1 /* 2 * Keystone2: pll initialization 3 * 4 * (C) Copyright 2012-2014 5 * Texas Instruments Incorporated, <www.ti.com> 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #include <common.h> 11 #include <asm/arch/clock.h> 12 #include <asm/arch/clock_defs.h> 13 14 /* DEV and ARM speed definitions as specified in DEVSPEED register */ 15 int __weak speeds[DEVSPEED_NUMSPDS] = { 16 SPD1000, 17 SPD1200, 18 SPD1350, 19 SPD1400, 20 SPD1500, 21 SPD1400, 22 SPD1350, 23 SPD1200, 24 SPD1000, 25 SPD800, 26 }; 27 28 const struct keystone_pll_regs keystone_pll_regs[] = { 29 [CORE_PLL] = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1}, 30 [PASS_PLL] = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1}, 31 [TETRIS_PLL] = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1}, 32 [DDR3A_PLL] = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1}, 33 [DDR3B_PLL] = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1}, 34 [UART_PLL] = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1}, 35 }; 36 37 inline void pll_pa_clk_sel(void) 38 { 39 setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK); 40 } 41 42 static void wait_for_completion(const struct pll_init_data *data) 43 { 44 int i; 45 for (i = 0; i < 100; i++) { 46 sdelay(450); 47 if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK)) 48 break; 49 } 50 } 51 52 static inline void bypass_main_pll(const struct pll_init_data *data) 53 { 54 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK | 55 PLLCTL_PLLEN_MASK); 56 57 /* 4 cycles of reference clock CLKIN*/ 58 sdelay(340); 59 } 60 61 static void configure_mult_div(const struct pll_init_data *data) 62 { 63 u32 pllm, plld, bwadj; 64 65 pllm = data->pll_m - 1; 66 plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK; 67 68 /* Program Multiplier */ 69 if (data->pll == MAIN_PLL) 70 pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK); 71 72 clrsetbits_le32(keystone_pll_regs[data->pll].reg0, 73 CFG_PLLCTL0_PLLM_MASK, 74 pllm << CFG_PLLCTL0_PLLM_SHIFT); 75 76 /* Program BWADJ */ 77 bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */ 78 clrsetbits_le32(keystone_pll_regs[data->pll].reg0, 79 CFG_PLLCTL0_BWADJ_MASK, 80 (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) & 81 CFG_PLLCTL0_BWADJ_MASK); 82 bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS; 83 clrsetbits_le32(keystone_pll_regs[data->pll].reg1, 84 CFG_PLLCTL1_BWADJ_MASK, bwadj); 85 86 /* Program Divider */ 87 clrsetbits_le32(keystone_pll_regs[data->pll].reg0, 88 CFG_PLLCTL0_PLLD_MASK, plld); 89 } 90 91 void configure_main_pll(const struct pll_init_data *data) 92 { 93 u32 tmp, pllod, i, alnctl_val = 0; 94 u32 *offset; 95 96 pllod = data->pll_od - 1; 97 98 /* 100 micro sec for stabilization */ 99 sdelay(210000); 100 101 tmp = pllctl_reg_read(data->pll, secctl); 102 103 /* Check for Bypass */ 104 if (tmp & SECCTL_BYPASS_MASK) { 105 setbits_le32(keystone_pll_regs[data->pll].reg1, 106 CFG_PLLCTL1_ENSAT_MASK); 107 108 bypass_main_pll(data); 109 110 /* Powerdown and powerup Main Pll */ 111 pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK); 112 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK); 113 /* 5 micro sec */ 114 sdelay(21000); 115 116 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK); 117 } else { 118 bypass_main_pll(data); 119 } 120 121 configure_mult_div(data); 122 123 /* Program Output Divider */ 124 pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK, 125 ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK)); 126 127 /* Program PLLDIVn */ 128 wait_for_completion(data); 129 for (i = 0; i < PLLDIV_MAX; i++) { 130 if (i < 3) 131 offset = pllctl_reg(data->pll, div1) + i; 132 else 133 offset = pllctl_reg(data->pll, div4) + (i - 3); 134 135 if (divn_val[i] != -1) { 136 __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset); 137 alnctl_val |= BIT(i); 138 } 139 } 140 141 if (alnctl_val) { 142 pllctl_reg_setbits(data->pll, alnctl, alnctl_val); 143 /* 144 * Set GOSET bit in PLLCMD to initiate the GO operation 145 * to change the divide 146 */ 147 pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK); 148 wait_for_completion(data); 149 } 150 151 /* Reset PLL */ 152 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK); 153 sdelay(21000); /* Wait for a minimum of 7 us*/ 154 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK); 155 sdelay(105000); /* Wait for PLL Lock time (min 50 us) */ 156 157 /* Enable PLL */ 158 pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK); 159 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK); 160 } 161 162 void configure_secondary_pll(const struct pll_init_data *data) 163 { 164 int pllod = data->pll_od - 1; 165 166 /* Enable Glitch free bypass for ARM PLL */ 167 if (cpu_is_k2hk() && data->pll == TETRIS_PLL) 168 clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN); 169 170 /* Enable Bypass mode */ 171 setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK); 172 setbits_le32(keystone_pll_regs[data->pll].reg0, 173 CFG_PLLCTL0_BYPASS_MASK); 174 175 configure_mult_div(data); 176 177 /* Program Output Divider */ 178 clrsetbits_le32(keystone_pll_regs[data->pll].reg0, 179 CFG_PLLCTL0_CLKOD_MASK, 180 (pllod << CFG_PLLCTL0_CLKOD_SHIFT) & 181 CFG_PLLCTL0_CLKOD_MASK); 182 183 /* Reset PLL */ 184 setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK); 185 /* Wait for 5 micro seconds */ 186 sdelay(21000); 187 188 /* Select the Output of PASS PLL as input to PASS */ 189 if (data->pll == PASS_PLL && cpu_is_k2hk()) 190 pll_pa_clk_sel(); 191 192 clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK); 193 /* Wait for 500 * REFCLK cucles * (PLLD + 1) */ 194 sdelay(105000); 195 196 /* Switch to PLL mode */ 197 clrbits_le32(keystone_pll_regs[data->pll].reg0, 198 CFG_PLLCTL0_BYPASS_MASK); 199 200 /* Select the Output of ARM PLL as input to ARM */ 201 if (cpu_is_k2hk() && data->pll == TETRIS_PLL) 202 setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN); 203 } 204 205 void init_pll(const struct pll_init_data *data) 206 { 207 if (data->pll == MAIN_PLL) 208 configure_main_pll(data); 209 else 210 configure_secondary_pll(data); 211 212 /* 213 * This is required to provide a delay between multiple 214 * consequent PPL configurations 215 */ 216 sdelay(210000); 217 } 218 219 void init_plls(void) 220 { 221 struct pll_init_data *data; 222 int pll; 223 224 for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) { 225 data = get_pll_init_data(pll); 226 if (data) 227 init_pll(data); 228 } 229 } 230 231 static int get_max_speed(u32 val, u32 speed_supported, int *spds) 232 { 233 int speed; 234 235 /* Left most setbit gives the speed */ 236 for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) { 237 if ((val & BIT(speed)) & speed_supported) 238 return spds[speed]; 239 } 240 241 /* If no bit is set, return minimum speed */ 242 if (cpu_is_k2g()) 243 return SPD200; 244 else 245 return SPD800; 246 } 247 248 static inline u32 read_efuse_bootrom(void) 249 { 250 if (cpu_is_k2hk() && (cpu_revision() <= 1)) 251 return __raw_readl(KS2_REV1_DEVSPEED); 252 else 253 return __raw_readl(KS2_EFUSE_BOOTROM); 254 } 255 256 int get_max_arm_speed(int *spds) 257 { 258 u32 armspeed = read_efuse_bootrom(); 259 260 armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >> 261 DEVSPEED_ARMSPEED_SHIFT; 262 263 return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds); 264 } 265 266 int get_max_dev_speed(int *spds) 267 { 268 u32 devspeed = read_efuse_bootrom(); 269 270 devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >> 271 DEVSPEED_DEVSPEED_SHIFT; 272 273 return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds); 274 } 275 276 /** 277 * pll_freq_get - get pll frequency 278 * @pll: pll identifier 279 */ 280 static unsigned long pll_freq_get(int pll) 281 { 282 unsigned long mult = 1, prediv = 1, output_div = 2; 283 unsigned long ret; 284 u32 tmp, reg; 285 286 if (pll == MAIN_PLL) { 287 ret = get_external_clk(sys_clk); 288 if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) { 289 /* PLL mode */ 290 tmp = __raw_readl(KS2_MAINPLLCTL0); 291 prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1; 292 mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >> 293 CFG_PLLCTL0_PLLM_SHIFT | 294 (pllctl_reg_read(pll, mult) & 295 PLLM_MULT_LO_MASK)) + 1; 296 output_div = ((pllctl_reg_read(pll, secctl) & 297 SECCTL_OP_DIV_MASK) >> 298 SECCTL_OP_DIV_SHIFT) + 1; 299 300 ret = ret / prediv / output_div * mult; 301 } 302 } else { 303 switch (pll) { 304 case PASS_PLL: 305 ret = get_external_clk(pa_clk); 306 reg = KS2_PASSPLLCTL0; 307 break; 308 case TETRIS_PLL: 309 ret = get_external_clk(tetris_clk); 310 reg = KS2_ARMPLLCTL0; 311 break; 312 case DDR3A_PLL: 313 ret = get_external_clk(ddr3a_clk); 314 reg = KS2_DDR3APLLCTL0; 315 break; 316 case DDR3B_PLL: 317 ret = get_external_clk(ddr3b_clk); 318 reg = KS2_DDR3BPLLCTL0; 319 break; 320 case UART_PLL: 321 ret = get_external_clk(uart_clk); 322 reg = KS2_UARTPLLCTL0; 323 break; 324 default: 325 return 0; 326 } 327 328 tmp = __raw_readl(reg); 329 330 if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) { 331 /* Bypass disabled */ 332 prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1; 333 mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >> 334 CFG_PLLCTL0_PLLM_SHIFT) + 1; 335 output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >> 336 CFG_PLLCTL0_CLKOD_SHIFT) + 1; 337 ret = ((ret / prediv) * mult) / output_div; 338 } 339 } 340 341 return ret; 342 } 343 344 unsigned long ks_clk_get_rate(unsigned int clk) 345 { 346 unsigned long freq = 0; 347 348 switch (clk) { 349 case core_pll_clk: 350 freq = pll_freq_get(CORE_PLL); 351 break; 352 case pass_pll_clk: 353 freq = pll_freq_get(PASS_PLL); 354 break; 355 case tetris_pll_clk: 356 if (!cpu_is_k2e()) 357 freq = pll_freq_get(TETRIS_PLL); 358 break; 359 case ddr3a_pll_clk: 360 freq = pll_freq_get(DDR3A_PLL); 361 break; 362 case ddr3b_pll_clk: 363 if (cpu_is_k2hk()) 364 freq = pll_freq_get(DDR3B_PLL); 365 break; 366 case uart_pll_clk: 367 if (cpu_is_k2g()) 368 freq = pll_freq_get(UART_PLL); 369 break; 370 case sys_clk0_1_clk: 371 case sys_clk0_clk: 372 freq = pll_freq_get(CORE_PLL) / pll0div_read(1); 373 break; 374 case sys_clk1_clk: 375 return pll_freq_get(CORE_PLL) / pll0div_read(2); 376 break; 377 case sys_clk2_clk: 378 freq = pll_freq_get(CORE_PLL) / pll0div_read(3); 379 break; 380 case sys_clk3_clk: 381 freq = pll_freq_get(CORE_PLL) / pll0div_read(4); 382 break; 383 case sys_clk0_2_clk: 384 freq = ks_clk_get_rate(sys_clk0_clk) / 2; 385 break; 386 case sys_clk0_3_clk: 387 freq = ks_clk_get_rate(sys_clk0_clk) / 3; 388 break; 389 case sys_clk0_4_clk: 390 freq = ks_clk_get_rate(sys_clk0_clk) / 4; 391 break; 392 case sys_clk0_6_clk: 393 freq = ks_clk_get_rate(sys_clk0_clk) / 6; 394 break; 395 case sys_clk0_8_clk: 396 freq = ks_clk_get_rate(sys_clk0_clk) / 8; 397 break; 398 case sys_clk0_12_clk: 399 freq = ks_clk_get_rate(sys_clk0_clk) / 12; 400 break; 401 case sys_clk0_24_clk: 402 freq = ks_clk_get_rate(sys_clk0_clk) / 24; 403 break; 404 case sys_clk1_3_clk: 405 freq = ks_clk_get_rate(sys_clk1_clk) / 3; 406 break; 407 case sys_clk1_4_clk: 408 freq = ks_clk_get_rate(sys_clk1_clk) / 4; 409 break; 410 case sys_clk1_6_clk: 411 freq = ks_clk_get_rate(sys_clk1_clk) / 6; 412 break; 413 case sys_clk1_12_clk: 414 freq = ks_clk_get_rate(sys_clk1_clk) / 12; 415 break; 416 default: 417 break; 418 } 419 420 return freq; 421 } 422