xref: /openbmc/u-boot/arch/arm/mach-keystone/clock.c (revision 316fd392)
1 /*
2  * Keystone2: pll initialization
3  *
4  * (C) Copyright 2012-2014
5  *     Texas Instruments Incorporated, <www.ti.com>
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/clock_defs.h>
13 
14 /* DEV and ARM speed definitions as specified in DEVSPEED register */
15 int __weak speeds[DEVSPEED_NUMSPDS] = {
16 	SPD1000,
17 	SPD1200,
18 	SPD1350,
19 	SPD1400,
20 	SPD1500,
21 	SPD1400,
22 	SPD1350,
23 	SPD1200,
24 	SPD1000,
25 	SPD800,
26 };
27 
28 const struct keystone_pll_regs keystone_pll_regs[] = {
29 	[CORE_PLL]	= {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
30 	[PASS_PLL]	= {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
31 	[TETRIS_PLL]	= {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
32 	[DDR3A_PLL]	= {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
33 	[DDR3B_PLL]	= {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
34 };
35 
36 static void wait_for_completion(const struct pll_init_data *data)
37 {
38 	int i;
39 	for (i = 0; i < 100; i++) {
40 		sdelay(450);
41 		if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
42 			break;
43 	}
44 }
45 
46 static inline void bypass_main_pll(const struct pll_init_data *data)
47 {
48 	pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
49 			   PLLCTL_PLLEN_MASK);
50 
51 	/* 4 cycles of reference clock CLKIN*/
52 	sdelay(340);
53 }
54 
55 static void configure_mult_div(const struct pll_init_data *data)
56 {
57 	u32 pllm, plld, bwadj;
58 
59 	pllm = data->pll_m - 1;
60 	plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
61 
62 	/* Program Multiplier */
63 	if (data->pll == MAIN_PLL)
64 		pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
65 
66 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
67 			CFG_PLLCTL0_PLLM_MASK,
68 			pllm << CFG_PLLCTL0_PLLM_SHIFT);
69 
70 	/* Program BWADJ */
71 	bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
72 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
73 			CFG_PLLCTL0_BWADJ_MASK,
74 			(bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
75 			CFG_PLLCTL0_BWADJ_MASK);
76 	bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
77 	clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
78 			CFG_PLLCTL1_BWADJ_MASK, bwadj);
79 
80 	/* Program Divider */
81 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
82 			CFG_PLLCTL0_PLLD_MASK, plld);
83 }
84 
85 void configure_main_pll(const struct pll_init_data *data)
86 {
87 	u32 tmp, pllod, i, alnctl_val = 0;
88 	u32 *offset;
89 
90 	pllod = data->pll_od - 1;
91 
92 	/* 100 micro sec for stabilization */
93 	sdelay(210000);
94 
95 	tmp = pllctl_reg_read(data->pll, secctl);
96 
97 	/* Check for Bypass */
98 	if (tmp & SECCTL_BYPASS_MASK) {
99 		setbits_le32(keystone_pll_regs[data->pll].reg1,
100 			     CFG_PLLCTL1_ENSAT_MASK);
101 
102 		bypass_main_pll(data);
103 
104 		/* Powerdown and powerup Main Pll */
105 		pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
106 		pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
107 		/* 5 micro sec */
108 		sdelay(21000);
109 
110 		pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
111 	} else {
112 		bypass_main_pll(data);
113 	}
114 
115 	configure_mult_div(data);
116 
117 	/* Program Output Divider */
118 	pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
119 		       ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
120 
121 	/* Program PLLDIVn */
122 	wait_for_completion(data);
123 	for (i = 0; i < PLLDIV_MAX; i++) {
124 		if (i < 3)
125 			offset = pllctl_reg(data->pll, div1) + i;
126 		else
127 			offset = pllctl_reg(data->pll, div4) + (i - 3);
128 
129 		if (divn_val[i] != -1) {
130 			__raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
131 			alnctl_val |= BIT(i);
132 		}
133 	}
134 
135 	if (alnctl_val) {
136 		pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
137 		/*
138 		 * Set GOSET bit in PLLCMD to initiate the GO operation
139 		 * to change the divide
140 		 */
141 		pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
142 		wait_for_completion(data);
143 	}
144 
145 	/* Reset PLL */
146 	pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
147 	sdelay(21000);	/* Wait for a minimum of 7 us*/
148 	pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
149 	sdelay(105000);	/* Wait for PLL Lock time (min 50 us) */
150 
151 	/* Enable PLL */
152 	pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
153 	pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
154 }
155 
156 void configure_secondary_pll(const struct pll_init_data *data)
157 {
158 	int pllod = data->pll_od - 1;
159 
160 	/* Enable Bypass mode */
161 	setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
162 	setbits_le32(keystone_pll_regs[data->pll].reg0,
163 		     CFG_PLLCTL0_BYPASS_MASK);
164 
165 	/* Enable Glitch free bypass for ARM PLL */
166 	if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
167 		clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
168 
169 	configure_mult_div(data);
170 
171 	/* Program Output Divider */
172 	clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
173 			CFG_PLLCTL0_CLKOD_MASK,
174 			(pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
175 			CFG_PLLCTL0_CLKOD_MASK);
176 
177 	/* Reset PLL */
178 	setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
179 	/* Wait for 5 micro seconds */
180 	sdelay(21000);
181 
182 	/* Select the Output of PASS PLL as input to PASS */
183 	if (data->pll == PASS_PLL)
184 		setbits_le32(keystone_pll_regs[data->pll].reg1,
185 			     CFG_PLLCTL1_PAPLL_MASK);
186 
187 	/* Select the Output of ARM PLL as input to ARM */
188 	if (data->pll == TETRIS_PLL)
189 		setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
190 
191 	clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
192 	/* Wait for 500 * REFCLK cucles * (PLLD + 1) */
193 	sdelay(105000);
194 
195 	/* Switch to PLL mode */
196 	clrbits_le32(keystone_pll_regs[data->pll].reg0,
197 		     CFG_PLLCTL0_BYPASS_MASK);
198 }
199 
200 void init_pll(const struct pll_init_data *data)
201 {
202 	if (data->pll == MAIN_PLL)
203 		configure_main_pll(data);
204 	else
205 		configure_secondary_pll(data);
206 
207 	/*
208 	 * This is required to provide a delay between multiple
209 	 * consequent PPL configurations
210 	 */
211 	sdelay(210000);
212 }
213 
214 void init_plls(void)
215 {
216 	struct pll_init_data *data;
217 	int pll;
218 
219 	for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
220 		data = get_pll_init_data(pll);
221 		if (data)
222 			init_pll(data);
223 	}
224 }
225 
226 static int get_max_speed(u32 val, u32 speed_supported)
227 {
228 	int speed;
229 
230 	/* Left most setbit gives the speed */
231 	for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
232 		if ((val & BIT(speed)) & speed_supported)
233 			return speeds[speed];
234 	}
235 
236 	/* If no bit is set, use SPD800 */
237 	return SPD800;
238 }
239 
240 static inline u32 read_efuse_bootrom(void)
241 {
242 	if (cpu_is_k2hk() && (cpu_revision() <= 1))
243 		return __raw_readl(KS2_REV1_DEVSPEED);
244 	else
245 		return __raw_readl(KS2_EFUSE_BOOTROM);
246 }
247 
248 int get_max_arm_speed(void)
249 {
250 	u32 armspeed = read_efuse_bootrom();
251 
252 	armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
253 		    DEVSPEED_ARMSPEED_SHIFT;
254 
255 	return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS);
256 }
257 
258 int get_max_dev_speed(void)
259 {
260 	u32 devspeed = read_efuse_bootrom();
261 
262 	devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
263 		    DEVSPEED_DEVSPEED_SHIFT;
264 
265 	return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS);
266 }
267 
268 /**
269  * pll_freq_get - get pll frequency
270  * @pll:	pll identifier
271  */
272 static unsigned long pll_freq_get(int pll)
273 {
274 	unsigned long mult = 1, prediv = 1, output_div = 2;
275 	unsigned long ret;
276 	u32 tmp, reg;
277 
278 	if (pll == MAIN_PLL) {
279 		ret = external_clk[sys_clk];
280 		if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
281 			/* PLL mode */
282 			tmp = __raw_readl(KS2_MAINPLLCTL0);
283 			prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
284 			mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
285 				CFG_PLLCTL0_PLLM_SHIFT |
286 				(pllctl_reg_read(pll, mult) &
287 				 PLLM_MULT_LO_MASK)) + 1;
288 			output_div = ((pllctl_reg_read(pll, secctl) &
289 				       SECCTL_OP_DIV_MASK) >>
290 				       SECCTL_OP_DIV_SHIFT) + 1;
291 
292 			ret = ret / prediv / output_div * mult;
293 		}
294 	} else {
295 		switch (pll) {
296 		case PASS_PLL:
297 			ret = external_clk[pa_clk];
298 			reg = KS2_PASSPLLCTL0;
299 			break;
300 		case TETRIS_PLL:
301 			ret = external_clk[tetris_clk];
302 			reg = KS2_ARMPLLCTL0;
303 			break;
304 		case DDR3A_PLL:
305 			ret = external_clk[ddr3a_clk];
306 			reg = KS2_DDR3APLLCTL0;
307 			break;
308 		case DDR3B_PLL:
309 			ret = external_clk[ddr3b_clk];
310 			reg = KS2_DDR3BPLLCTL0;
311 			break;
312 		default:
313 			return 0;
314 		}
315 
316 		tmp = __raw_readl(reg);
317 
318 		if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
319 			/* Bypass disabled */
320 			prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
321 			mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
322 				CFG_PLLCTL0_PLLM_SHIFT) + 1;
323 			output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
324 				      CFG_PLLCTL0_CLKOD_SHIFT) + 1;
325 			ret = ((ret / prediv) * mult) / output_div;
326 		}
327 	}
328 
329 	return ret;
330 }
331 
332 unsigned long clk_get_rate(unsigned int clk)
333 {
334 	unsigned long freq = 0;
335 
336 	switch (clk) {
337 	case core_pll_clk:
338 		freq = pll_freq_get(CORE_PLL);
339 		break;
340 	case pass_pll_clk:
341 		freq = pll_freq_get(PASS_PLL);
342 		break;
343 	case tetris_pll_clk:
344 		if (!cpu_is_k2e())
345 			freq = pll_freq_get(TETRIS_PLL);
346 		break;
347 	case ddr3a_pll_clk:
348 		freq = pll_freq_get(DDR3A_PLL);
349 		break;
350 	case ddr3b_pll_clk:
351 		if (cpu_is_k2hk())
352 			freq = pll_freq_get(DDR3B_PLL);
353 		break;
354 	case sys_clk0_1_clk:
355 	case sys_clk0_clk:
356 		freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
357 		break;
358 	case sys_clk1_clk:
359 	return pll_freq_get(CORE_PLL) / pll0div_read(2);
360 		break;
361 	case sys_clk2_clk:
362 		freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
363 		break;
364 	case sys_clk3_clk:
365 		freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
366 		break;
367 	case sys_clk0_2_clk:
368 		freq = clk_get_rate(sys_clk0_clk) / 2;
369 		break;
370 	case sys_clk0_3_clk:
371 		freq = clk_get_rate(sys_clk0_clk) / 3;
372 		break;
373 	case sys_clk0_4_clk:
374 		freq = clk_get_rate(sys_clk0_clk) / 4;
375 		break;
376 	case sys_clk0_6_clk:
377 		freq = clk_get_rate(sys_clk0_clk) / 6;
378 		break;
379 	case sys_clk0_8_clk:
380 		freq = clk_get_rate(sys_clk0_clk) / 8;
381 		break;
382 	case sys_clk0_12_clk:
383 		freq = clk_get_rate(sys_clk0_clk) / 12;
384 		break;
385 	case sys_clk0_24_clk:
386 		freq = clk_get_rate(sys_clk0_clk) / 24;
387 		break;
388 	case sys_clk1_3_clk:
389 		freq = clk_get_rate(sys_clk1_clk) / 3;
390 		break;
391 	case sys_clk1_4_clk:
392 		freq = clk_get_rate(sys_clk1_clk) / 4;
393 		break;
394 	case sys_clk1_6_clk:
395 		freq = clk_get_rate(sys_clk1_clk) / 6;
396 		break;
397 	case sys_clk1_12_clk:
398 		freq = clk_get_rate(sys_clk1_clk) / 12;
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	return freq;
405 }
406