xref: /openbmc/u-boot/arch/arm/mach-imx/mx7/psci-mx7.c (revision dd1033e4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2016 Freescale Semiconductor, Inc.
4  * Copyright 2017 NXP
5  */
6 
7 #include <asm/io.h>
8 #include <asm/psci.h>
9 #include <asm/secure.h>
10 #include <asm/arch/imx-regs.h>
11 #include <asm/armv7.h>
12 #include <asm/gic.h>
13 #include <linux/bitops.h>
14 #include <common.h>
15 #include <fsl_wdog.h>
16 
17 #define GPC_LPCR_A7_BSC	0x0
18 #define GPC_LPCR_A7_AD		0x4
19 #define GPC_SLPCR		0x14
20 #define GPC_PGC_ACK_SEL_A7	0x24
21 #define GPC_IMR1_CORE0		0x30
22 #define GPC_SLOT0_CFG		0xb0
23 #define GPC_CPU_PGC_SW_PUP_REQ	0xf0
24 #define GPC_CPU_PGC_SW_PDN_REQ	0xfc
25 #define GPC_PGC_C0		0x800
26 #define GPC_PGC_C0		0x800
27 #define GPC_PGC_C1		0x840
28 #define GPC_PGC_SCU		0x880
29 
30 #define BM_LPCR_A7_BSC_CPU_CLK_ON_LPM		0x4000
31 #define BM_LPCR_A7_BSC_LPM1			0xc
32 #define BM_LPCR_A7_BSC_LPM0			0x3
33 #define BP_LPCR_A7_BSC_LPM0			0
34 #define BM_SLPCR_EN_DSM				0x80000000
35 #define BM_SLPCR_RBC_EN				0x40000000
36 #define BM_SLPCR_REG_BYPASS_COUNT		0x3f000000
37 #define BM_SLPCR_VSTBY				0x4
38 #define BM_SLPCR_SBYOS				0x2
39 #define BM_SLPCR_BYPASS_PMIC_READY		0x1
40 #define BM_LPCR_A7_AD_L2PGE			0x10000
41 #define BM_LPCR_A7_AD_EN_C1_PUP			0x800
42 #define BM_LPCR_A7_AD_EN_C0_PUP			0x200
43 #define BM_LPCR_A7_AD_EN_PLAT_PDN		0x10
44 #define BM_LPCR_A7_AD_EN_C1_PDN			0x8
45 #define BM_LPCR_A7_AD_EN_C0_PDN			0x2
46 
47 #define BM_CPU_PGC_SW_PDN_PUP_REQ_CORE0_A7	0x1
48 #define BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7	0x2
49 
50 #define BM_GPC_PGC_ACK_SEL_A7_PD_DUMMY_ACK	0x8000
51 #define BM_GPC_PGC_ACK_SEL_A7_PU_DUMMY_ACK	0x80000000
52 
53 #define MAX_SLOT_NUMBER				10
54 #define A7_LPM_WAIT				0x5
55 #define A7_LPM_STOP				0xa
56 
57 #define BM_SYS_COUNTER_CNTCR_FCR1 0x200
58 #define BM_SYS_COUNTER_CNTCR_FCR0 0x100
59 
60 #define REG_SET		0x4
61 #define REG_CLR		0x8
62 
63 #define ANADIG_ARM_PLL		0x60
64 #define ANADIG_DDR_PLL		0x70
65 #define ANADIG_SYS_PLL		0xb0
66 #define ANADIG_ENET_PLL		0xe0
67 #define ANADIG_AUDIO_PLL	0xf0
68 #define ANADIG_VIDEO_PLL	0x130
69 #define BM_ANATOP_ARM_PLL_OVERRIDE	BIT(20)
70 #define BM_ANATOP_DDR_PLL_OVERRIDE	BIT(19)
71 #define BM_ANATOP_SYS_PLL_OVERRIDE	(0x1ff << 17)
72 #define BM_ANATOP_ENET_PLL_OVERRIDE	BIT(13)
73 #define BM_ANATOP_AUDIO_PLL_OVERRIDE	BIT(24)
74 #define BM_ANATOP_VIDEO_PLL_OVERRIDE	BIT(24)
75 
76 #define DDRC_STAT	0x4
77 #define DDRC_PWRCTL	0x30
78 #define DDRC_PSTAT	0x3fc
79 
80 #define SRC_GPR1_MX7D		0x074
81 #define SRC_GPR2_MX7D		0x078
82 #define SRC_A7RCR0		0x004
83 #define SRC_A7RCR1		0x008
84 
85 #define BP_SRC_A7RCR0_A7_CORE_RESET0	0
86 #define BP_SRC_A7RCR1_A7_CORE1_ENABLE	1
87 
88 #define SNVS_LPCR		0x38
89 #define BP_SNVS_LPCR_DP_EN	0x20
90 #define BP_SNVS_LPCR_TOP	0x40
91 
92 #define CCM_CCGR_SNVS		0x4250
93 
94 #define CCM_ROOT_WDOG		0xbb80
95 #define CCM_CCGR_WDOG1		0x49c0
96 
97 #define MPIDR_AFF0		GENMASK(7, 0)
98 
99 #define IMX7D_PSCI_NR_CPUS	2
100 #if IMX7D_PSCI_NR_CPUS > CONFIG_ARMV7_PSCI_NR_CPUS
101 #error "invalid value for CONFIG_ARMV7_PSCI_NR_CPUS"
102 #endif
103 
104 #define imx_cpu_gpr_entry_offset(cpu) \
105 	(SRC_BASE_ADDR + SRC_GPR1_MX7D + cpu * 8)
106 #define imx_cpu_gpr_para_offset(cpu) \
107 	(imx_cpu_gpr_entry_offset(cpu) + 4)
108 
109 #define IMX_CPU_SYNC_OFF	~0
110 #define IMX_CPU_SYNC_ON		0
111 
112 u8 psci_state[IMX7D_PSCI_NR_CPUS] __secure_data = {
113 	 PSCI_AFFINITY_LEVEL_ON,
114 	 PSCI_AFFINITY_LEVEL_OFF};
115 
116 enum imx_gpc_slot {
117 	CORE0_A7,
118 	CORE1_A7,
119 	SCU_A7,
120 	FAST_MEGA_MIX,
121 	MIPI_PHY,
122 	PCIE_PHY,
123 	USB_OTG1_PHY,
124 	USB_OTG2_PHY,
125 	USB_HSIC_PHY,
126 	CORE0_M4,
127 };
128 
129 enum mxc_cpu_pwr_mode {
130 	RUN,
131 	WAIT,
132 	STOP,
133 };
134 
135 extern void psci_system_resume(void);
136 
137 static inline void psci_set_state(int cpu, u8 state)
138 {
139 	psci_state[cpu] = state;
140 	dsb();
141 	isb();
142 }
143 
144 static inline void imx_gpcv2_set_m_core_pgc(bool enable, u32 offset)
145 {
146 	writel(enable, GPC_IPS_BASE_ADDR + offset);
147 }
148 
149 __secure void imx_gpcv2_set_core_power(int cpu, bool pdn)
150 {
151 	u32 reg = pdn ? GPC_CPU_PGC_SW_PUP_REQ : GPC_CPU_PGC_SW_PDN_REQ;
152 	u32 pgc = cpu ? GPC_PGC_C1 : GPC_PGC_C0;
153 	u32 pdn_pup_req = cpu ? BM_CPU_PGC_SW_PDN_PUP_REQ_CORE1_A7 :
154 				BM_CPU_PGC_SW_PDN_PUP_REQ_CORE0_A7;
155 	u32 val;
156 
157 	imx_gpcv2_set_m_core_pgc(true, pgc);
158 
159 	val = readl(GPC_IPS_BASE_ADDR + reg);
160 	val |= pdn_pup_req;
161 	writel(val, GPC_IPS_BASE_ADDR + reg);
162 
163 	while ((readl(GPC_IPS_BASE_ADDR + reg) & pdn_pup_req) != 0)
164 		;
165 
166 	imx_gpcv2_set_m_core_pgc(false, pgc);
167 }
168 
169 __secure void imx_enable_cpu_ca7(int cpu, bool enable)
170 {
171 	u32 mask, val;
172 
173 	mask = 1 << (BP_SRC_A7RCR1_A7_CORE1_ENABLE + cpu - 1);
174 	val = readl(SRC_BASE_ADDR + SRC_A7RCR1);
175 	val = enable ? val | mask : val & ~mask;
176 	writel(val, SRC_BASE_ADDR + SRC_A7RCR1);
177 }
178 
179 __secure void psci_arch_cpu_entry(void)
180 {
181 	u32 cpu = psci_get_cpu_id();
182 
183 	psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON);
184 }
185 
186 __secure s32 psci_cpu_on(u32 __always_unused function_id, u32 mpidr, u32 ep,
187 			 u32 context_id)
188 {
189 	u32 cpu = mpidr & MPIDR_AFF0;
190 
191 	if (mpidr & ~MPIDR_AFF0)
192 		return ARM_PSCI_RET_INVAL;
193 
194 	if (cpu >= IMX7D_PSCI_NR_CPUS)
195 		return ARM_PSCI_RET_INVAL;
196 
197 	if (psci_state[cpu] == PSCI_AFFINITY_LEVEL_ON)
198 		return ARM_PSCI_RET_ALREADY_ON;
199 
200 	if (psci_state[cpu] == PSCI_AFFINITY_LEVEL_ON_PENDING)
201 		return ARM_PSCI_RET_ON_PENDING;
202 
203 	psci_save(cpu, ep, context_id);
204 
205 	writel((u32)psci_cpu_entry, imx_cpu_gpr_entry_offset(cpu));
206 
207 	psci_set_state(cpu, PSCI_AFFINITY_LEVEL_ON_PENDING);
208 
209 	imx_gpcv2_set_core_power(cpu, true);
210 	imx_enable_cpu_ca7(cpu, true);
211 
212 	return ARM_PSCI_RET_SUCCESS;
213 }
214 
215 __secure s32 psci_cpu_off(void)
216 {
217 	int cpu;
218 
219 	cpu = psci_get_cpu_id();
220 
221 	psci_cpu_off_common();
222 	psci_set_state(cpu, PSCI_AFFINITY_LEVEL_OFF);
223 
224 	imx_enable_cpu_ca7(cpu, false);
225 	imx_gpcv2_set_core_power(cpu, false);
226 	/*
227 	 * We use the cpu jumping argument register to sync with
228 	 * psci_affinity_info() which is running on cpu0 to kill the cpu.
229 	 */
230 	writel(IMX_CPU_SYNC_OFF, imx_cpu_gpr_para_offset(cpu));
231 
232 	while (1)
233 		wfi();
234 }
235 
236 __secure void psci_system_reset(void)
237 {
238 	struct wdog_regs *wdog = (struct wdog_regs *)WDOG1_BASE_ADDR;
239 
240 	/* make sure WDOG1 clock is enabled */
241 	writel(0x1 << 28, CCM_BASE_ADDR + CCM_ROOT_WDOG);
242 	writel(0x3, CCM_BASE_ADDR + CCM_CCGR_WDOG1);
243 	writew(WCR_WDE, &wdog->wcr);
244 
245 	while (1)
246 		wfi();
247 }
248 
249 __secure void psci_system_off(void)
250 {
251 	u32 val;
252 
253 	/* make sure SNVS clock is enabled */
254 	writel(0x3, CCM_BASE_ADDR + CCM_CCGR_SNVS);
255 
256 	val = readl(SNVS_BASE_ADDR + SNVS_LPCR);
257 	val |= BP_SNVS_LPCR_DP_EN | BP_SNVS_LPCR_TOP;
258 	writel(val, SNVS_BASE_ADDR + SNVS_LPCR);
259 
260 	while (1)
261 		wfi();
262 }
263 
264 __secure u32 psci_version(void)
265 {
266 	return ARM_PSCI_VER_1_0;
267 }
268 
269 __secure s32 psci_cpu_suspend(u32 __always_unused function_id, u32 power_state,
270 			      u32 entry_point_address,
271 			      u32 context_id)
272 {
273 	return ARM_PSCI_RET_INVAL;
274 }
275 
276 __secure s32 psci_affinity_info(u32 __always_unused function_id,
277 				u32 target_affinity,
278 				u32 lowest_affinity_level)
279 {
280 	u32 cpu = target_affinity & MPIDR_AFF0;
281 
282 	if (lowest_affinity_level > 0)
283 		return ARM_PSCI_RET_INVAL;
284 
285 	if (target_affinity & ~MPIDR_AFF0)
286 		return ARM_PSCI_RET_INVAL;
287 
288 	if (cpu >= IMX7D_PSCI_NR_CPUS)
289 		return ARM_PSCI_RET_INVAL;
290 
291 	/* CPU is waiting for killed */
292 	if (readl(imx_cpu_gpr_para_offset(cpu)) == IMX_CPU_SYNC_OFF) {
293 		imx_enable_cpu_ca7(cpu, false);
294 		imx_gpcv2_set_core_power(cpu, false);
295 		writel(IMX_CPU_SYNC_ON, imx_cpu_gpr_para_offset(cpu));
296 	}
297 
298 	return psci_state[cpu];
299 }
300 
301 __secure s32 psci_migrate_info_type(u32 function_id)
302 {
303 	/* Trusted OS is either not present or does not require migration */
304 	return 2;
305 }
306 
307 __secure s32 psci_features(u32 __always_unused function_id, u32 psci_fid)
308 {
309 	switch (psci_fid) {
310 	case ARM_PSCI_0_2_FN_PSCI_VERSION:
311 	case ARM_PSCI_0_2_FN_CPU_OFF:
312 	case ARM_PSCI_0_2_FN_CPU_ON:
313 	case ARM_PSCI_0_2_FN_AFFINITY_INFO:
314 	case ARM_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
315 	case ARM_PSCI_0_2_FN_SYSTEM_OFF:
316 	case ARM_PSCI_0_2_FN_SYSTEM_RESET:
317 	case ARM_PSCI_1_0_FN_PSCI_FEATURES:
318 	case ARM_PSCI_1_0_FN_SYSTEM_SUSPEND:
319 		return 0x0;
320 	}
321 	return ARM_PSCI_RET_NI;
322 }
323 
324 static __secure void imx_gpcv2_set_lpm_mode(enum mxc_cpu_pwr_mode mode)
325 {
326 	u32 val1, val2, val3;
327 
328 	val1 = readl(GPC_IPS_BASE_ADDR + GPC_LPCR_A7_BSC);
329 	val2 = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
330 
331 	/* all cores' LPM settings must be same */
332 	val1 &= ~(BM_LPCR_A7_BSC_LPM0 | BM_LPCR_A7_BSC_LPM1);
333 	val1 |= BM_LPCR_A7_BSC_CPU_CLK_ON_LPM;
334 
335 	val2 &= ~(BM_SLPCR_EN_DSM | BM_SLPCR_VSTBY | BM_SLPCR_RBC_EN |
336 		BM_SLPCR_SBYOS | BM_SLPCR_BYPASS_PMIC_READY);
337 	/*
338 	 * GPC: When improper low-power sequence is used,
339 	 * the SoC enters low power mode before the ARM core executes WFI.
340 	 *
341 	 * Software workaround:
342 	 * 1) Software should trigger IRQ #32 (IOMUX) to be always pending
343 	 *    by setting IOMUX_GPR1_IRQ.
344 	 * 2) Software should then unmask IRQ #32 in GPC before setting GPC
345 	 *    Low-Power mode.
346 	 * 3) Software should mask IRQ #32 right after GPC Low-Power mode
347 	 *    is set.
348 	 */
349 	switch (mode) {
350 	case RUN:
351 		val3 = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
352 		val3 &= ~0x1;
353 		writel(val3, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
354 		break;
355 	case WAIT:
356 		val1 |= A7_LPM_WAIT << BP_LPCR_A7_BSC_LPM0;
357 		val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM;
358 		val3 = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
359 		val3 &= ~0x1;
360 		writel(val3, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
361 		break;
362 	case STOP:
363 		val1 |= A7_LPM_STOP << BP_LPCR_A7_BSC_LPM0;
364 		val1 &= ~BM_LPCR_A7_BSC_CPU_CLK_ON_LPM;
365 		val2 |= BM_SLPCR_EN_DSM;
366 		val2 |= BM_SLPCR_SBYOS;
367 		val2 |= BM_SLPCR_VSTBY;
368 		val2 |= BM_SLPCR_BYPASS_PMIC_READY;
369 		val3 = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
370 		val3 |= 0x1;
371 		writel(val3, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0);
372 		break;
373 	default:
374 		return;
375 	}
376 	writel(val1, GPC_IPS_BASE_ADDR + GPC_LPCR_A7_BSC);
377 	writel(val2, GPC_IPS_BASE_ADDR + GPC_SLPCR);
378 }
379 
380 static __secure void imx_gpcv2_set_plat_power_gate_by_lpm(bool pdn)
381 {
382 	u32 val = readl(GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
383 
384 	val &= ~(BM_LPCR_A7_AD_EN_PLAT_PDN | BM_LPCR_A7_AD_L2PGE);
385 	if (pdn)
386 		val |= BM_LPCR_A7_AD_EN_PLAT_PDN | BM_LPCR_A7_AD_L2PGE;
387 
388 	writel(val, GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
389 }
390 
391 static __secure void imx_gpcv2_set_cpu_power_gate_by_lpm(u32 cpu, bool pdn)
392 {
393 	u32 val;
394 
395 	val = readl(GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
396 	if (cpu == 0) {
397 		if (pdn)
398 			val |= BM_LPCR_A7_AD_EN_C0_PDN |
399 				BM_LPCR_A7_AD_EN_C0_PUP;
400 		else
401 			val &= ~(BM_LPCR_A7_AD_EN_C0_PDN |
402 				BM_LPCR_A7_AD_EN_C0_PUP);
403 	}
404 	if (cpu == 1) {
405 		if (pdn)
406 			val |= BM_LPCR_A7_AD_EN_C1_PDN |
407 				BM_LPCR_A7_AD_EN_C1_PUP;
408 		else
409 			val &= ~(BM_LPCR_A7_AD_EN_C1_PDN |
410 				BM_LPCR_A7_AD_EN_C1_PUP);
411 	}
412 	writel(val, GPC_IPS_BASE_ADDR + GPC_LPCR_A7_AD);
413 }
414 
415 static __secure void imx_gpcv2_set_slot_ack(u32 index, enum imx_gpc_slot m_core,
416 					    bool mode, bool ack)
417 {
418 	u32 val;
419 
420 	if (index >= MAX_SLOT_NUMBER)
421 		return;
422 
423 	/* set slot */
424 	writel(readl(GPC_IPS_BASE_ADDR + GPC_SLOT0_CFG + index * 4) |
425 		((mode + 1) << (m_core * 2)),
426 		GPC_IPS_BASE_ADDR + GPC_SLOT0_CFG + index * 4);
427 
428 	if (ack) {
429 		/* set ack */
430 		val = readl(GPC_IPS_BASE_ADDR + GPC_PGC_ACK_SEL_A7);
431 		/* clear dummy ack */
432 		val &= ~(mode ? BM_GPC_PGC_ACK_SEL_A7_PU_DUMMY_ACK :
433 			BM_GPC_PGC_ACK_SEL_A7_PD_DUMMY_ACK);
434 		val |= 1 << (m_core + (mode ? 16 : 0));
435 		writel(val, GPC_IPS_BASE_ADDR + GPC_PGC_ACK_SEL_A7);
436 	}
437 }
438 
439 static __secure void imx_system_counter_resume(void)
440 {
441 	u32 val;
442 
443 	val = readl(SYSCNT_CTRL_IPS_BASE_ADDR);
444 	val &= ~BM_SYS_COUNTER_CNTCR_FCR1;
445 	val |= BM_SYS_COUNTER_CNTCR_FCR0;
446 	writel(val, SYSCNT_CTRL_IPS_BASE_ADDR);
447 }
448 
449 static __secure void imx_system_counter_suspend(void)
450 {
451 	u32 val;
452 
453 	val = readl(SYSCNT_CTRL_IPS_BASE_ADDR);
454 	val &= ~BM_SYS_COUNTER_CNTCR_FCR0;
455 	val |= BM_SYS_COUNTER_CNTCR_FCR1;
456 	writel(val, SYSCNT_CTRL_IPS_BASE_ADDR);
457 }
458 
459 static __secure void gic_resume(void)
460 {
461 	u32 itlinesnr, i;
462 	u32 gic_dist_addr = GIC400_ARB_BASE_ADDR + GIC_DIST_OFFSET;
463 
464 	/* enable the GIC distributor */
465 	writel(readl(gic_dist_addr + GICD_CTLR) | 0x03,
466 	       gic_dist_addr + GICD_CTLR);
467 
468 	/* TYPER[4:0] contains an encoded number of available interrupts */
469 	itlinesnr = readl(gic_dist_addr + GICD_TYPER) & 0x1f;
470 
471 	/* set all bits in the GIC group registers to one to allow access
472 	 * from non-secure state. The first 32 interrupts are private per
473 	 * CPU and will be set later when enabling the GIC for each core
474 	 */
475 	for (i = 1; i <= itlinesnr; i++)
476 		writel((u32)-1, gic_dist_addr + GICD_IGROUPRn + 4 * i);
477 }
478 
479 static inline void imx_pll_suspend(void)
480 {
481 	writel(BM_ANATOP_ARM_PLL_OVERRIDE,
482 	       ANATOP_BASE_ADDR + ANADIG_ARM_PLL + REG_SET);
483 	writel(BM_ANATOP_DDR_PLL_OVERRIDE,
484 	       ANATOP_BASE_ADDR + ANADIG_DDR_PLL + REG_SET);
485 	writel(BM_ANATOP_SYS_PLL_OVERRIDE,
486 	       ANATOP_BASE_ADDR + ANADIG_SYS_PLL + REG_SET);
487 	writel(BM_ANATOP_ENET_PLL_OVERRIDE,
488 	       ANATOP_BASE_ADDR + ANADIG_ENET_PLL + REG_SET);
489 	writel(BM_ANATOP_AUDIO_PLL_OVERRIDE,
490 	       ANATOP_BASE_ADDR + ANADIG_AUDIO_PLL + REG_SET);
491 	writel(BM_ANATOP_VIDEO_PLL_OVERRIDE,
492 	       ANATOP_BASE_ADDR + ANADIG_VIDEO_PLL + REG_SET);
493 }
494 
495 static inline void imx_pll_resume(void)
496 {
497 	writel(BM_ANATOP_ARM_PLL_OVERRIDE,
498 	       ANATOP_BASE_ADDR + ANADIG_ARM_PLL + REG_CLR);
499 	writel(BM_ANATOP_DDR_PLL_OVERRIDE,
500 	       ANATOP_BASE_ADDR + ANADIG_DDR_PLL + REG_CLR);
501 	writel(BM_ANATOP_SYS_PLL_OVERRIDE,
502 	       ANATOP_BASE_ADDR + ANADIG_SYS_PLL + REG_CLR);
503 	writel(BM_ANATOP_ENET_PLL_OVERRIDE,
504 	       ANATOP_BASE_ADDR + ANADIG_ENET_PLL + REG_CLR);
505 	writel(BM_ANATOP_AUDIO_PLL_OVERRIDE,
506 	       ANATOP_BASE_ADDR + ANADIG_AUDIO_PLL + REG_CLR);
507 	writel(BM_ANATOP_VIDEO_PLL_OVERRIDE,
508 	       ANATOP_BASE_ADDR + ANADIG_VIDEO_PLL + REG_CLR);
509 }
510 
511 static inline void imx_udelay(u32 usec)
512 {
513 	u32 freq;
514 	u64 start, end;
515 
516 	asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (freq));
517 	asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (start));
518 	do {
519 		asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (end));
520 		if ((end - start) > usec * (freq / 1000000))
521 			break;
522 	} while (1);
523 }
524 
525 static inline void imx_ddrc_enter_self_refresh(void)
526 {
527 	writel(0, DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
528 	while (readl(DDRC_IPS_BASE_ADDR + DDRC_PSTAT) & 0x10001)
529 		;
530 
531 	writel(0x20, DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
532 	while ((readl(DDRC_IPS_BASE_ADDR + DDRC_STAT) & 0x23) != 0x23)
533 		;
534 	writel(readl(DDRC_IPS_BASE_ADDR + DDRC_PWRCTL) | 0x8,
535 	       DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
536 }
537 
538 static inline void imx_ddrc_exit_self_refresh(void)
539 {
540 	writel(0, DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
541 	while ((readl(DDRC_IPS_BASE_ADDR + DDRC_STAT) & 0x3) == 0x3)
542 		;
543 	writel(readl(DDRC_IPS_BASE_ADDR + DDRC_PWRCTL) | 0x1,
544 	       DDRC_IPS_BASE_ADDR + DDRC_PWRCTL);
545 }
546 
547 __secure void imx_system_resume(void)
548 {
549 	unsigned int i, val, imr[4], entry;
550 
551 	entry = psci_get_target_pc(0);
552 	imx_ddrc_exit_self_refresh();
553 	imx_system_counter_resume();
554 	imx_gpcv2_set_lpm_mode(RUN);
555 	imx_gpcv2_set_cpu_power_gate_by_lpm(0, false);
556 	imx_gpcv2_set_plat_power_gate_by_lpm(false);
557 	imx_gpcv2_set_m_core_pgc(false, GPC_PGC_C0);
558 	imx_gpcv2_set_m_core_pgc(false, GPC_PGC_SCU);
559 
560 	/*
561 	 * need to mask all interrupts in GPC before
562 	 * operating RBC configurations
563 	 */
564 	for (i = 0; i < 4; i++) {
565 		imr[i] = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
566 		writel(~0, GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
567 	}
568 
569 	/* configure RBC enable bit */
570 	val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
571 	val &= ~BM_SLPCR_RBC_EN;
572 	writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
573 
574 	/* configure RBC count */
575 	val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
576 	val &= ~BM_SLPCR_REG_BYPASS_COUNT;
577 	writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
578 
579 	/*
580 	 * need to delay at least 2 cycles of CKIL(32K)
581 	 * due to hardware design requirement, which is
582 	 * ~61us, here we use 65us for safe
583 	 */
584 	imx_udelay(65);
585 
586 	/* restore GPC interrupt mask settings */
587 	for (i = 0; i < 4; i++)
588 		writel(imr[i], GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
589 
590 	/* initialize gic distributor */
591 	gic_resume();
592 	_nonsec_init();
593 
594 	/* save cpu0 entry */
595 	psci_save(0, entry, 0);
596 	psci_cpu_entry();
597 }
598 
599 __secure void psci_system_suspend(u32 __always_unused function_id,
600 				  u32 ep, u32 context_id)
601 {
602 	u32 gpc_mask[4];
603 	u32 i, val;
604 
605 	psci_save(0, ep, context_id);
606 	/* overwrite PLL to be controlled by low power mode */
607 	imx_pll_suspend();
608 	imx_system_counter_suspend();
609 	/* set CA7 platform to enter STOP mode */
610 	imx_gpcv2_set_lpm_mode(STOP);
611 	/* enable core0/scu power down/up with low power mode */
612 	imx_gpcv2_set_cpu_power_gate_by_lpm(0, true);
613 	imx_gpcv2_set_plat_power_gate_by_lpm(true);
614 	/* time slot settings for core0 and scu */
615 	imx_gpcv2_set_slot_ack(0, CORE0_A7, false, false);
616 	imx_gpcv2_set_slot_ack(1, SCU_A7, false, true);
617 	imx_gpcv2_set_slot_ack(5, SCU_A7, true, false);
618 	imx_gpcv2_set_slot_ack(6, CORE0_A7, true, true);
619 	imx_gpcv2_set_m_core_pgc(true, GPC_PGC_C0);
620 	imx_gpcv2_set_m_core_pgc(true, GPC_PGC_SCU);
621 	psci_v7_flush_dcache_all();
622 
623 	imx_ddrc_enter_self_refresh();
624 
625 	/*
626 	 * e10133: ARM: Boot failure after A7 enters into
627 	 * low-power idle mode
628 	 *
629 	 * Workaround:
630 	 * If both CPU0/CPU1 are IDLE, the last IDLE CPU should
631 	 * disable GIC first, then REG_BYPASS_COUNTER is used
632 	 * to mask wakeup INT, and then execute “wfi” is used to
633 	 * bring the system into power down processing safely.
634 	 * The counter must be enabled as close to the “wfi” state
635 	 * as possible. The following equation can be used to
636 	 * determine the RBC counter value:
637 	 * RBC_COUNT * (1/32K RTC frequency) >=
638 	 * (46 + PDNSCR_SW + PDNSCR_SW2ISO ) ( 1/IPG_CLK frequency ).
639 	 */
640 
641 	/* disable GIC distributor */
642 	writel(0, GIC400_ARB_BASE_ADDR + GIC_DIST_OFFSET);
643 
644 	for (i = 0; i < 4; i++)
645 		gpc_mask[i] = readl(GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
646 
647 	/*
648 	 * enable the RBC bypass counter here
649 	 * to hold off the interrupts. RBC counter
650 	 * = 8 (240us). With this setting, the latency
651 	 * from wakeup interrupt to ARM power up
652 	 * is ~250uS.
653 	 */
654 	val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
655 	val &= ~(0x3f << 24);
656 	val |= (0x8 << 24);
657 	writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
658 
659 	/* enable the counter. */
660 	val = readl(GPC_IPS_BASE_ADDR + GPC_SLPCR);
661 	val |= (1 << 30);
662 	writel(val, GPC_IPS_BASE_ADDR + GPC_SLPCR);
663 
664 	/* unmask all the GPC interrupts. */
665 	for (i = 0; i < 4; i++)
666 		writel(gpc_mask[i], GPC_IPS_BASE_ADDR + GPC_IMR1_CORE0 + i * 4);
667 
668 	/*
669 	 * now delay for a short while (3usec)
670 	 * ARM is at 1GHz at this point
671 	 * so a short loop should be enough.
672 	 * this delay is required to ensure that
673 	 * the RBC counter can start counting in
674 	 * case an interrupt is already pending
675 	 * or in case an interrupt arrives just
676 	 * as ARM is about to assert DSM_request.
677 	 */
678 	imx_udelay(3);
679 
680 	/* save resume entry and sp in CPU0 GPR registers */
681 	asm volatile("mov %0, sp" : "=r" (val));
682 	writel((u32)psci_system_resume, SRC_BASE_ADDR + SRC_GPR1_MX7D);
683 	writel(val, SRC_BASE_ADDR + SRC_GPR2_MX7D);
684 
685 	/* sleep */
686 	while (1)
687 		wfi();
688 }
689