xref: /openbmc/u-boot/arch/arm/mach-mvebu/cpu.c (revision 2290fe06)
1 /*
2  * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <ahci.h>
9 #include <linux/mbus.h>
10 #include <asm/io.h>
11 #include <asm/pl310.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/soc.h>
14 #include <sdhci.h>
15 
16 #define DDR_BASE_CS_OFF(n)	(0x0000 + ((n) << 3))
17 #define DDR_SIZE_CS_OFF(n)	(0x0004 + ((n) << 3))
18 
19 static struct mbus_win windows[] = {
20 	/* SPI */
21 	{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
22 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
23 
24 	/* NOR */
25 	{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
26 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
27 };
28 
29 void lowlevel_init(void)
30 {
31 	/*
32 	 * Dummy implementation, we only need LOWLEVEL_INIT
33 	 * on Armada to configure CP15 in start.S / cpu_init_cp15()
34 	 */
35 }
36 
37 void reset_cpu(unsigned long ignored)
38 {
39 	struct mvebu_system_registers *reg =
40 		(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
41 
42 	writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
43 	writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
44 	while (1)
45 		;
46 }
47 
48 int mvebu_soc_family(void)
49 {
50 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
51 
52 	switch (devid) {
53 	case SOC_MV78230_ID:
54 	case SOC_MV78260_ID:
55 	case SOC_MV78460_ID:
56 		return MVEBU_SOC_AXP;
57 
58 	case SOC_88F6720_ID:
59 		return MVEBU_SOC_A375;
60 
61 	case SOC_88F6810_ID:
62 	case SOC_88F6820_ID:
63 	case SOC_88F6828_ID:
64 		return MVEBU_SOC_A38X;
65 	}
66 
67 	return MVEBU_SOC_UNKNOWN;
68 }
69 
70 #if defined(CONFIG_DISPLAY_CPUINFO)
71 
72 #if defined(CONFIG_ARMADA_375)
73 /* SAR frequency values for Armada 375 */
74 static const struct sar_freq_modes sar_freq_tab[] = {
75 	{  0,  0x0,  266,  133,  266 },
76 	{  1,  0x0,  333,  167,  167 },
77 	{  2,  0x0,  333,  167,  222 },
78 	{  3,  0x0,  333,  167,  333 },
79 	{  4,  0x0,  400,  200,  200 },
80 	{  5,  0x0,  400,  200,  267 },
81 	{  6,  0x0,  400,  200,  400 },
82 	{  7,  0x0,  500,  250,  250 },
83 	{  8,  0x0,  500,  250,  334 },
84 	{  9,  0x0,  500,  250,  500 },
85 	{ 10,  0x0,  533,  267,  267 },
86 	{ 11,  0x0,  533,  267,  356 },
87 	{ 12,  0x0,  533,  267,  533 },
88 	{ 13,  0x0,  600,  300,  300 },
89 	{ 14,  0x0,  600,  300,  400 },
90 	{ 15,  0x0,  600,  300,  600 },
91 	{ 16,  0x0,  666,  333,  333 },
92 	{ 17,  0x0,  666,  333,  444 },
93 	{ 18,  0x0,  666,  333,  666 },
94 	{ 19,  0x0,  800,  400,  267 },
95 	{ 20,  0x0,  800,  400,  400 },
96 	{ 21,  0x0,  800,  400,  534 },
97 	{ 22,  0x0,  900,  450,  300 },
98 	{ 23,  0x0,  900,  450,  450 },
99 	{ 24,  0x0,  900,  450,  600 },
100 	{ 25,  0x0, 1000,  500,  500 },
101 	{ 26,  0x0, 1000,  500,  667 },
102 	{ 27,  0x0, 1000,  333,  500 },
103 	{ 28,  0x0,  400,  400,  400 },
104 	{ 29,  0x0, 1100,  550,  550 },
105 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
106 };
107 #elif defined(CONFIG_ARMADA_38X)
108 /* SAR frequency values for Armada 38x */
109 static const struct sar_freq_modes sar_freq_tab[] = {
110 	{  0x0,  0x0,  666, 333, 333 },
111 	{  0x2,  0x0,  800, 400, 400 },
112 	{  0x4,  0x0, 1066, 533, 533 },
113 	{  0x6,  0x0, 1200, 600, 600 },
114 	{  0x8,  0x0, 1332, 666, 666 },
115 	{  0xc,  0x0, 1600, 800, 800 },
116 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
117 };
118 #else
119 /* SAR frequency values for Armada XP */
120 static const struct sar_freq_modes sar_freq_tab[] = {
121 	{  0xa,  0x5,  800, 400, 400 },
122 	{  0x1,  0x5, 1066, 533, 533 },
123 	{  0x2,  0x5, 1200, 600, 600 },
124 	{  0x2,  0x9, 1200, 600, 400 },
125 	{  0x3,  0x5, 1333, 667, 667 },
126 	{  0x4,  0x5, 1500, 750, 750 },
127 	{  0x4,  0x9, 1500, 750, 500 },
128 	{  0xb,  0x9, 1600, 800, 533 },
129 	{  0xb,  0xa, 1600, 800, 640 },
130 	{  0xb,  0x5, 1600, 800, 800 },
131 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
132 };
133 #endif
134 
135 void get_sar_freq(struct sar_freq_modes *sar_freq)
136 {
137 	u32 val;
138 	u32 freq;
139 	int i;
140 
141 #if defined(CONFIG_ARMADA_375)
142 	val = readl(CONFIG_SAR2_REG);	/* SAR - Sample At Reset */
143 #else
144 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
145 #endif
146 	freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
147 #if defined(SAR2_CPU_FREQ_MASK)
148 	/*
149 	 * Shift CPU0 clock frequency select bit from SAR2 register
150 	 * into correct position
151 	 */
152 	freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
153 		 >> SAR2_CPU_FREQ_OFFS) << 3;
154 #endif
155 	for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
156 		if (sar_freq_tab[i].val == freq) {
157 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X)
158 			*sar_freq = sar_freq_tab[i];
159 			return;
160 #else
161 			int k;
162 			u8 ffc;
163 
164 			ffc = (val & SAR_FFC_FREQ_MASK) >>
165 				SAR_FFC_FREQ_OFFS;
166 			for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
167 				if (sar_freq_tab[k].ffc == ffc) {
168 					*sar_freq = sar_freq_tab[k];
169 					return;
170 				}
171 			}
172 			i = k;
173 #endif
174 		}
175 	}
176 
177 	/* SAR value not found, return 0 for frequencies */
178 	*sar_freq = sar_freq_tab[i - 1];
179 }
180 
181 int print_cpuinfo(void)
182 {
183 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
184 	u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
185 	struct sar_freq_modes sar_freq;
186 
187 	puts("SoC:   ");
188 
189 	switch (devid) {
190 	case SOC_MV78230_ID:
191 		puts("MV78230-");
192 		break;
193 	case SOC_MV78260_ID:
194 		puts("MV78260-");
195 		break;
196 	case SOC_MV78460_ID:
197 		puts("MV78460-");
198 		break;
199 	case SOC_88F6720_ID:
200 		puts("MV88F6720-");
201 		break;
202 	case SOC_88F6810_ID:
203 		puts("MV88F6810-");
204 		break;
205 	case SOC_88F6820_ID:
206 		puts("MV88F6820-");
207 		break;
208 	case SOC_88F6828_ID:
209 		puts("MV88F6828-");
210 		break;
211 	default:
212 		puts("Unknown-");
213 		break;
214 	}
215 
216 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
217 		switch (revid) {
218 		case 1:
219 			puts("A0");
220 			break;
221 		case 2:
222 			puts("B0");
223 			break;
224 		default:
225 			printf("?? (%x)", revid);
226 			break;
227 		}
228 	}
229 
230 	if (mvebu_soc_family() == MVEBU_SOC_A375) {
231 		switch (revid) {
232 		case MV_88F67XX_A0_ID:
233 			puts("A0");
234 			break;
235 		default:
236 			printf("?? (%x)", revid);
237 			break;
238 		}
239 	}
240 
241 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
242 		switch (revid) {
243 		case MV_88F68XX_Z1_ID:
244 			puts("Z1");
245 			break;
246 		case MV_88F68XX_A0_ID:
247 			puts("A0");
248 			break;
249 		default:
250 			printf("?? (%x)", revid);
251 			break;
252 		}
253 	}
254 
255 	get_sar_freq(&sar_freq);
256 	printf(" at %d MHz\n", sar_freq.p_clk);
257 
258 	return 0;
259 }
260 #endif /* CONFIG_DISPLAY_CPUINFO */
261 
262 /*
263  * This function initialize Controller DRAM Fastpath windows.
264  * It takes the CS size information from the 0x1500 scratch registers
265  * and sets the correct windows sizes and base addresses accordingly.
266  *
267  * These values are set in the scratch registers by the Marvell
268  * DDR3 training code, which is executed by the BootROM before the
269  * main payload (U-Boot) is executed. This training code is currently
270  * only available in the Marvell U-Boot version. It needs to be
271  * ported to mainline U-Boot SPL at some point.
272  */
273 static void update_sdram_window_sizes(void)
274 {
275 	u64 base = 0;
276 	u32 size, temp;
277 	int i;
278 
279 	for (i = 0; i < SDRAM_MAX_CS; i++) {
280 		size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
281 		if (size != 0) {
282 			size |= ~(SDRAM_ADDR_MASK);
283 
284 			/* Set Base Address */
285 			temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
286 			writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
287 
288 			/*
289 			 * Check if out of max window size and resize
290 			 * the window
291 			 */
292 			temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
293 				~(SDRAM_ADDR_MASK)) | 1;
294 			temp |= (size & SDRAM_ADDR_MASK);
295 			writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
296 
297 			base += ((u64)size + 1);
298 		} else {
299 			/*
300 			 * Disable window if not used, otherwise this
301 			 * leads to overlapping enabled windows with
302 			 * pretty strange results
303 			 */
304 			clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
305 		}
306 	}
307 }
308 
309 void mmu_disable(void)
310 {
311 	asm volatile(
312 		"mrc p15, 0, r0, c1, c0, 0\n"
313 		"bic r0, #1\n"
314 		"mcr p15, 0, r0, c1, c0, 0\n");
315 }
316 
317 #ifdef CONFIG_ARCH_CPU_INIT
318 static void set_cbar(u32 addr)
319 {
320 	asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
321 }
322 
323 #define MV_USB_PHY_BASE			(MVEBU_AXP_USB_BASE + 0x800)
324 #define MV_USB_PHY_PLL_REG(reg)		(MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
325 #define MV_USB_X3_BASE(addr)		(MVEBU_AXP_USB_BASE | BIT(11) | \
326 					 (((addr) & 0xF) << 6))
327 #define MV_USB_X3_PHY_CHANNEL(dev, reg)	(MV_USB_X3_BASE((dev) + 1) |	\
328 					 (((reg) & 0xF) << 2))
329 
330 static void setup_usb_phys(void)
331 {
332 	int dev;
333 
334 	/*
335 	 * USB PLL init
336 	 */
337 
338 	/* Setup PLL frequency */
339 	/* USB REF frequency = 25 MHz */
340 	clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
341 
342 	/* Power up PLL and PHY channel */
343 	setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
344 
345 	/* Assert VCOCAL_START */
346 	setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
347 
348 	mdelay(1);
349 
350 	/*
351 	 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
352 	 */
353 
354 	for (dev = 0; dev < 3; dev++) {
355 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
356 
357 		/* Assert REG_RCAL_START in channel REG 1 */
358 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
359 		udelay(40);
360 		clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
361 	}
362 }
363 
364 /*
365  * This function is not called from the SPL U-Boot version
366  */
367 int arch_cpu_init(void)
368 {
369 	struct pl310_regs *const pl310 =
370 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
371 
372 	/*
373 	 * Only with disabled MMU its possible to switch the base
374 	 * register address on Armada 38x. Without this the SDRAM
375 	 * located at >= 0x4000.0000 is also not accessible, as its
376 	 * still locked to cache.
377 	 */
378 	mmu_disable();
379 
380 	/* Linux expects the internal registers to be at 0xf1000000 */
381 	writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
382 	set_cbar(SOC_REGS_PHY_BASE + 0xC000);
383 
384 	/*
385 	 * From this stage on, the SoC detection is working. As we have
386 	 * configured the internal register base to the value used
387 	 * in the macros / defines in the U-Boot header (soc.h).
388 	 */
389 
390 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
391 		/*
392 		 * To fully release / unlock this area from cache, we need
393 		 * to flush all caches and disable the L2 cache.
394 		 */
395 		icache_disable();
396 		dcache_disable();
397 		clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
398 	}
399 
400 	/*
401 	 * We need to call mvebu_mbus_probe() before calling
402 	 * update_sdram_window_sizes() as it disables all previously
403 	 * configured mbus windows and then configures them as
404 	 * required for U-Boot. Calling update_sdram_window_sizes()
405 	 * without this configuration will not work, as the internal
406 	 * registers can't be accessed reliably because of potenial
407 	 * double mapping.
408 	 * After updating the SDRAM access windows we need to call
409 	 * mvebu_mbus_probe() again, as this now correctly configures
410 	 * the SDRAM areas that are later used by the MVEBU drivers
411 	 * (e.g. USB, NETA).
412 	 */
413 
414 	/*
415 	 * First disable all windows
416 	 */
417 	mvebu_mbus_probe(NULL, 0);
418 
419 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
420 		/*
421 		 * Now the SDRAM access windows can be reconfigured using
422 		 * the information in the SDRAM scratch pad registers
423 		 */
424 		update_sdram_window_sizes();
425 	}
426 
427 	/*
428 	 * Finally the mbus windows can be configured with the
429 	 * updated SDRAM sizes
430 	 */
431 	mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
432 
433 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
434 		/* Enable GBE0, GBE1, LCD and NFC PUP */
435 		clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
436 				GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
437 				NAND_PUP_EN | SPI_PUP_EN);
438 
439 		/* Configure USB PLL and PHYs on AXP */
440 		setup_usb_phys();
441 	}
442 
443 	/* Enable NAND and NAND arbiter */
444 	clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
445 
446 	/* Disable MBUS error propagation */
447 	clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
448 
449 	return 0;
450 }
451 #endif /* CONFIG_ARCH_CPU_INIT */
452 
453 u32 mvebu_get_nand_clock(void)
454 {
455 	return CONFIG_SYS_MVEBU_PLL_CLOCK /
456 		((readl(MVEBU_CORE_DIV_CLK_CTRL(1)) &
457 		  NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
458 }
459 
460 /*
461  * SOC specific misc init
462  */
463 #if defined(CONFIG_ARCH_MISC_INIT)
464 int arch_misc_init(void)
465 {
466 	/* Nothing yet, perhaps we need something here later */
467 	return 0;
468 }
469 #endif /* CONFIG_ARCH_MISC_INIT */
470 
471 #ifdef CONFIG_MV_SDHCI
472 int board_mmc_init(bd_t *bis)
473 {
474 	mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
475 		    SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
476 
477 	return 0;
478 }
479 #endif
480 
481 #ifdef CONFIG_SCSI_AHCI_PLAT
482 #define AHCI_VENDOR_SPECIFIC_0_ADDR	0xa0
483 #define AHCI_VENDOR_SPECIFIC_0_DATA	0xa4
484 
485 #define AHCI_WINDOW_CTRL(win)		(0x60 + ((win) << 4))
486 #define AHCI_WINDOW_BASE(win)		(0x64 + ((win) << 4))
487 #define AHCI_WINDOW_SIZE(win)		(0x68 + ((win) << 4))
488 
489 static void ahci_mvebu_mbus_config(void __iomem *base)
490 {
491 	const struct mbus_dram_target_info *dram;
492 	int i;
493 
494 	dram = mvebu_mbus_dram_info();
495 
496 	for (i = 0; i < 4; i++) {
497 		writel(0, base + AHCI_WINDOW_CTRL(i));
498 		writel(0, base + AHCI_WINDOW_BASE(i));
499 		writel(0, base + AHCI_WINDOW_SIZE(i));
500 	}
501 
502 	for (i = 0; i < dram->num_cs; i++) {
503 		const struct mbus_dram_window *cs = dram->cs + i;
504 
505 		writel((cs->mbus_attr << 8) |
506 		       (dram->mbus_dram_target_id << 4) | 1,
507 		       base + AHCI_WINDOW_CTRL(i));
508 		writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
509 		writel(((cs->size - 1) & 0xffff0000),
510 		       base + AHCI_WINDOW_SIZE(i));
511 	}
512 }
513 
514 static void ahci_mvebu_regret_option(void __iomem *base)
515 {
516 	/*
517 	 * Enable the regret bit to allow the SATA unit to regret a
518 	 * request that didn't receive an acknowlegde and avoid a
519 	 * deadlock
520 	 */
521 	writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
522 	writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
523 }
524 
525 void scsi_init(void)
526 {
527 	printf("MVEBU SATA INIT\n");
528 	ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
529 	ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
530 	ahci_init((void __iomem *)MVEBU_SATA0_BASE);
531 }
532 #endif
533 
534 void enable_caches(void)
535 {
536 	/* Avoid problem with e.g. neta ethernet driver */
537 	invalidate_dcache_all();
538 
539 	/*
540 	 * Armada 375 still has some problems with d-cache enabled in the
541 	 * ethernet driver (mvpp2). So lets keep the d-cache disabled
542 	 * until this is solved.
543 	 */
544 	if (mvebu_soc_family() != MVEBU_SOC_A375) {
545 		/* Enable D-cache. I-cache is already enabled in start.S */
546 		dcache_enable();
547 	}
548 }
549 
550 void v7_outer_cache_enable(void)
551 {
552 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
553 		struct pl310_regs *const pl310 =
554 			(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
555 		u32 u;
556 
557 		/* The L2 cache is already disabled at this point */
558 
559 		/*
560 		 * For Aurora cache in no outer mode, enable via the CP15
561 		 * coprocessor broadcasting of cache commands to L2.
562 		 */
563 		asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
564 		u |= BIT(8);		/* Set the FW bit */
565 		asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
566 
567 		isb();
568 
569 		/* Enable the L2 cache */
570 		setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
571 	}
572 }
573 
574 void v7_outer_cache_disable(void)
575 {
576 	struct pl310_regs *const pl310 =
577 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
578 
579 	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
580 }
581