xref: /openbmc/u-boot/arch/arm/mach-omap2/clocks-common.c (revision 8eef803a276c4b586ba5ad82e13485809934ffed)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *
4  * Clock initialization for OMAP4
5  *
6  * (C) Copyright 2010
7  * Texas Instruments, <www.ti.com>
8  *
9  * Aneesh V <aneesh@ti.com>
10  *
11  * Based on previous work by:
12  *	Santosh Shilimkar <santosh.shilimkar@ti.com>
13  *	Rajendra Nayak <rnayak@ti.com>
14  */
15 #include <common.h>
16 #include <i2c.h>
17 #include <asm/omap_common.h>
18 #include <asm/gpio.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/sys_proto.h>
21 #include <asm/utils.h>
22 #include <asm/omap_gpio.h>
23 #include <asm/emif.h>
24 
25 #ifndef CONFIG_SPL_BUILD
26 /*
27  * printing to console doesn't work unless
28  * this code is executed from SPL
29  */
30 #define printf(fmt, args...)
31 #define puts(s)
32 #endif
33 
34 const u32 sys_clk_array[8] = {
35 	12000000,	       /* 12 MHz */
36 	20000000,		/* 20 MHz */
37 	16800000,	       /* 16.8 MHz */
38 	19200000,	       /* 19.2 MHz */
39 	26000000,	       /* 26 MHz */
40 	27000000,	       /* 27 MHz */
41 	38400000,	       /* 38.4 MHz */
42 };
43 
44 static inline u32 __get_sys_clk_index(void)
45 {
46 	s8 ind;
47 	/*
48 	 * For ES1 the ROM code calibration of sys clock is not reliable
49 	 * due to hw issue. So, use hard-coded value. If this value is not
50 	 * correct for any board over-ride this function in board file
51 	 * From ES2.0 onwards you will get this information from
52 	 * CM_SYS_CLKSEL
53 	 */
54 	if (omap_revision() == OMAP4430_ES1_0)
55 		ind = OMAP_SYS_CLK_IND_38_4_MHZ;
56 	else {
57 		/* SYS_CLKSEL - 1 to match the dpll param array indices */
58 		ind = (readl((*prcm)->cm_sys_clksel) &
59 			CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
60 	}
61 	return ind;
62 }
63 
64 u32 get_sys_clk_index(void)
65 	__attribute__ ((weak, alias("__get_sys_clk_index")));
66 
67 u32 get_sys_clk_freq(void)
68 {
69 	u8 index = get_sys_clk_index();
70 	return sys_clk_array[index];
71 }
72 
73 void setup_post_dividers(u32 const base, const struct dpll_params *params)
74 {
75 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
76 
77 	/* Setup post-dividers */
78 	if (params->m2 >= 0)
79 		writel(params->m2, &dpll_regs->cm_div_m2_dpll);
80 	if (params->m3 >= 0)
81 		writel(params->m3, &dpll_regs->cm_div_m3_dpll);
82 	if (params->m4_h11 >= 0)
83 		writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
84 	if (params->m5_h12 >= 0)
85 		writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
86 	if (params->m6_h13 >= 0)
87 		writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
88 	if (params->m7_h14 >= 0)
89 		writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
90 	if (params->h21 >= 0)
91 		writel(params->h21, &dpll_regs->cm_div_h21_dpll);
92 	if (params->h22 >= 0)
93 		writel(params->h22, &dpll_regs->cm_div_h22_dpll);
94 	if (params->h23 >= 0)
95 		writel(params->h23, &dpll_regs->cm_div_h23_dpll);
96 	if (params->h24 >= 0)
97 		writel(params->h24, &dpll_regs->cm_div_h24_dpll);
98 }
99 
100 static inline void do_bypass_dpll(u32 const base)
101 {
102 	struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
103 
104 	clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
105 			CM_CLKMODE_DPLL_DPLL_EN_MASK,
106 			DPLL_EN_FAST_RELOCK_BYPASS <<
107 			CM_CLKMODE_DPLL_EN_SHIFT);
108 }
109 
110 static inline void wait_for_bypass(u32 const base)
111 {
112 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
113 
114 	if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
115 				LDELAY)) {
116 		printf("Bypassing DPLL failed %x\n", base);
117 	}
118 }
119 
120 static inline void do_lock_dpll(u32 const base)
121 {
122 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
123 
124 	clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
125 		      CM_CLKMODE_DPLL_DPLL_EN_MASK,
126 		      DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
127 }
128 
129 static inline void wait_for_lock(u32 const base)
130 {
131 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
132 
133 	if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
134 		&dpll_regs->cm_idlest_dpll, LDELAY)) {
135 		printf("DPLL locking failed for %x\n", base);
136 		hang();
137 	}
138 }
139 
140 inline u32 check_for_lock(u32 const base)
141 {
142 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
143 	u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
144 
145 	return lock;
146 }
147 
148 const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
149 {
150 	u32 sysclk_ind = get_sys_clk_index();
151 	return &dpll_data->mpu[sysclk_ind];
152 }
153 
154 const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
155 {
156 	u32 sysclk_ind = get_sys_clk_index();
157 	return &dpll_data->core[sysclk_ind];
158 }
159 
160 const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
161 {
162 	u32 sysclk_ind = get_sys_clk_index();
163 	return &dpll_data->per[sysclk_ind];
164 }
165 
166 const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
167 {
168 	u32 sysclk_ind = get_sys_clk_index();
169 	return &dpll_data->iva[sysclk_ind];
170 }
171 
172 const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
173 {
174 	u32 sysclk_ind = get_sys_clk_index();
175 	return &dpll_data->usb[sysclk_ind];
176 }
177 
178 const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
179 {
180 #ifdef CONFIG_SYS_OMAP_ABE_SYSCK
181 	u32 sysclk_ind = get_sys_clk_index();
182 	return &dpll_data->abe[sysclk_ind];
183 #else
184 	return dpll_data->abe;
185 #endif
186 }
187 
188 static const struct dpll_params *get_ddr_dpll_params
189 			(struct dplls const *dpll_data)
190 {
191 	u32 sysclk_ind = get_sys_clk_index();
192 
193 	if (!dpll_data->ddr)
194 		return NULL;
195 	return &dpll_data->ddr[sysclk_ind];
196 }
197 
198 #ifdef CONFIG_DRIVER_TI_CPSW
199 static const struct dpll_params *get_gmac_dpll_params
200 			(struct dplls const *dpll_data)
201 {
202 	u32 sysclk_ind = get_sys_clk_index();
203 
204 	if (!dpll_data->gmac)
205 		return NULL;
206 	return &dpll_data->gmac[sysclk_ind];
207 }
208 #endif
209 
210 static void do_setup_dpll(u32 const base, const struct dpll_params *params,
211 				u8 lock, char *dpll)
212 {
213 	u32 temp, M, N;
214 	struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
215 
216 	if (!params)
217 		return;
218 
219 	temp = readl(&dpll_regs->cm_clksel_dpll);
220 
221 	if (check_for_lock(base)) {
222 		/*
223 		 * The Dpll has already been locked by rom code using CH.
224 		 * Check if M,N are matching with Ideal nominal opp values.
225 		 * If matches, skip the rest otherwise relock.
226 		 */
227 		M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
228 		N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
229 		if ((M != (params->m)) || (N != (params->n))) {
230 			debug("\n %s Dpll locked, but not for ideal M = %d,"
231 				"N = %d values, current values are M = %d,"
232 				"N= %d" , dpll, params->m, params->n,
233 				M, N);
234 		} else {
235 			/* Dpll locked with ideal values for nominal opps. */
236 			debug("\n %s Dpll already locked with ideal"
237 						"nominal opp values", dpll);
238 
239 			bypass_dpll(base);
240 			goto setup_post_dividers;
241 		}
242 	}
243 
244 	bypass_dpll(base);
245 
246 	/* Set M & N */
247 	temp &= ~CM_CLKSEL_DPLL_M_MASK;
248 	temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
249 
250 	temp &= ~CM_CLKSEL_DPLL_N_MASK;
251 	temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
252 
253 	writel(temp, &dpll_regs->cm_clksel_dpll);
254 
255 setup_post_dividers:
256 	setup_post_dividers(base, params);
257 
258 	/* Lock */
259 	if (lock)
260 		do_lock_dpll(base);
261 
262 	/* Wait till the DPLL locks */
263 	if (lock)
264 		wait_for_lock(base);
265 }
266 
267 u32 omap_ddr_clk(void)
268 {
269 	u32 ddr_clk, sys_clk_khz, omap_rev, divider;
270 	const struct dpll_params *core_dpll_params;
271 
272 	omap_rev = omap_revision();
273 	sys_clk_khz = get_sys_clk_freq() / 1000;
274 
275 	core_dpll_params = get_core_dpll_params(*dplls_data);
276 
277 	debug("sys_clk %d\n ", sys_clk_khz * 1000);
278 
279 	/* Find Core DPLL locked frequency first */
280 	ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
281 			(core_dpll_params->n + 1);
282 
283 	if (omap_rev < OMAP5430_ES1_0) {
284 		/*
285 		 * DDR frequency is PHY_ROOT_CLK/2
286 		 * PHY_ROOT_CLK = Fdpll/2/M2
287 		 */
288 		divider = 4;
289 	} else {
290 		/*
291 		 * DDR frequency is PHY_ROOT_CLK
292 		 * PHY_ROOT_CLK = Fdpll/2/M2
293 		 */
294 		divider = 2;
295 	}
296 
297 	ddr_clk = ddr_clk / divider / core_dpll_params->m2;
298 	ddr_clk *= 1000;	/* convert to Hz */
299 	debug("ddr_clk %d\n ", ddr_clk);
300 
301 	return ddr_clk;
302 }
303 
304 /*
305  * Lock MPU dpll
306  *
307  * Resulting MPU frequencies:
308  * 4430 ES1.0	: 600 MHz
309  * 4430 ES2.x	: 792 MHz (OPP Turbo)
310  * 4460		: 920 MHz (OPP Turbo) - DCC disabled
311  */
312 void configure_mpu_dpll(void)
313 {
314 	const struct dpll_params *params;
315 	struct dpll_regs *mpu_dpll_regs;
316 	u32 omap_rev;
317 	omap_rev = omap_revision();
318 
319 	/*
320 	 * DCC and clock divider settings for 4460.
321 	 * DCC is required, if more than a certain frequency is required.
322 	 * For, 4460 > 1GHZ.
323 	 *     5430 > 1.4GHZ.
324 	 */
325 	if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
326 		mpu_dpll_regs =
327 			(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
328 		bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
329 		clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
330 			MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
331 		setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
332 			MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
333 		clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
334 			CM_CLKSEL_DCC_EN_MASK);
335 	}
336 
337 	params = get_mpu_dpll_params(*dplls_data);
338 
339 	do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
340 	debug("MPU DPLL locked\n");
341 }
342 
343 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
344 	defined(CONFIG_USB_MUSB_OMAP2PLUS)
345 static void setup_usb_dpll(void)
346 {
347 	const struct dpll_params *params;
348 	u32 sys_clk_khz, sd_div, num, den;
349 
350 	sys_clk_khz = get_sys_clk_freq() / 1000;
351 	/*
352 	 * USB:
353 	 * USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
354 	 * DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
355 	 *      - where CLKINP is sys_clk in MHz
356 	 * Use CLKINP in KHz and adjust the denominator accordingly so
357 	 * that we have enough accuracy and at the same time no overflow
358 	 */
359 	params = get_usb_dpll_params(*dplls_data);
360 	num = params->m * sys_clk_khz;
361 	den = (params->n + 1) * 250 * 1000;
362 	num += den - 1;
363 	sd_div = num / den;
364 	clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
365 			CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
366 			sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
367 
368 	/* Now setup the dpll with the regular function */
369 	do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
370 }
371 #endif
372 
373 static void setup_dplls(void)
374 {
375 	u32 temp;
376 	const struct dpll_params *params;
377 	struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
378 
379 	debug("setup_dplls\n");
380 
381 	/* CORE dpll */
382 	params = get_core_dpll_params(*dplls_data);	/* default - safest */
383 	/*
384 	 * Do not lock the core DPLL now. Just set it up.
385 	 * Core DPLL will be locked after setting up EMIF
386 	 * using the FREQ_UPDATE method(freq_update_core())
387 	 */
388 	if (emif_sdram_type(readl(&emif->emif_sdram_config)) ==
389 	    EMIF_SDRAM_TYPE_LPDDR2)
390 		do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
391 							DPLL_NO_LOCK, "core");
392 	else
393 		do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
394 							DPLL_LOCK, "core");
395 	/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
396 	temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
397 	    (CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
398 	    (CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
399 	writel(temp, (*prcm)->cm_clksel_core);
400 	debug("Core DPLL configured\n");
401 
402 	/* lock PER dpll */
403 	params = get_per_dpll_params(*dplls_data);
404 	do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
405 			params, DPLL_LOCK, "per");
406 	debug("PER DPLL locked\n");
407 
408 	/* MPU dpll */
409 	configure_mpu_dpll();
410 
411 #if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP) || \
412 	defined(CONFIG_USB_MUSB_OMAP2PLUS)
413 	setup_usb_dpll();
414 #endif
415 	params = get_ddr_dpll_params(*dplls_data);
416 	do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
417 		      params, DPLL_LOCK, "ddr");
418 
419 #ifdef CONFIG_DRIVER_TI_CPSW
420 	params = get_gmac_dpll_params(*dplls_data);
421 	do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
422 		      DPLL_LOCK, "gmac");
423 #endif
424 }
425 
426 u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
427 {
428 	u32 offset_code;
429 
430 	volt_offset -= pmic->base_offset;
431 
432 	offset_code = (volt_offset + pmic->step - 1) / pmic->step;
433 
434 	/*
435 	 * Offset codes 1-6 all give the base voltage in Palmas
436 	 * Offset code 0 switches OFF the SMPS
437 	 */
438 	return offset_code + pmic->start_code;
439 }
440 
441 void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
442 {
443 	u32 offset_code;
444 	u32 offset = volt_mv;
445 	int ret = 0;
446 
447 	if (!volt_mv)
448 		return;
449 
450 	pmic->pmic_bus_init();
451 	/* See if we can first get the GPIO if needed */
452 	if (pmic->gpio_en)
453 		ret = gpio_request(pmic->gpio, "PMIC_GPIO");
454 
455 	if (ret < 0) {
456 		printf("%s: gpio %d request failed %d\n", __func__,
457 							pmic->gpio, ret);
458 		return;
459 	}
460 
461 	/* Pull the GPIO low to select SET0 register, while we program SET1 */
462 	if (pmic->gpio_en)
463 		gpio_direction_output(pmic->gpio, 0);
464 
465 	/* convert to uV for better accuracy in the calculations */
466 	offset *= 1000;
467 
468 	offset_code = get_offset_code(offset, pmic);
469 
470 	debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
471 		offset_code);
472 
473 	if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
474 		printf("Scaling voltage failed for 0x%x\n", vcore_reg);
475 	if (pmic->gpio_en)
476 		gpio_direction_output(pmic->gpio, 1);
477 }
478 
479 int __weak get_voltrail_opp(int rail_offset)
480 {
481 	/*
482 	 * By default return OPP_NOM for all voltage rails.
483 	 */
484 	return OPP_NOM;
485 }
486 
487 static u32 optimize_vcore_voltage(struct volts const *v, int opp)
488 {
489 	u32 val;
490 
491 	if (!v->value[opp])
492 		return 0;
493 	if (!v->efuse.reg[opp])
494 		return v->value[opp];
495 
496 	switch (v->efuse.reg_bits) {
497 	case 16:
498 		val = readw(v->efuse.reg[opp]);
499 		break;
500 	case 32:
501 		val = readl(v->efuse.reg[opp]);
502 		break;
503 	default:
504 		printf("Error: efuse 0x%08x bits=%d unknown\n",
505 		       v->efuse.reg[opp], v->efuse.reg_bits);
506 		return v->value[opp];
507 	}
508 
509 	if (!val) {
510 		printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
511 		       v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp]);
512 		return v->value[opp];
513 	}
514 
515 	debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
516 	      __func__, v->efuse.reg[opp], v->efuse.reg_bits, v->value[opp],
517 	      val);
518 	return val;
519 }
520 
521 #ifdef CONFIG_IODELAY_RECALIBRATION
522 void __weak recalibrate_iodelay(void)
523 {
524 }
525 #endif
526 
527 /*
528  * Setup the voltages for the main SoC core power domains.
529  * We start with the maximum voltages allowed here, as set in the corresponding
530  * vcores_data struct, and then scale (usually down) to the fused values that
531  * are retrieved from the SoC. The scaling happens only if the efuse.reg fields
532  * are initialised.
533  * Rail grouping is supported for the DRA7xx SoCs only, therefore the code is
534  * compiled conditionally. Note that the new code writes the scaled (or zeroed)
535  * values back to the vcores_data struct for eventual reuse. Zero values mean
536  * that the corresponding rails are not controlled separately, and are not sent
537  * to the PMIC.
538  */
539 void scale_vcores(struct vcores_data const *vcores)
540 {
541 	int i, opp, j, ol;
542 	struct volts *pv = (struct volts *)vcores;
543 	struct volts *px;
544 
545 	for (i=0; i<(sizeof(struct vcores_data)/sizeof(struct volts)); i++) {
546 		opp = get_voltrail_opp(i);
547 		debug("%d -> ", pv->value[opp]);
548 
549 		if (pv->value[opp]) {
550 			/* Handle non-empty members only */
551 			pv->value[opp] = optimize_vcore_voltage(pv, opp);
552      			px = (struct volts *)vcores;
553 			j = 0;
554 			while (px < pv) {
555 				/*
556 				 * Scan already handled non-empty members to see
557 				 * if we have a group and find the max voltage,
558 				 * which is set to the first occurance of the
559 				 * particular SMPS; the other group voltages are
560 				 * zeroed.
561 				 */
562 				ol = get_voltrail_opp(j);
563 				if (px->value[ol] &&
564 				    (pv->pmic->i2c_slave_addr ==
565 				     px->pmic->i2c_slave_addr) &&
566 				    (pv->addr == px->addr)) {
567 					/* Same PMIC, same SMPS */
568 					if (pv->value[opp] > px->value[ol])
569 						px->value[ol] = pv->value[opp];
570 
571 					pv->value[opp] = 0;
572 				}
573 				px++;
574 				j++;
575 			}
576 		}
577 		debug("%d\n", pv->value[opp]);
578 		pv++;
579 	}
580 
581 	opp = get_voltrail_opp(VOLT_CORE);
582 	debug("cor: %d\n", vcores->core.value[opp]);
583 	do_scale_vcore(vcores->core.addr, vcores->core.value[opp],
584 		       vcores->core.pmic);
585 	/*
586 	 * IO delay recalibration should be done immediately after
587 	 * adjusting AVS voltages for VDD_CORE_L.
588 	 * Respective boards should call __recalibrate_iodelay()
589 	 * with proper mux, virtual and manual mode configurations.
590 	 */
591 #ifdef CONFIG_IODELAY_RECALIBRATION
592 	recalibrate_iodelay();
593 #endif
594 
595 	opp = get_voltrail_opp(VOLT_MPU);
596 	debug("mpu: %d\n", vcores->mpu.value[opp]);
597 	do_scale_vcore(vcores->mpu.addr, vcores->mpu.value[opp],
598 		       vcores->mpu.pmic);
599 	/* Configure MPU ABB LDO after scale */
600 	abb_setup(vcores->mpu.efuse.reg[opp],
601 		  (*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
602 		  (*prcm)->prm_abbldo_mpu_setup,
603 		  (*prcm)->prm_abbldo_mpu_ctrl,
604 		  (*prcm)->prm_irqstatus_mpu_2,
605 		  vcores->mpu.abb_tx_done_mask,
606 		  OMAP_ABB_FAST_OPP);
607 
608 	opp = get_voltrail_opp(VOLT_MM);
609 	debug("mm: %d\n", vcores->mm.value[opp]);
610 	do_scale_vcore(vcores->mm.addr, vcores->mm.value[opp],
611 		       vcores->mm.pmic);
612 	/* Configure MM ABB LDO after scale */
613 	abb_setup(vcores->mm.efuse.reg[opp],
614 		  (*ctrl)->control_wkup_ldovbb_mm_voltage_ctrl,
615 		  (*prcm)->prm_abbldo_mm_setup,
616 		  (*prcm)->prm_abbldo_mm_ctrl,
617 		  (*prcm)->prm_irqstatus_mpu,
618 		  vcores->mm.abb_tx_done_mask,
619 		  OMAP_ABB_FAST_OPP);
620 
621 	opp = get_voltrail_opp(VOLT_GPU);
622 	debug("gpu: %d\n", vcores->gpu.value[opp]);
623 	do_scale_vcore(vcores->gpu.addr, vcores->gpu.value[opp],
624 		       vcores->gpu.pmic);
625 	/* Configure GPU ABB LDO after scale */
626 	abb_setup(vcores->gpu.efuse.reg[opp],
627 		  (*ctrl)->control_wkup_ldovbb_gpu_voltage_ctrl,
628 		  (*prcm)->prm_abbldo_gpu_setup,
629 		  (*prcm)->prm_abbldo_gpu_ctrl,
630 		  (*prcm)->prm_irqstatus_mpu,
631 		  vcores->gpu.abb_tx_done_mask,
632 		  OMAP_ABB_FAST_OPP);
633 
634 	opp = get_voltrail_opp(VOLT_EVE);
635 	debug("eve: %d\n", vcores->eve.value[opp]);
636 	do_scale_vcore(vcores->eve.addr, vcores->eve.value[opp],
637 		       vcores->eve.pmic);
638 	/* Configure EVE ABB LDO after scale */
639 	abb_setup(vcores->eve.efuse.reg[opp],
640 		  (*ctrl)->control_wkup_ldovbb_eve_voltage_ctrl,
641 		  (*prcm)->prm_abbldo_eve_setup,
642 		  (*prcm)->prm_abbldo_eve_ctrl,
643 		  (*prcm)->prm_irqstatus_mpu,
644 		  vcores->eve.abb_tx_done_mask,
645 		  OMAP_ABB_FAST_OPP);
646 
647 	opp = get_voltrail_opp(VOLT_IVA);
648 	debug("iva: %d\n", vcores->iva.value[opp]);
649 	do_scale_vcore(vcores->iva.addr, vcores->iva.value[opp],
650 		       vcores->iva.pmic);
651 	/* Configure IVA ABB LDO after scale */
652 	abb_setup(vcores->iva.efuse.reg[opp],
653 		  (*ctrl)->control_wkup_ldovbb_iva_voltage_ctrl,
654 		  (*prcm)->prm_abbldo_iva_setup,
655 		  (*prcm)->prm_abbldo_iva_ctrl,
656 		  (*prcm)->prm_irqstatus_mpu,
657 		  vcores->iva.abb_tx_done_mask,
658 		  OMAP_ABB_FAST_OPP);
659 }
660 
661 static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
662 {
663 	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
664 			enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
665 	debug("Enable clock domain - %x\n", clkctrl_reg);
666 }
667 
668 static inline void disable_clock_domain(u32 const clkctrl_reg)
669 {
670 	clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
671 			CD_CLKCTRL_CLKTRCTRL_SW_SLEEP <<
672 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
673 	debug("Disable clock domain - %x\n", clkctrl_reg);
674 }
675 
676 static inline void wait_for_clk_enable(u32 clkctrl_addr)
677 {
678 	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
679 	u32 bound = LDELAY;
680 
681 	while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
682 		(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
683 
684 		clkctrl = readl(clkctrl_addr);
685 		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
686 			 MODULE_CLKCTRL_IDLEST_SHIFT;
687 		if (--bound == 0) {
688 			printf("Clock enable failed for 0x%x idlest 0x%x\n",
689 				clkctrl_addr, clkctrl);
690 			return;
691 		}
692 	}
693 }
694 
695 static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
696 				u32 wait_for_enable)
697 {
698 	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
699 			enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
700 	debug("Enable clock module - %x\n", clkctrl_addr);
701 	if (wait_for_enable)
702 		wait_for_clk_enable(clkctrl_addr);
703 }
704 
705 static inline void wait_for_clk_disable(u32 clkctrl_addr)
706 {
707 	u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_FULLY_FUNCTIONAL;
708 	u32 bound = LDELAY;
709 
710 	while ((idlest != MODULE_CLKCTRL_IDLEST_DISABLED)) {
711 		clkctrl = readl(clkctrl_addr);
712 		idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
713 			 MODULE_CLKCTRL_IDLEST_SHIFT;
714 		if (--bound == 0) {
715 			printf("Clock disable failed for 0x%x idlest 0x%x\n",
716 			       clkctrl_addr, clkctrl);
717 			return;
718 		}
719 	}
720 }
721 
722 static inline void disable_clock_module(u32 const clkctrl_addr,
723 					u32 wait_for_disable)
724 {
725 	clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
726 			MODULE_CLKCTRL_MODULEMODE_SW_DISABLE <<
727 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
728 	debug("Disable clock module - %x\n", clkctrl_addr);
729 	if (wait_for_disable)
730 		wait_for_clk_disable(clkctrl_addr);
731 }
732 
733 void freq_update_core(void)
734 {
735 	u32 freq_config1 = 0;
736 	const struct dpll_params *core_dpll_params;
737 	u32 omap_rev = omap_revision();
738 
739 	core_dpll_params = get_core_dpll_params(*dplls_data);
740 	/* Put EMIF clock domain in sw wakeup mode */
741 	enable_clock_domain((*prcm)->cm_memif_clkstctrl,
742 				CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
743 	wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
744 	wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
745 
746 	freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
747 	    SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
748 
749 	freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
750 				SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
751 
752 	freq_config1 |= (core_dpll_params->m2 <<
753 			SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
754 			SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
755 
756 	writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
757 	if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
758 			(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
759 		puts("FREQ UPDATE procedure failed!!");
760 		hang();
761 	}
762 
763 	/*
764 	 * Putting EMIF in HW_AUTO is seen to be causing issues with
765 	 * EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
766 	 * in OMAP5430 ES1.0 silicon
767 	 */
768 	if (omap_rev != OMAP5430_ES1_0) {
769 		/* Put EMIF clock domain back in hw auto mode */
770 		enable_clock_domain((*prcm)->cm_memif_clkstctrl,
771 					CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
772 		wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
773 		wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
774 	}
775 }
776 
777 void bypass_dpll(u32 const base)
778 {
779 	do_bypass_dpll(base);
780 	wait_for_bypass(base);
781 }
782 
783 void lock_dpll(u32 const base)
784 {
785 	do_lock_dpll(base);
786 	wait_for_lock(base);
787 }
788 
789 static void setup_clocks_for_console(void)
790 {
791 	/* Do not add any spl_debug prints in this function */
792 	clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
793 			CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
794 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
795 
796 	/* Enable all UARTs - console will be on one of them */
797 	clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
798 			MODULE_CLKCTRL_MODULEMODE_MASK,
799 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
800 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
801 
802 	clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
803 			MODULE_CLKCTRL_MODULEMODE_MASK,
804 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
805 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
806 
807 	clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
808 			MODULE_CLKCTRL_MODULEMODE_MASK,
809 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
810 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
811 
812 	clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
813 			MODULE_CLKCTRL_MODULEMODE_MASK,
814 			MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
815 			MODULE_CLKCTRL_MODULEMODE_SHIFT);
816 
817 	clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
818 			CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
819 			CD_CLKCTRL_CLKTRCTRL_SHIFT);
820 }
821 
822 void do_enable_clocks(u32 const *clk_domains,
823 			    u32 const *clk_modules_hw_auto,
824 			    u32 const *clk_modules_explicit_en,
825 			    u8 wait_for_enable)
826 {
827 	u32 i, max = 100;
828 
829 	/* Put the clock domains in SW_WKUP mode */
830 	for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
831 		enable_clock_domain(clk_domains[i],
832 				    CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
833 	}
834 
835 	/* Clock modules that need to be put in HW_AUTO */
836 	for (i = 0; (i < max) && clk_modules_hw_auto &&
837 		     clk_modules_hw_auto[i]; i++) {
838 		enable_clock_module(clk_modules_hw_auto[i],
839 				    MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
840 				    wait_for_enable);
841 	};
842 
843 	/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
844 	for (i = 0; (i < max) && clk_modules_explicit_en &&
845 		     clk_modules_explicit_en[i]; i++) {
846 		enable_clock_module(clk_modules_explicit_en[i],
847 				    MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
848 				    wait_for_enable);
849 	};
850 
851 	/* Put the clock domains in HW_AUTO mode now */
852 	for (i = 0; (i < max) && clk_domains && clk_domains[i]; i++) {
853 		enable_clock_domain(clk_domains[i],
854 				    CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
855 	}
856 }
857 
858 void do_disable_clocks(u32 const *clk_domains,
859 			    u32 const *clk_modules_disable,
860 			    u8 wait_for_disable)
861 {
862 	u32 i, max = 100;
863 
864 
865 	/* Clock modules that need to be put in SW_DISABLE */
866 	for (i = 0; (i < max) && clk_modules_disable[i]; i++)
867 		disable_clock_module(clk_modules_disable[i],
868 				     wait_for_disable);
869 
870 	/* Put the clock domains in SW_SLEEP mode */
871 	for (i = 0; (i < max) && clk_domains[i]; i++)
872 		disable_clock_domain(clk_domains[i]);
873 }
874 
875 /**
876  * setup_early_clocks() - Setup early clocks needed for SoC
877  *
878  * Setup clocks for console, SPL basic initialization clocks and initialize
879  * the timer. This is invoked prior prcm_init.
880  */
881 void setup_early_clocks(void)
882 {
883 	switch (omap_hw_init_context()) {
884 	case OMAP_INIT_CONTEXT_SPL:
885 	case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
886 	case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
887 		setup_clocks_for_console();
888 		enable_basic_clocks();
889 		timer_init();
890 		/* Fall through */
891 	}
892 }
893 
894 void prcm_init(void)
895 {
896 	switch (omap_hw_init_context()) {
897 	case OMAP_INIT_CONTEXT_SPL:
898 	case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
899 	case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
900 		scale_vcores(*omap_vcores);
901 		setup_dplls();
902 		setup_warmreset_time();
903 		break;
904 	default:
905 		break;
906 	}
907 
908 	if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
909 		enable_basic_uboot_clocks();
910 }
911 
912 #if !defined(CONFIG_DM_I2C)
913 void gpi2c_init(void)
914 {
915 	static int gpi2c = 1;
916 
917 	if (gpi2c) {
918 		i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
919 			 CONFIG_SYS_OMAP24_I2C_SLAVE);
920 		gpi2c = 0;
921 	}
922 }
923 #endif
924