shilimkar@ti.com> 13 * Rajendra Nayak <rnayak@ti.com> 14 */ 15 #include <common.h> 16 #include <i2c.h> 17 #include <asm/omap_common.h> 18 #include <asm/gpio.h> 19 #include <asm/arch/clock.h> 20 #include <asm/arch/sys_proto.h> 21 #include <asm/utils.h> 22 #include <asm/omap_gpio.h> 23 #include <asm/emif.h> 24 25 #ifndef CONFIG_SPL_BUILD 26 /* 27 * printing to console doesn't work unless 28 * this code is executed from SPL 29 */ 30 #define printf(fmt, args...) 31 #define puts(s) 32 #endif 33 34 const u32 sys_clk_array[8] = { 35 12000000, /* 12 MHz */ 36 20000000, /* 20 MHz */ 37 16800000, /* 16.8 MHz */ 38 19200000, /* 19.2 MHz */ 39 26000000, /* 26 MHz */ 40 27000000, /* 27 MHz */ 41 38400000, /* 38.4 MHz */ 42 }; 43 44 static inline u32 __get_sys_clk_index(void) 45 { 46 s8 ind; 47 /* 48 * For ES1 the ROM code calibration of sys clock is not reliable 49 * due to hw issue. So, use hard-coded value. If this value is not 50 * correct for any board over-ride this function in board file 51 * From ES2.0 onwards you will get this information from 52 * CM_SYS_CLKSEL 53 */ 54 if (omap_revision() == OMAP4430_ES1_0) 55 ind = OMAP_SYS_CLK_IND_38_4_MHZ; 56 else { 57 /* SYS_CLKSEL - 1 to match the dpll param array indices */ 58 ind = (readl((*prcm)->cm_sys_clksel) & 59 CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1; 60 } 61 return ind; 62 } 63 64 u32 get_sys_clk_index(void) 65 __attribute__ ((weak, alias("__get_sys_clk_index"))); 66 67 u32 get_sys_clk_freq(void) 68 { 69 u8 index = get_sys_clk_index(); 70 return sys_clk_array[index]; 71 } 72 73 void setup_post_dividers(u32 const base, const struct dpll_params *params) 74 { 75 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; 76 77 /* Setup post-dividers */ 78 if (params->m2 >= 0) 79 writel(params->m2, &dpll_regs->cm_div_m2_dpll); 80 if (params->m3 >= 0) 81 writel(params->m3, &dpll_regs->cm_div_m3_dpll); 82 if (params->m4_h11 >= 0) 83 writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll); 84 if (params->m5_h12 >= 0) 85 writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll); 86 if (params->m6_h13 >= 0) 87 writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll); 88 if (params->m7_h14 >= 0) 89 writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll); 90 if (params->h21 >= 0) 91 writel(params->h21, &dpll_regs->cm_div_h21_dpll); 92 if (params->h22 >= 0) 93 writel(params->h22, &dpll_regs->cm_div_h22_dpll); 94 if (params->h23 >= 0) 95 writel(params->h23, &dpll_regs->cm_div_h23_dpll); 96 if (params->h24 >= 0) 97 writel(params->h24, &dpll_regs->cm_div_h24_dpll); 98 } 99 100 static inline void do_bypass_dpll(u32 const base) 101 { 102 struct dpll_regs *dpll_regs = (struct dpll_regs *)base; 103 104 clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, 105 CM_CLKMODE_DPLL_DPLL_EN_MASK, 106 DPLL_EN_FAST_RELOCK_BYPASS << 107 CM_CLKMODE_DPLL_EN_SHIFT); 108 } 109 110 static inline void wait_for_bypass(u32 const base) 111 { 112 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; 113 114 if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll, 115 LDELAY)) { 116 printf("Bypassing DPLL failed %x\n", base); 117 } 118 } 119 120 static inline void do_lock_dpll(u32 const base) 121 { 122 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; 123 124 clrsetbits_le32(&dpll_regs->cm_clkmode_dpll, 125 CM_CLKMODE_DPLL_DPLL_EN_MASK, 126 DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT); 127 } 128 129 static inline void wait_for_lock(u32 const base) 130 { 131 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; 132 133 if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK, 134 &dpll_regs->cm_idlest_dpll, LDELAY)) { 135 printf("DPLL locking failed for %x\n", base); 136 hang(); 137 } 138 } 139 140 inline u32 check_for_lock(u32 const base) 141 { 142 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; 143 u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK; 144 145 return lock; 146 } 147 148 const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data) 149 { 150 u32 sysclk_ind = get_sys_clk_index(); 151 return &dpll_data->mpu[sysclk_ind]; 152 } 153 154 const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data) 155 { 156 u32 sysclk_ind = get_sys_clk_index(); 157 return &dpll_data->core[sysclk_ind]; 158 } 159 160 const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data) 161 { 162 u32 sysclk_ind = get_sys_clk_index(); 163 return &dpll_data->per[sysclk_ind]; 164 } 165 166 const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data) 167 { 168 u32 sysclk_ind = get_sys_clk_index(); 169 return &dpll_data->iva[sysclk_ind]; 170 } 171 172 const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data) 173 { 174 u32 sysclk_ind = get_sys_clk_index(); 175 return &dpll_data->usb[sysclk_ind]; 176 } 177 178 const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data) 179 { 180 #ifdef CONFIG_SYS_OMAP_ABE_SYSCK 181 u32 sysclk_ind = get_sys_clk_index(); 182 return &dpll_data->abe[sysclk_ind]; 183 #else 184 return dpll_data->abe; 185 #endif 186 } 187 188 static const struct dpll_params *get_ddr_dpll_params 189 (struct dplls const *dpll_data) 190 { 191 u32 sysclk_ind = get_sys_clk_index(); 192 193 if (!dpll_data->ddr) 194 return NULL; 195 return &dpll_data->ddr[sysclk_ind]; 196 } 197 198 #ifdef CONFIG_DRIVER_TI_CPSW 199 static const struct dpll_params *get_gmac_dpll_params 200 (struct dplls const *dpll_data) 201 { 202 u32 sysclk_ind = get_sys_clk_index(); 203 204 if (!dpll_data->gmac) 205 return NULL; 206 return &dpll_data->gmac[sysclk_ind]; 207 } 208 #endif 209 210 static void do_setup_dpll(u32 const base, const struct dpll_params *params, 211 u8 lock, char *dpll) 212 { 213 u32 temp, M, N; 214 struct dpll_regs *const dpll_regs = (struct dpll_regs *)base; 215 216 if (!params) 217 return; 218 219 temp = readl(&dpll_regs->cm_clksel_dpll); 220 221 if (check_for_lock(base)) { 222 /* 223 * The Dpll has already been locked by rom code using CH. 224 * Check if M,N are matching with Ideal nominal opp values. 225 * If matches, skip the rest otherwise relock. 226 */ 227 M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT; 228 N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT; 229 if ((M != (params->m)) || (N != (params->n))) { 230 debug("\n %s Dpll locked, but not for ideal M = %d," 231 "N = %d values, current values are M = %d," 232 "N= %d" , dpll, params->m, params->n, 233 M, N); 234 } else { 235 /* Dpll locked with ideal values for nominal opps. */ 236 debug("\n %s Dpll already locked with ideal" 237 "nominal opp values", dpll); 238 239 bypass_dpll(base); 240 goto setup_post_dividers; 241 } 242 } 243 244 bypass_dpll(base); 245 246 /* Set M & N */ 247 temp &= ~CM_CLKSEL_DPLL_M_MASK; 248 temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK; 249 250 temp &= ~CM_CLKSEL_DPLL_N_MASK; 251 temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK; 252 253 writel(temp, &dpll_regs->cm_clksel_dpll); 254 255 setup_post_dividers: 256 setup_post_dividers(base, params); 257 258 /* Lock */ 259 if (lock) 260 do_lock_dpll(base); 261 262 /* Wait till the DPLL locks */ 263 if (lock) 264 wait_for_lock(base); 265 } 266 267 u32 omap_ddr_clk(void) 268 { 269 u32 ddr_clk, sys_clk_khz, omap_rev, divider; 270 const struct dpll_params *core_dpll_params; 271 272 omap_rev = omap_revision(); 273 sys_clk_khz = get_sys_clk_freq() / 1000; 274 275 core_dpll_params = get_core_dpll_params(*dplls_data); 276 277 debug("sys_clk %d\n ", sys_clk_khz * 1000); 278 279 /* Find Core DPLL locked frequency first */ 280 ddr_clk = sys_clk_khz * 2 * core_dpll_params->m / 281 (core_dpll_params->n + 1); 282 283 if (omap_rev < OMAP5430_ES1_0) { 284 /* 285 * DDR frequency is PHY_ROOT_CLK/2 286 * PHY_ROOT_CLK = Fdpll/2/M2 287 */ 288 divider = 4; 289 } else { 290 /* 291 * DDR frequency is PHY_ROOT_CLK 292 * PHY_ROOT_CLK = Fdpll/2/M2 293 */ 294 divider = 2; 295 } 296 297 ddr_clk = ddr_clk / divider / core_dpll_params->m2; 298 ddr_clk *= 1000; /* convert to Hz */ 299 debug("ddr_clk %d\n ", ddr_clk); 300 301 return ddr_clk; 302 } 303 304 /* 305 * Lock MPU dpll 306 * 307 * Resulting MPU frequencies: 308 * 4430 ES1.0 : 600 MHz 309 * 4430 ES2.x : 792 MHz (OPP Turbo) 310 * 4460 : 920 MHz (OPP Turbo) - DCC disabled 311 */ 312 void configure_mpu_dpll(void) 313 { 314 const struct dpll_params *params; 315 struct dpll_regs *mpu_dpll_regs; 316 u32 omap_rev; 317 omap_rev = omap_revision(); 318 319 /* 320 * DCC and clock divider settings for 4460. 321 * DCC is required, if more than a certain frequency is required. 322 * For, 4460 > 1GHZ. 323 * 5430 > 1.4GHZ. 324 */ 325 if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) { 326 mpu_dpll_regs = 327 (struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu); 328 bypass_dpll((*prcm)->cm_clkmode_dpll_mpu); 329 clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl, 330 MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK); 331 setbits_le32((*prcm)->cm_mpu_mpu_clkctrl, 332 MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK); 333 clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll, 334 CM_CLKSEL_DCC_EN_MASK); 335 } 336 337 params = get_mpu_dpll_params(*dplls_data); 338 339 do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu"); 340 debug("MPU DPLL locked\n"); 341 } 342 343 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \ 344 defined(CONFIG_USB_MUSB_OMAP2PLUS) 345 static void setup_usb_dpll(void) 346 { 347 const struct dpll_params *params; 348 u32 sys_clk_khz, sd_div, num, den; 349 350 sys_clk_khz = get_sys_clk_freq() / 1000; 351 /* 352 * USB: 353 * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction 354 * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250) 355 * - where CLKINP is sys_clk in MHz 356 * Use CLKINP in KHz and adjust the denominator accordingly so 357 * that we have enough accuracy and at the same time no overflow 358 */ 359 params = get_usb_dpll_params(*dplls_data); 360 num = params->m * sys_clk_khz; 361 den = (params->n + 1) * 250 * 1000; 362 num += den - 1; 363 sd_div = num / den; 364 clrsetbits_le32((*prcm)->cm_clksel_dpll_usb, 365 CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK, 366 sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT); 367 368 /* Now setup the dpll with the regular function */ 369 do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb"); 370 } 371 #endif 372 373 static void setup_dplls(void) 374 { 375 u32 temp; 376 const struct dpll_params *params; 377 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE; 378 379 debug("setup_dplls\n"); 380 381 /* CORE dpll */ 382 params = get_core_dpll_params(*dplls_data); /* default - safest */ 383 /* 384 * Do not lock the core DPLL now. Just set it up. 385 * Core DPLL will be locked after setting up EMIF 386 * using the FREQ_UPDATE method(freq_update_core()) 387 */ 388 if (emif_sdram_type(readl(&emif->emif_sdram_config)) == 389 EMIF_SDRAM_TYPE_LPDDR2) 390 do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params, 391 DPLL_NO_LOCK, "core"); 392 else 393 do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params, 394 DPLL_LOCK, "core"); 395 /* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */ 396 temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) | 397 (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) | 398 (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT); 399 writel(temp, (*prcm)->cm_clksel_core); 400 debug("Core DPLL configured\n"); 401 402 /* lock PER dpll */ 403 params = get_per_dpll_params(*dplls_data); 404 do_setup_dpll((*prcm)->cm_clkmode_dpll_per, 405 params, DPLL_LOCK, "per"); 406 debug("PER DPLL locked\n"); 407 408 /* MPU dpll */ 409 configure_mpu_dpll(); 410 411 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \ 412 defined(CONFIG_USB_MUSB_OMAP2PLUS) 413 setup_usb_dpll(); 414 #endif 415 params = get_ddr_dpll_params(*dplls_data); 416 do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy, 417 params, DPLL_LOCK, "ddr"); 418 419 #ifdef CONFIG_DRIVER_TI_CPSW 420 params = get_gmac_dpll_params(*dplls_data); 421 do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params, 422 DPLL_LOCK, "gmac"); 423 #endif 424 } 425 426 u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic) 427 { 428 u32 offset_code; 429 430 volt_offset -= pmic->base_offset; 431 432 offset_code = (volt_offset + pmic->step - 1) / pmic->step; 433 434 /* 435 * Offset codes 1-6 all give the base voltage in Palmas 436 * Offset code 0 switches OFF the SMPS 437 */ 438 return offset_code + pmic->start_code; 439 } 440 441 void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic) 442 { 443 u32 offset_code; 444 u32 offset = volt_mv; 445 int ret = 0; 446 447 if (!volt_mv) 448 return; 449 450 pmic->pmic_bus_init(); 451 /* See if we can first get the GPIO if needed */ 452 if (pmic->gpio_en) 453 ret = gpio_request(pmic->gpio, "PMIC_GPIO"); 454 455 if (ret < 0) { 456 printf("%s: gpio %d request failed %d\n", __func__, 457 pmic->gpio, ret); 458 return; 459 } 460 461 /* Pull the GPIO low to select SET0 register, while we program SET1 */ 462 if (pmic->gpio_en) 463 gpio_direction_output(pmic->gpio, 0); 464 465 /* convert to uV for better accuracy in the calculations */ 466 offset *= 1000; 467 468 offset_code = get_offset_code(offset, pmic); 469 470 debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv, 471 offset_code); 472 473 if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code)) 474 printf("Scaling voltage failed for 0x%x\n", vcore_reg); 475 if (pmic->gpio_en) 476 gpio_direction_output(pmic->gpio, 1); 477 } 478 479 int __weak get_voltrail_opp(int rail_offset) 480 { 481 /* 482 * By default return OPP_NOM for all voltage rails. 483 */ 484 return OPP_NOM; 485 } 486 487 static u32 optimize_vcore_voltage(struct volts const *v, int opp) 488 { 489 u32 val; 490 491 if (!v->value[opp]) 492 return 0; 493 if (!v->efuse.reg[opp]) 494 return v->value[opp]; 495 496 switch (v->efuse.reg_bits) { 497 case 16: 498 val = readw(v->efuse.reg[opp]); 499 break; 500 case 32: 501 val = readl(v->efuse.reg[opp]); 502 break; 503 default: 504 printf("Error: efuse 0x%08x bits=%d unknown\n", 505 v->efuse.reg[opp], v->efuse.reg_bits); 506 return v->value[opp]; 507 } 508 509 if (!val) { 510 printf("Error: efuse 0x%08x bits=%d val=0, using %d\n", 511 v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]); 512 return v->value[opp]; 513 } 514 515 debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n", 516 __func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp], 517 val); 518 return val; 519 } 520 521 #ifdef CONFIG_IODELAY_RECALIBRATION 522 void __weak recalibrate_iodelay(void) 523 { 524 } 525 #endif 526 527 /* 528 * Setup the voltages for the main SoC core power domains. 529 * We start with the maximum voltages allowed here, as set in the corresponding 530 * vcores_data struct, and then scale (usually down) to the fused values that 531 * are retrieved from the SoC. The scaling happens only if the efuse.reg fields 532 * are initialised. 533 * Rail grouping is supported for the DRA7xx SoCs only, therefore the code is 534 * compiled conditionally. Note that the new code writes the scaled (or zeroed) 535 * values back to the vcores_data struct for eventual reuse. Zero values mean 536 * that the corresponding rails are not controlled separately, and are not sent 537 * to the PMIC. 538 */ 539 void scale_vcores(struct vcores_data const *vcores) 540 { 541 int i, opp, j, ol; 542 struct volts *pv = (struct volts *)vcores; 543 struct volts *px; 544 545 for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) { 546 opp = get_voltrail_opp(i); 547 debug("%d -> ", pv->value[opp]); 548 549 if (pv->value[opp]) { 550 /* Handle non-empty members only */ 551 pv->value[opp] = optimize_vcore_voltage(pv, opp); 552 px = (struct volts *)vcores; 553 j = 0; 554 while (px < pv) { 555 /* 556 * Scan already handled non-empty members to see 557 * if we have a group and find the max voltage, 558 * which is set to the first occurance of the 559 * particular SMPS; the other group voltages are 560 * zeroed. 561 */ 562 ol = get_voltrail_opp(j); 563 if (px->value[ol] && 564 (pv->pmic->i2c_slave_addr == 565 px->pmic->i2c_slave_addr) && 566 (pv->addr == px->addr)) { 567 /* Same PMIC, same SMPS */ 568 if (pv->value[opp] > px->value[ol]) 569 px->value[ol] = pv->value[opp]; 570 571 pv->value[opp] = 0; 572 } 573 px++; 574 j++; 575 } 576 } 577 debug("%d\n", pv->value[opp]); 578 pv++; 579 } 580 581 opp = get_voltrail_opp(VOLT_CORE); 582 debug("cor: %d\n", vcores->core.value[opp]); 583 do_scale_vcore(vcores->core.addr, vcores->core.value[opp], 584 vcores->core.pmic); 585 /* 586 * IO delay recalibration should be done immediately after 587 * adjusting AVS voltages for VDD_CORE_L. 588 * Respective boards should call __recalibrate_iodelay() 589 * with proper mux, virtual and manual mode configurations. 590 */ 591 #ifdef CONFIG_IODELAY_RECALIBRATION 592 recalibrate_iodelay(); 593 #endif 594 595 opp = get_voltrail_opp(VOLT_MPU); 596 debug("mpu: %d\n", vcores->mpu.value[opp]); 597 do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp], 598 vcores->mpu.pmic); 599 /* Configure MPU ABB LDO after scale */ 600 abb_setup(vcores->mpu.efuse.reg[opp], 601 (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl, 602 (*prcm)->prm_abbldo_mpu_setup, 603 (*prcm)->prm_abbldo_mpu_ctrl, 604 (*prcm)->prm_irqstatus_mpu_2, 605 vcores->mpu.abb_tx_done_mask, 606 OMAP_ABB_FAST_OPP); 607 608 opp = get_voltrail_opp(VOLT_MM); 609 debug("mm: %d\n", vcores->mm.value[opp]); 610 do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp], 611 vcores->mm.pmic); 612 /* Configure MM ABB LDO after scale */ 613 abb_setup(vcores->mm.efuse.reg[opp], 614 (*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl, 615 (*prcm)->prm_abbldo_mm_setup, 616 (*prcm)->prm_abbldo_mm_ctrl, 617 (*prcm)->prm_irqstatus_mpu, 618 vcores->mm.abb_tx_done_mask, 619 OMAP_ABB_FAST_OPP); 620 621 opp = get_voltrail_opp(VOLT_GPU); 622 debug("gpu: %d\n", vcores->gpu.value[opp]); 623 do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp], 624 vcores->gpu.pmic); 625 /* Configure GPU ABB LDO after scale */ 626 abb_setup(vcores->gpu.efuse.reg[opp], 627 (*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl, 628 (*prcm)->prm_abbldo_gpu_setup, 629 (*prcm)->prm_abbldo_gpu_ctrl, 630 (*prcm)->prm_irqstatus_mpu, 631 vcores->gpu.abb_tx_done_mask, 632 OMAP_ABB_FAST_OPP); 633 634 opp = get_voltrail_opp(VOLT_EVE); 635 debug("eve: %d\n", vcores->eve.value[opp]); 636 do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp], 637 vcores->eve.pmic); 638 /* Configure EVE ABB LDO after scale */ 639 abb_setup(vcores->eve.efuse.reg[opp], 640 (*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl, 641 (*prcm)->prm_abbldo_eve_setup, 642 (*prcm)->prm_abbldo_eve_ctrl, 643 (*prcm)->prm_irqstatus_mpu, 644 vcores->eve.abb_tx_done_mask, 645 OMAP_ABB_FAST_OPP); 646 647 opp = get_voltrail_opp(VOLT_IVA); 648 debug("iva: %d\n", vcores->iva.value[opp]); 649 do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp], 650 vcores->iva.pmic); 651 /* Configure IVA ABB LDO after scale */ 652 abb_setup(vcores->iva.efuse.reg[opp], 653 (*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl, 654 (*prcm)->prm_abbldo_iva_setup, 655 (*prcm)->prm_abbldo_iva_ctrl, 656 (*prcm)->prm_irqstatus_mpu, 657 vcores->iva.abb_tx_done_mask, 658 OMAP_ABB_FAST_OPP); 659 } 660 661 static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode) 662 { 663 clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, 664 enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT); 665 debug("Enable clock domain - %x\n", clkctrl_reg); 666 } 667 668 static inline void disable_clock_domain(u32 const clkctrl_reg) 669 { 670 clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK, 671 CD_CLKCTRL_CLKTRCTRL_SW_SLEEP << 672 CD_CLKCTRL_CLKTRCTRL_SHIFT); 673 debug("Disable clock domain - %x\n", clkctrl_reg); 674 } 675 676 static inline void wait_for_clk_enable(u32 clkctrl_addr) 677 { 678 u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED; 679 u32 bound = LDELAY; 680 681 while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) || 682 (idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) { 683 684 clkctrl = readl(clkctrl_addr); 685 idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> 686 MODULE_CLKCTRL_IDLEST_SHIFT; 687 if (--bound == 0) { 688 printf("Clock enable failed for 0x%x idlest 0x%x\n", 689 clkctrl_addr, clkctrl); 690 return; 691 } 692 } 693 } 694 695 static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode, 696 u32 wait_for_enable) 697 { 698 clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, 699 enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT); 700 debug("Enable clock module - %x\n", clkctrl_addr); 701 if (wait_for_enable) 702 wait_for_clk_enable(clkctrl_addr); 703 } 704 705 static inline void wait_for_clk_disable(u32 clkctrl_addr) 706 { 707 u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL; 708 u32 bound = LDELAY; 709 710 while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) { 711 clkctrl = readl(clkctrl_addr); 712 idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >> 713 MODULE_CLKCTRL_IDLEST_SHIFT; 714 if (--bound == 0) { 715 printf("Clock disable failed for 0x%x idlest 0x%x\n", 716 clkctrl_addr, clkctrl); 717 return; 718 } 719 } 720 } 721 722 static inline void disable_clock_module(u32 const clkctrl_addr, 723 u32 wait_for_disable) 724 { 725 clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK, 726 MODULE_CLKCTRL_MODULEMODE_SW_DISABLE << 727 MODULE_CLKCTRL_MODULEMODE_SHIFT); 728 debug("Disable clock module - %x\n", clkctrl_addr); 729 if (wait_for_disable) 730 wait_for_clk_disable(clkctrl_addr); 731 } 732 733 void freq_update_core(void) 734 { 735 u32 freq_config1 = 0; 736 const struct dpll_params *core_dpll_params; 737 u32 omap_rev = omap_revision(); 738 739 core_dpll_params = get_core_dpll_params(*dplls_data); 740 /* Put EMIF clock domain in sw wakeup mode */ 741 enable_clock_domain((*prcm)->cm_memif_clkstctrl, 742 CD_CLKCTRL_CLKTRCTRL_SW_WKUP); 743 wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl); 744 wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl); 745 746 freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK | 747 SHADOW_FREQ_CONFIG1_DLL_RESET_MASK; 748 749 freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) & 750 SHADOW_FREQ_CONFIG1_DPLL_EN_MASK; 751 752 freq_config1 |= (core_dpll_params->m2 << 753 SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) & 754 SHADOW_FREQ_CONFIG1_M2_DIV_MASK; 755 756 writel(freq_config1, (*prcm)->cm_shadow_freq_config1); 757 if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0, 758 (u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) { 759 puts("FREQ UPDATE procedure failed!!"); 760 hang(); 761 } 762 763 /* 764 * Putting EMIF in HW_AUTO is seen to be causing issues with 765 * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP 766 * in OMAP5430 ES1.0 silicon 767 */ 768 if (omap_rev != OMAP5430_ES1_0) { 769 /* Put EMIF clock domain back in hw auto mode */ 770 enable_clock_domain((*prcm)->cm_memif_clkstctrl, 771 CD_CLKCTRL_CLKTRCTRL_HW_AUTO); 772 wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl); 773 wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl); 774 } 775 } 776 777 void bypass_dpll(u32 const base) 778 { 779 do_bypass_dpll(base); 780 wait_for_bypass(base); 781 } 782 783 void lock_dpll(u32 const base) 784 { 785 do_lock_dpll(base); 786 wait_for_lock(base); 787 } 788 789 static void setup_clocks_for_console(void) 790 { 791 /* Do not add any spl_debug prints in this function */ 792 clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, 793 CD_CLKCTRL_CLKTRCTRL_SW_WKUP << 794 CD_CLKCTRL_CLKTRCTRL_SHIFT); 795 796 /* Enable all UARTs - console will be on one of them */ 797 clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl, 798 MODULE_CLKCTRL_MODULEMODE_MASK, 799 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << 800 MODULE_CLKCTRL_MODULEMODE_SHIFT); 801 802 clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl, 803 MODULE_CLKCTRL_MODULEMODE_MASK, 804 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << 805 MODULE_CLKCTRL_MODULEMODE_SHIFT); 806 807 clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl, 808 MODULE_CLKCTRL_MODULEMODE_MASK, 809 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << 810 MODULE_CLKCTRL_MODULEMODE_SHIFT); 811 812 clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl, 813 MODULE_CLKCTRL_MODULEMODE_MASK, 814 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN << 815 MODULE_CLKCTRL_MODULEMODE_SHIFT); 816 817 clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK, 818 CD_CLKCTRL_CLKTRCTRL_HW_AUTO << 819 CD_CLKCTRL_CLKTRCTRL_SHIFT); 820 } 821 822 void do_enable_clocks(u32 const *clk_domains, 823 u32 const *clk_modules_hw_auto, 824 u32 const *clk_modules_explicit_en, 825 u8 wait_for_enable) 826 { 827 u32 i, max = 100; 828 829 /* Put the clock domains in SW_WKUP mode */ 830 for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) { 831 enable_clock_domain(clk_domains[i], 832 CD_CLKCTRL_CLKTRCTRL_SW_WKUP); 833 } 834 835 /* Clock modules that need to be put in HW_AUTO */ 836 for (i = 0; (i < max) && clk_modules_hw_auto && 837 clk_modules_hw_auto[i]; i++) { 838 enable_clock_module(clk_modules_hw_auto[i], 839 MODULE_CLKCTRL_MODULEMODE_HW_AUTO, 840 wait_for_enable); 841 }; 842 843 /* Clock modules that need to be put in SW_EXPLICIT_EN mode */ 844 for (i = 0; (i < max) && clk_modules_explicit_en && 845 clk_modules_explicit_en[i]; i++) { 846 enable_clock_module(clk_modules_explicit_en[i], 847 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN, 848 wait_for_enable); 849 }; 850 851 /* Put the clock domains in HW_AUTO mode now */ 852 for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) { 853 enable_clock_domain(clk_domains[i], 854 CD_CLKCTRL_CLKTRCTRL_HW_AUTO); 855 } 856 } 857 858 void do_disable_clocks(u32 const *clk_domains, 859 u32 const *clk_modules_disable, 860 u8 wait_for_disable) 861 { 862 u32 i, max = 100; 863 864 865 /* Clock modules that need to be put in SW_DISABLE */ 866 for (i = 0; (i < max) && clk_modules_disable[i]; i++) 867 disable_clock_module(clk_modules_disable[i], 868 wait_for_disable); 869 870 /* Put the clock domains in SW_SLEEP mode */ 871 for (i = 0; (i < max) && clk_domains[i]; i++) 872 disable_clock_domain(clk_domains[i]); 873 } 874 875 /** 876 * setup_early_clocks() - Setup early clocks needed for SoC 877 * 878 * Setup clocks for console, SPL basic initialization clocks and initialize 879 * the timer. This is invoked prior prcm_init. 880 */ 881 void setup_early_clocks(void) 882 { 883 switch (omap_hw_init_context()) { 884 case OMAP_INIT_CONTEXT_SPL: 885 case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: 886 case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: 887 setup_clocks_for_console(); 888 enable_basic_clocks(); 889 timer_init(); 890 /* Fall through */ 891 } 892 } 893 894 void prcm_init(void) 895 { 896 switch (omap_hw_init_context()) { 897 case OMAP_INIT_CONTEXT_SPL: 898 case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR: 899 case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH: 900 scale_vcores(*omap_vcores); 901 setup_dplls(); 902 setup_warmreset_time(); 903 break; 904 default: 905 break; 906 } 907 908 if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context()) 909 enable_basic_uboot_clocks(); 910 } 911 912 #if !defined(CONFIG_DM_I2C) 913 void gpi2c_init(void) 914 { 915 static int gpi2c = 1; 916 917 if (gpi2c) { 918 i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, 919 CONFIG_SYS_OMAP24_I2C_SLAVE); 920 gpi2c = 0; 921 } 922 } 923 #endif 924