xref: /openbmc/u-boot/arch/arm/mach-keystone/clock.c (revision 83bf0057)
1 /*
2  * Keystone2: pll initialization
3  *
4  * (C) Copyright 2012-2014
5  *     Texas Instruments Incorporated, <www.ti.com>
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/clock_defs.h>
13 
14 /* DEV and ARM speed definitions as specified in DEVSPEED register */
15 int __weak speeds[DEVSPEED_NUMSPDS] = {
16 	SPD1000,
17 	SPD1200,
18 	SPD1350,
19 	SPD1400,
20 	SPD1500,
21 	SPD1400,
22 	SPD1350,
23 	SPD1200,
24 	SPD1000,
25 	SPD800,
26 };
27 
28 const struct keystone_pll_regs keystone_pll_regs[] = {
29 	[CORE_PLL]	= {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
30 	[PASS_PLL]	= {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
31 	[TETRIS_PLL]	= {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
32 	[DDR3A_PLL]	= {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
33 	[DDR3B_PLL]	= {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
34 	[UART_PLL]	= {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
35 };
36 
37 inline void pll_pa_clk_sel(void)
38 {
39 	setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
40 }
41 
42 static void wait_for_completion(const struct pll_init_data *data)
43 {
44 	int i;
45 	for (i = 0; i < 100; i++) {
46 		sdelay(450);
47 		if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
48 			break;
49 	}
50 }
51 
52 static inline void bypass_main_pll(const struct pll_init_data *data)
53 {
54 	pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
55 			   PLLCTL_PLLEN_MASK);
56 
57 	/* 4 cycles of reference clock CLKIN*/
58 	sdelay(340);
59 }
60 
61 static void configure_mult_div(const struct pll_init_data *data)
62 {
63 	u32 pllm, plld, bwadj;
64 
65 	pllm = data->pll_m - 1;
66 	plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
67 
68 	/* Program Multiplier */
69 	if (data->pll == MAIN_PLL)
70 		pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
71 
72 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
73 			CFG_PLLCTL0_PLLM_MASK,
74 			pllm << CFG_PLLCTL0_PLLM_SHIFT);
75 
76 	/* Program BWADJ */
77 	bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
78 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
79 			CFG_PLLCTL0_BWADJ_MASK,
80 			(bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
81 			CFG_PLLCTL0_BWADJ_MASK);
82 	bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
83 	clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
84 			CFG_PLLCTL1_BWADJ_MASK, bwadj);
85 
86 	/* Program Divider */
87 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
88 			CFG_PLLCTL0_PLLD_MASK, plld);
89 }
90 
91 void configure_main_pll(const struct pll_init_data *data)
92 {
93 	u32 tmp, pllod, i, alnctl_val = 0;
94 	u32 *offset;
95 
96 	pllod = data->pll_od - 1;
97 
98 	/* 100 micro sec for stabilization */
99 	sdelay(210000);
100 
101 	tmp = pllctl_reg_read(data->pll, secctl);
102 
103 	/* Check for Bypass */
104 	if (tmp & SECCTL_BYPASS_MASK) {
105 		setbits_le32(keystone_pll_regs[data->pll].reg1,
106 			     CFG_PLLCTL1_ENSAT_MASK);
107 
108 		bypass_main_pll(data);
109 
110 		/* Powerdown and powerup Main Pll */
111 		pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
112 		pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
113 		/* 5 micro sec */
114 		sdelay(21000);
115 
116 		pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
117 	} else {
118 		bypass_main_pll(data);
119 	}
120 
121 	configure_mult_div(data);
122 
123 	/* Program Output Divider */
124 	pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
125 		       ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
126 
127 	/* Program PLLDIVn */
128 	wait_for_completion(data);
129 	for (i = 0; i < PLLDIV_MAX; i++) {
130 		if (i < 3)
131 			offset = pllctl_reg(data->pll, div1) + i;
132 		else
133 			offset = pllctl_reg(data->pll, div4) + (i - 3);
134 
135 		if (divn_val[i] != -1) {
136 			__raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
137 			alnctl_val |= BIT(i);
138 		}
139 	}
140 
141 	if (alnctl_val) {
142 		pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
143 		/*
144 		 * Set GOSET bit in PLLCMD to initiate the GO operation
145 		 * to change the divide
146 		 */
147 		pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
148 		wait_for_completion(data);
149 	}
150 
151 	/* Reset PLL */
152 	pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
153 	sdelay(21000);	/* Wait for a minimum of 7 us*/
154 	pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
155 	sdelay(105000);	/* Wait for PLL Lock time (min 50 us) */
156 
157 	/* Enable PLL */
158 	pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
159 	pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
160 }
161 
162 void configure_secondary_pll(const struct pll_init_data *data)
163 {
164 	int pllod = data->pll_od - 1;
165 
166 	/* Enable Bypass mode */
167 	setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
168 	setbits_le32(keystone_pll_regs[data->pll].reg0,
169 		     CFG_PLLCTL0_BYPASS_MASK);
170 
171 	/* Enable Glitch free bypass for ARM PLL */
172 	if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
173 		clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
174 
175 	configure_mult_div(data);
176 
177 	/* Program Output Divider */
178 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
179 			CFG_PLLCTL0_CLKOD_MASK,
180 			(pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
181 			CFG_PLLCTL0_CLKOD_MASK);
182 
183 	/* Reset PLL */
184 	setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
185 	/* Wait for 5 micro seconds */
186 	sdelay(21000);
187 
188 	/* Select the Output of PASS PLL as input to PASS */
189 	if (data->pll == PASS_PLL && cpu_is_k2hk())
190 		pll_pa_clk_sel();
191 
192 	/* Select the Output of ARM PLL as input to ARM */
193 	if (data->pll == TETRIS_PLL)
194 		setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
195 
196 	clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
197 	/* Wait for 500 * REFCLK cucles * (PLLD + 1) */
198 	sdelay(105000);
199 
200 	/* Switch to PLL mode */
201 	clrbits_le32(keystone_pll_regs[data->pll].reg0,
202 		     CFG_PLLCTL0_BYPASS_MASK);
203 }
204 
205 void init_pll(const struct pll_init_data *data)
206 {
207 	if (data->pll == MAIN_PLL)
208 		configure_main_pll(data);
209 	else
210 		configure_secondary_pll(data);
211 
212 	/*
213 	 * This is required to provide a delay between multiple
214 	 * consequent PPL configurations
215 	 */
216 	sdelay(210000);
217 }
218 
219 void init_plls(void)
220 {
221 	struct pll_init_data *data;
222 	int pll;
223 
224 	for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
225 		data = get_pll_init_data(pll);
226 		if (data)
227 			init_pll(data);
228 	}
229 }
230 
231 static int get_max_speed(u32 val, u32 speed_supported)
232 {
233 	int speed;
234 
235 	/* Left most setbit gives the speed */
236 	for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
237 		if ((val & BIT(speed)) & speed_supported)
238 			return speeds[speed];
239 	}
240 
241 	/* If no bit is set, use SPD800 */
242 	return SPD800;
243 }
244 
245 static inline u32 read_efuse_bootrom(void)
246 {
247 	if (cpu_is_k2hk() && (cpu_revision() <= 1))
248 		return __raw_readl(KS2_REV1_DEVSPEED);
249 	else
250 		return __raw_readl(KS2_EFUSE_BOOTROM);
251 }
252 
253 int get_max_arm_speed(void)
254 {
255 	u32 armspeed = read_efuse_bootrom();
256 
257 	armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
258 		    DEVSPEED_ARMSPEED_SHIFT;
259 
260 	return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS);
261 }
262 
263 int get_max_dev_speed(void)
264 {
265 	u32 devspeed = read_efuse_bootrom();
266 
267 	devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
268 		    DEVSPEED_DEVSPEED_SHIFT;
269 
270 	return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS);
271 }
272 
273 /**
274  * pll_freq_get - get pll frequency
275  * @pll:	pll identifier
276  */
277 static unsigned long pll_freq_get(int pll)
278 {
279 	unsigned long mult = 1, prediv = 1, output_div = 2;
280 	unsigned long ret;
281 	u32 tmp, reg;
282 
283 	if (pll == MAIN_PLL) {
284 		ret = external_clk[sys_clk];
285 		if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
286 			/* PLL mode */
287 			tmp = __raw_readl(KS2_MAINPLLCTL0);
288 			prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
289 			mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
290 				CFG_PLLCTL0_PLLM_SHIFT |
291 				(pllctl_reg_read(pll, mult) &
292 				 PLLM_MULT_LO_MASK)) + 1;
293 			output_div = ((pllctl_reg_read(pll, secctl) &
294 				       SECCTL_OP_DIV_MASK) >>
295 				       SECCTL_OP_DIV_SHIFT) + 1;
296 
297 			ret = ret / prediv / output_div * mult;
298 		}
299 	} else {
300 		switch (pll) {
301 		case PASS_PLL:
302 			ret = external_clk[pa_clk];
303 			reg = KS2_PASSPLLCTL0;
304 			break;
305 		case TETRIS_PLL:
306 			ret = external_clk[tetris_clk];
307 			reg = KS2_ARMPLLCTL0;
308 			break;
309 		case DDR3A_PLL:
310 			ret = external_clk[ddr3a_clk];
311 			reg = KS2_DDR3APLLCTL0;
312 			break;
313 		case DDR3B_PLL:
314 			ret = external_clk[ddr3b_clk];
315 			reg = KS2_DDR3BPLLCTL0;
316 			break;
317 		case UART_PLL:
318 			ret = external_clk[uart_clk];
319 			reg = KS2_UARTPLLCTL0;
320 			break;
321 		default:
322 			return 0;
323 		}
324 
325 		tmp = __raw_readl(reg);
326 
327 		if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
328 			/* Bypass disabled */
329 			prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
330 			mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
331 				CFG_PLLCTL0_PLLM_SHIFT) + 1;
332 			output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
333 				      CFG_PLLCTL0_CLKOD_SHIFT) + 1;
334 			ret = ((ret / prediv) * mult) / output_div;
335 		}
336 	}
337 
338 	return ret;
339 }
340 
341 unsigned long clk_get_rate(unsigned int clk)
342 {
343 	unsigned long freq = 0;
344 
345 	switch (clk) {
346 	case core_pll_clk:
347 		freq = pll_freq_get(CORE_PLL);
348 		break;
349 	case pass_pll_clk:
350 		freq = pll_freq_get(PASS_PLL);
351 		break;
352 	case tetris_pll_clk:
353 		if (!cpu_is_k2e())
354 			freq = pll_freq_get(TETRIS_PLL);
355 		break;
356 	case ddr3a_pll_clk:
357 		freq = pll_freq_get(DDR3A_PLL);
358 		break;
359 	case ddr3b_pll_clk:
360 		if (cpu_is_k2hk())
361 			freq = pll_freq_get(DDR3B_PLL);
362 		break;
363 	case uart_pll_clk:
364 		if (cpu_is_k2g())
365 			freq = pll_freq_get(UART_PLL);
366 		break;
367 	case sys_clk0_1_clk:
368 	case sys_clk0_clk:
369 		freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
370 		break;
371 	case sys_clk1_clk:
372 	return pll_freq_get(CORE_PLL) / pll0div_read(2);
373 		break;
374 	case sys_clk2_clk:
375 		freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
376 		break;
377 	case sys_clk3_clk:
378 		freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
379 		break;
380 	case sys_clk0_2_clk:
381 		freq = clk_get_rate(sys_clk0_clk) / 2;
382 		break;
383 	case sys_clk0_3_clk:
384 		freq = clk_get_rate(sys_clk0_clk) / 3;
385 		break;
386 	case sys_clk0_4_clk:
387 		freq = clk_get_rate(sys_clk0_clk) / 4;
388 		break;
389 	case sys_clk0_6_clk:
390 		freq = clk_get_rate(sys_clk0_clk) / 6;
391 		break;
392 	case sys_clk0_8_clk:
393 		freq = clk_get_rate(sys_clk0_clk) / 8;
394 		break;
395 	case sys_clk0_12_clk:
396 		freq = clk_get_rate(sys_clk0_clk) / 12;
397 		break;
398 	case sys_clk0_24_clk:
399 		freq = clk_get_rate(sys_clk0_clk) / 24;
400 		break;
401 	case sys_clk1_3_clk:
402 		freq = clk_get_rate(sys_clk1_clk) / 3;
403 		break;
404 	case sys_clk1_4_clk:
405 		freq = clk_get_rate(sys_clk1_clk) / 4;
406 		break;
407 	case sys_clk1_6_clk:
408 		freq = clk_get_rate(sys_clk1_clk) / 6;
409 		break;
410 	case sys_clk1_12_clk:
411 		freq = clk_get_rate(sys_clk1_clk) / 12;
412 		break;
413 	default:
414 		break;
415 	}
416 
417 	return freq;
418 }
419