xref: /openbmc/u-boot/arch/arm/mach-mvebu/cpu.c (revision ecab65e4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
4  */
5 
6 #include <common.h>
7 #include <ahci.h>
8 #include <linux/mbus.h>
9 #include <asm/io.h>
10 #include <asm/pl310.h>
11 #include <asm/arch/cpu.h>
12 #include <asm/arch/soc.h>
13 #include <sdhci.h>
14 
15 #define DDR_BASE_CS_OFF(n)	(0x0000 + ((n) << 3))
16 #define DDR_SIZE_CS_OFF(n)	(0x0004 + ((n) << 3))
17 
18 static struct mbus_win windows[] = {
19 	/* SPI */
20 	{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
21 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
22 
23 	/* NOR */
24 	{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
25 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
26 };
27 
28 void lowlevel_init(void)
29 {
30 	/*
31 	 * Dummy implementation, we only need LOWLEVEL_INIT
32 	 * on Armada to configure CP15 in start.S / cpu_init_cp15()
33 	 */
34 }
35 
36 void reset_cpu(unsigned long ignored)
37 {
38 	struct mvebu_system_registers *reg =
39 		(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
40 
41 	writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
42 	writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
43 	while (1)
44 		;
45 }
46 
47 int mvebu_soc_family(void)
48 {
49 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
50 
51 	switch (devid) {
52 	case SOC_MV78230_ID:
53 	case SOC_MV78260_ID:
54 	case SOC_MV78460_ID:
55 		return MVEBU_SOC_AXP;
56 
57 	case SOC_88F6720_ID:
58 		return MVEBU_SOC_A375;
59 
60 	case SOC_88F6810_ID:
61 	case SOC_88F6820_ID:
62 	case SOC_88F6828_ID:
63 		return MVEBU_SOC_A38X;
64 
65 	case SOC_98DX3236_ID:
66 	case SOC_98DX3336_ID:
67 	case SOC_98DX4251_ID:
68 		return MVEBU_SOC_MSYS;
69 	}
70 
71 	return MVEBU_SOC_UNKNOWN;
72 }
73 
74 #if defined(CONFIG_DISPLAY_CPUINFO)
75 
76 #if defined(CONFIG_ARMADA_375)
77 /* SAR frequency values for Armada 375 */
78 static const struct sar_freq_modes sar_freq_tab[] = {
79 	{  0,  0x0,  266,  133,  266 },
80 	{  1,  0x0,  333,  167,  167 },
81 	{  2,  0x0,  333,  167,  222 },
82 	{  3,  0x0,  333,  167,  333 },
83 	{  4,  0x0,  400,  200,  200 },
84 	{  5,  0x0,  400,  200,  267 },
85 	{  6,  0x0,  400,  200,  400 },
86 	{  7,  0x0,  500,  250,  250 },
87 	{  8,  0x0,  500,  250,  334 },
88 	{  9,  0x0,  500,  250,  500 },
89 	{ 10,  0x0,  533,  267,  267 },
90 	{ 11,  0x0,  533,  267,  356 },
91 	{ 12,  0x0,  533,  267,  533 },
92 	{ 13,  0x0,  600,  300,  300 },
93 	{ 14,  0x0,  600,  300,  400 },
94 	{ 15,  0x0,  600,  300,  600 },
95 	{ 16,  0x0,  666,  333,  333 },
96 	{ 17,  0x0,  666,  333,  444 },
97 	{ 18,  0x0,  666,  333,  666 },
98 	{ 19,  0x0,  800,  400,  267 },
99 	{ 20,  0x0,  800,  400,  400 },
100 	{ 21,  0x0,  800,  400,  534 },
101 	{ 22,  0x0,  900,  450,  300 },
102 	{ 23,  0x0,  900,  450,  450 },
103 	{ 24,  0x0,  900,  450,  600 },
104 	{ 25,  0x0, 1000,  500,  500 },
105 	{ 26,  0x0, 1000,  500,  667 },
106 	{ 27,  0x0, 1000,  333,  500 },
107 	{ 28,  0x0,  400,  400,  400 },
108 	{ 29,  0x0, 1100,  550,  550 },
109 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
110 };
111 #elif defined(CONFIG_ARMADA_38X)
112 /* SAR frequency values for Armada 38x */
113 static const struct sar_freq_modes sar_freq_tab[] = {
114 	{  0x0,  0x0,  666,  333, 333 },
115 	{  0x2,  0x0,  800,  400, 400 },
116 	{  0x4,  0x0, 1066,  533, 533 },
117 	{  0x6,  0x0, 1200,  600, 600 },
118 	{  0x8,  0x0, 1332,  666, 666 },
119 	{  0xc,  0x0, 1600,  800, 800 },
120 	{ 0x10,  0x0, 1866,  933, 933 },
121 	{ 0x13,  0x0, 2000, 1000, 933 },
122 	{ 0xff, 0xff,    0,    0,   0 }	/* 0xff marks end of array */
123 };
124 #else
125 /* SAR frequency values for Armada XP */
126 static const struct sar_freq_modes sar_freq_tab[] = {
127 	{  0xa,  0x5,  800, 400, 400 },
128 	{  0x1,  0x5, 1066, 533, 533 },
129 	{  0x2,  0x5, 1200, 600, 600 },
130 	{  0x2,  0x9, 1200, 600, 400 },
131 	{  0x3,  0x5, 1333, 667, 667 },
132 	{  0x4,  0x5, 1500, 750, 750 },
133 	{  0x4,  0x9, 1500, 750, 500 },
134 	{  0xb,  0x9, 1600, 800, 533 },
135 	{  0xb,  0xa, 1600, 800, 640 },
136 	{  0xb,  0x5, 1600, 800, 800 },
137 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
138 };
139 #endif
140 
141 void get_sar_freq(struct sar_freq_modes *sar_freq)
142 {
143 	u32 val;
144 	u32 freq;
145 	int i;
146 
147 #if defined(CONFIG_ARMADA_375)
148 	val = readl(CONFIG_SAR2_REG);	/* SAR - Sample At Reset */
149 #else
150 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
151 #endif
152 	freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
153 #if defined(SAR2_CPU_FREQ_MASK)
154 	/*
155 	 * Shift CPU0 clock frequency select bit from SAR2 register
156 	 * into correct position
157 	 */
158 	freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
159 		 >> SAR2_CPU_FREQ_OFFS) << 3;
160 #endif
161 	for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
162 		if (sar_freq_tab[i].val == freq) {
163 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X)
164 			*sar_freq = sar_freq_tab[i];
165 			return;
166 #else
167 			int k;
168 			u8 ffc;
169 
170 			ffc = (val & SAR_FFC_FREQ_MASK) >>
171 				SAR_FFC_FREQ_OFFS;
172 			for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
173 				if (sar_freq_tab[k].ffc == ffc) {
174 					*sar_freq = sar_freq_tab[k];
175 					return;
176 				}
177 			}
178 			i = k;
179 #endif
180 		}
181 	}
182 
183 	/* SAR value not found, return 0 for frequencies */
184 	*sar_freq = sar_freq_tab[i - 1];
185 }
186 
187 int print_cpuinfo(void)
188 {
189 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
190 	u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
191 	struct sar_freq_modes sar_freq;
192 
193 	puts("SoC:   ");
194 
195 	switch (devid) {
196 	case SOC_MV78230_ID:
197 		puts("MV78230-");
198 		break;
199 	case SOC_MV78260_ID:
200 		puts("MV78260-");
201 		break;
202 	case SOC_MV78460_ID:
203 		puts("MV78460-");
204 		break;
205 	case SOC_88F6720_ID:
206 		puts("MV88F6720-");
207 		break;
208 	case SOC_88F6810_ID:
209 		puts("MV88F6810-");
210 		break;
211 	case SOC_88F6820_ID:
212 		puts("MV88F6820-");
213 		break;
214 	case SOC_88F6828_ID:
215 		puts("MV88F6828-");
216 		break;
217 	case SOC_98DX3236_ID:
218 		puts("98DX3236-");
219 		break;
220 	case SOC_98DX3336_ID:
221 		puts("98DX3336-");
222 		break;
223 	case SOC_98DX4251_ID:
224 		puts("98DX4251-");
225 		break;
226 	default:
227 		puts("Unknown-");
228 		break;
229 	}
230 
231 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
232 		switch (revid) {
233 		case 1:
234 			puts("A0");
235 			break;
236 		case 2:
237 			puts("B0");
238 			break;
239 		default:
240 			printf("?? (%x)", revid);
241 			break;
242 		}
243 	}
244 
245 	if (mvebu_soc_family() == MVEBU_SOC_A375) {
246 		switch (revid) {
247 		case MV_88F67XX_A0_ID:
248 			puts("A0");
249 			break;
250 		default:
251 			printf("?? (%x)", revid);
252 			break;
253 		}
254 	}
255 
256 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
257 		switch (revid) {
258 		case MV_88F68XX_Z1_ID:
259 			puts("Z1");
260 			break;
261 		case MV_88F68XX_A0_ID:
262 			puts("A0");
263 			break;
264 		case MV_88F68XX_B0_ID:
265 			puts("B0");
266 			break;
267 		default:
268 			printf("?? (%x)", revid);
269 			break;
270 		}
271 	}
272 
273 	get_sar_freq(&sar_freq);
274 	printf(" at %d MHz\n", sar_freq.p_clk);
275 
276 	return 0;
277 }
278 #endif /* CONFIG_DISPLAY_CPUINFO */
279 
280 /*
281  * This function initialize Controller DRAM Fastpath windows.
282  * It takes the CS size information from the 0x1500 scratch registers
283  * and sets the correct windows sizes and base addresses accordingly.
284  *
285  * These values are set in the scratch registers by the Marvell
286  * DDR3 training code, which is executed by the SPL before the
287  * main payload (U-Boot) is executed.
288  */
289 static void update_sdram_window_sizes(void)
290 {
291 	u64 base = 0;
292 	u32 size, temp;
293 	int i;
294 
295 	for (i = 0; i < SDRAM_MAX_CS; i++) {
296 		size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
297 		if (size != 0) {
298 			size |= ~(SDRAM_ADDR_MASK);
299 
300 			/* Set Base Address */
301 			temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
302 			writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
303 
304 			/*
305 			 * Check if out of max window size and resize
306 			 * the window
307 			 */
308 			temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
309 				~(SDRAM_ADDR_MASK)) | 1;
310 			temp |= (size & SDRAM_ADDR_MASK);
311 			writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
312 
313 			base += ((u64)size + 1);
314 		} else {
315 			/*
316 			 * Disable window if not used, otherwise this
317 			 * leads to overlapping enabled windows with
318 			 * pretty strange results
319 			 */
320 			clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
321 		}
322 	}
323 }
324 
325 void mmu_disable(void)
326 {
327 	asm volatile(
328 		"mrc p15, 0, r0, c1, c0, 0\n"
329 		"bic r0, #1\n"
330 		"mcr p15, 0, r0, c1, c0, 0\n");
331 }
332 
333 #ifdef CONFIG_ARCH_CPU_INIT
334 static void set_cbar(u32 addr)
335 {
336 	asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
337 }
338 
339 #define MV_USB_PHY_BASE			(MVEBU_AXP_USB_BASE + 0x800)
340 #define MV_USB_PHY_PLL_REG(reg)		(MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
341 #define MV_USB_X3_BASE(addr)		(MVEBU_AXP_USB_BASE | BIT(11) | \
342 					 (((addr) & 0xF) << 6))
343 #define MV_USB_X3_PHY_CHANNEL(dev, reg)	(MV_USB_X3_BASE((dev) + 1) |	\
344 					 (((reg) & 0xF) << 2))
345 
346 static void setup_usb_phys(void)
347 {
348 	int dev;
349 
350 	/*
351 	 * USB PLL init
352 	 */
353 
354 	/* Setup PLL frequency */
355 	/* USB REF frequency = 25 MHz */
356 	clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
357 
358 	/* Power up PLL and PHY channel */
359 	setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
360 
361 	/* Assert VCOCAL_START */
362 	setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
363 
364 	mdelay(1);
365 
366 	/*
367 	 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
368 	 */
369 
370 	for (dev = 0; dev < 3; dev++) {
371 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
372 
373 		/* Assert REG_RCAL_START in channel REG 1 */
374 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
375 		udelay(40);
376 		clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
377 	}
378 }
379 
380 /*
381  * This function is not called from the SPL U-Boot version
382  */
383 int arch_cpu_init(void)
384 {
385 	struct pl310_regs *const pl310 =
386 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
387 
388 	/*
389 	 * Only with disabled MMU its possible to switch the base
390 	 * register address on Armada 38x. Without this the SDRAM
391 	 * located at >= 0x4000.0000 is also not accessible, as its
392 	 * still locked to cache.
393 	 */
394 	mmu_disable();
395 
396 	/* Linux expects the internal registers to be at 0xf1000000 */
397 	writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
398 	set_cbar(SOC_REGS_PHY_BASE + 0xC000);
399 
400 	/*
401 	 * From this stage on, the SoC detection is working. As we have
402 	 * configured the internal register base to the value used
403 	 * in the macros / defines in the U-Boot header (soc.h).
404 	 */
405 
406 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
407 		/*
408 		 * To fully release / unlock this area from cache, we need
409 		 * to flush all caches and disable the L2 cache.
410 		 */
411 		icache_disable();
412 		dcache_disable();
413 		clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
414 	}
415 
416 	/*
417 	 * We need to call mvebu_mbus_probe() before calling
418 	 * update_sdram_window_sizes() as it disables all previously
419 	 * configured mbus windows and then configures them as
420 	 * required for U-Boot. Calling update_sdram_window_sizes()
421 	 * without this configuration will not work, as the internal
422 	 * registers can't be accessed reliably because of potenial
423 	 * double mapping.
424 	 * After updating the SDRAM access windows we need to call
425 	 * mvebu_mbus_probe() again, as this now correctly configures
426 	 * the SDRAM areas that are later used by the MVEBU drivers
427 	 * (e.g. USB, NETA).
428 	 */
429 
430 	/*
431 	 * First disable all windows
432 	 */
433 	mvebu_mbus_probe(NULL, 0);
434 
435 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
436 		/*
437 		 * Now the SDRAM access windows can be reconfigured using
438 		 * the information in the SDRAM scratch pad registers
439 		 */
440 		update_sdram_window_sizes();
441 	}
442 
443 	/*
444 	 * Finally the mbus windows can be configured with the
445 	 * updated SDRAM sizes
446 	 */
447 	mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
448 
449 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
450 		/* Enable GBE0, GBE1, LCD and NFC PUP */
451 		clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
452 				GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
453 				NAND_PUP_EN | SPI_PUP_EN);
454 
455 		/* Configure USB PLL and PHYs on AXP */
456 		setup_usb_phys();
457 	}
458 
459 	/* Enable NAND and NAND arbiter */
460 	clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
461 
462 	/* Disable MBUS error propagation */
463 	clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
464 
465 	return 0;
466 }
467 #endif /* CONFIG_ARCH_CPU_INIT */
468 
469 u32 mvebu_get_nand_clock(void)
470 {
471 	u32 reg;
472 
473 	if (mvebu_soc_family() == MVEBU_SOC_A38X)
474 		reg = MVEBU_DFX_DIV_CLK_CTRL(1);
475 	else
476 		reg = MVEBU_CORE_DIV_CLK_CTRL(1);
477 
478 	return CONFIG_SYS_MVEBU_PLL_CLOCK /
479 		((readl(reg) &
480 		  NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
481 }
482 
483 /*
484  * SOC specific misc init
485  */
486 #if defined(CONFIG_ARCH_MISC_INIT)
487 int arch_misc_init(void)
488 {
489 	/* Nothing yet, perhaps we need something here later */
490 	return 0;
491 }
492 #endif /* CONFIG_ARCH_MISC_INIT */
493 
494 #ifdef CONFIG_MMC_SDHCI_MV
495 int board_mmc_init(bd_t *bis)
496 {
497 	mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
498 		    SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
499 
500 	return 0;
501 }
502 #endif
503 
504 #ifdef CONFIG_SCSI_AHCI_PLAT
505 #define AHCI_VENDOR_SPECIFIC_0_ADDR	0xa0
506 #define AHCI_VENDOR_SPECIFIC_0_DATA	0xa4
507 
508 #define AHCI_WINDOW_CTRL(win)		(0x60 + ((win) << 4))
509 #define AHCI_WINDOW_BASE(win)		(0x64 + ((win) << 4))
510 #define AHCI_WINDOW_SIZE(win)		(0x68 + ((win) << 4))
511 
512 static void ahci_mvebu_mbus_config(void __iomem *base)
513 {
514 	const struct mbus_dram_target_info *dram;
515 	int i;
516 
517 	dram = mvebu_mbus_dram_info();
518 
519 	for (i = 0; i < 4; i++) {
520 		writel(0, base + AHCI_WINDOW_CTRL(i));
521 		writel(0, base + AHCI_WINDOW_BASE(i));
522 		writel(0, base + AHCI_WINDOW_SIZE(i));
523 	}
524 
525 	for (i = 0; i < dram->num_cs; i++) {
526 		const struct mbus_dram_window *cs = dram->cs + i;
527 
528 		writel((cs->mbus_attr << 8) |
529 		       (dram->mbus_dram_target_id << 4) | 1,
530 		       base + AHCI_WINDOW_CTRL(i));
531 		writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
532 		writel(((cs->size - 1) & 0xffff0000),
533 		       base + AHCI_WINDOW_SIZE(i));
534 	}
535 }
536 
537 static void ahci_mvebu_regret_option(void __iomem *base)
538 {
539 	/*
540 	 * Enable the regret bit to allow the SATA unit to regret a
541 	 * request that didn't receive an acknowlegde and avoid a
542 	 * deadlock
543 	 */
544 	writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
545 	writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
546 }
547 
548 void scsi_init(void)
549 {
550 	printf("MVEBU SATA INIT\n");
551 	ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
552 	ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
553 	ahci_init((void __iomem *)MVEBU_SATA0_BASE);
554 }
555 #endif
556 
557 #ifdef CONFIG_USB_XHCI_MVEBU
558 #define USB3_MAX_WINDOWS        4
559 #define USB3_WIN_CTRL(w)        (0x0 + ((w) * 8))
560 #define USB3_WIN_BASE(w)        (0x4 + ((w) * 8))
561 
562 static void xhci_mvebu_mbus_config(void __iomem *base,
563 			const struct mbus_dram_target_info *dram)
564 {
565 	int i;
566 
567 	for (i = 0; i < USB3_MAX_WINDOWS; i++) {
568 		writel(0, base + USB3_WIN_CTRL(i));
569 		writel(0, base + USB3_WIN_BASE(i));
570 	}
571 
572 	for (i = 0; i < dram->num_cs; i++) {
573 		const struct mbus_dram_window *cs = dram->cs + i;
574 
575 		/* Write size, attributes and target id to control register */
576 		writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
577 			(dram->mbus_dram_target_id << 4) | 1,
578 			base + USB3_WIN_CTRL(i));
579 
580 		/* Write base address to base register */
581 		writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
582 	}
583 }
584 
585 int board_xhci_enable(fdt_addr_t base)
586 {
587 	const struct mbus_dram_target_info *dram;
588 
589 	printf("MVEBU XHCI INIT controller @ 0x%lx\n", base);
590 
591 	dram = mvebu_mbus_dram_info();
592 	xhci_mvebu_mbus_config((void __iomem *)base, dram);
593 
594 	return 0;
595 }
596 #endif
597 
598 void enable_caches(void)
599 {
600 	/* Avoid problem with e.g. neta ethernet driver */
601 	invalidate_dcache_all();
602 
603 	/*
604 	 * Armada 375 still has some problems with d-cache enabled in the
605 	 * ethernet driver (mvpp2). So lets keep the d-cache disabled
606 	 * until this is solved.
607 	 */
608 	if (mvebu_soc_family() != MVEBU_SOC_A375) {
609 		/* Enable D-cache. I-cache is already enabled in start.S */
610 		dcache_enable();
611 	}
612 }
613 
614 void v7_outer_cache_enable(void)
615 {
616 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
617 		struct pl310_regs *const pl310 =
618 			(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
619 		u32 u;
620 
621 		/* The L2 cache is already disabled at this point */
622 
623 		/*
624 		 * For Aurora cache in no outer mode, enable via the CP15
625 		 * coprocessor broadcasting of cache commands to L2.
626 		 */
627 		asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
628 		u |= BIT(8);		/* Set the FW bit */
629 		asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
630 
631 		isb();
632 
633 		/* Enable the L2 cache */
634 		setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
635 	}
636 }
637 
638 void v7_outer_cache_disable(void)
639 {
640 	struct pl310_regs *const pl310 =
641 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
642 
643 	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
644 }
645