xref: /openbmc/u-boot/arch/arm/mach-imx/mx7/clock.c (revision c68c03f5)
1 /*
2  * Copyright (C) 2015 Freescale Semiconductor, Inc.
3  *
4  * Author:
5  *	Peng Fan <Peng.Fan@freescale.com>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <div64.h>
12 #include <asm/io.h>
13 #include <linux/errno.h>
14 #include <asm/arch/imx-regs.h>
15 #include <asm/arch/crm_regs.h>
16 #include <asm/arch/clock.h>
17 #include <asm/arch/sys_proto.h>
18 
19 struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *)
20 					 ANATOP_BASE_ADDR;
21 struct mxc_ccm_reg *ccm_reg = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
22 
23 #ifdef CONFIG_FSL_ESDHC
24 DECLARE_GLOBAL_DATA_PTR;
25 #endif
26 
27 int get_clocks(void)
28 {
29 #ifdef CONFIG_FSL_ESDHC
30 #if CONFIG_SYS_FSL_ESDHC_ADDR == USDHC2_BASE_ADDR
31 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
32 #elif CONFIG_SYS_FSL_ESDHC_ADDR == USDHC3_BASE_ADDR
33 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
34 #else
35 	gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
36 #endif
37 #endif
38 	return 0;
39 }
40 
41 u32 get_ahb_clk(void)
42 {
43 	return get_root_clk(AHB_CLK_ROOT);
44 }
45 
46 static u32 get_ipg_clk(void)
47 {
48 	/*
49 	 * The AHB and IPG are fixed at 2:1 ratio, and synchronized to
50 	 * each other.
51 	 */
52 	return get_ahb_clk() / 2;
53 }
54 
55 u32 imx_get_uartclk(void)
56 {
57 	return get_root_clk(UART1_CLK_ROOT);
58 }
59 
60 u32 imx_get_fecclk(void)
61 {
62 	return get_root_clk(ENET_AXI_CLK_ROOT);
63 }
64 
65 #ifdef CONFIG_MXC_OCOTP
66 void enable_ocotp_clk(unsigned char enable)
67 {
68 	clock_enable(CCGR_OCOTP, enable);
69 }
70 
71 void enable_thermal_clk(void)
72 {
73 	enable_ocotp_clk(1);
74 }
75 #endif
76 
77 void enable_usboh3_clk(unsigned char enable)
78 {
79 	u32 target;
80 
81 	if (enable) {
82 		/* disable the clock gate first */
83 		clock_enable(CCGR_USB_HSIC, 0);
84 
85 		/* 120Mhz */
86 		target = CLK_ROOT_ON |
87 			 USB_HSIC_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
88 			 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
89 			 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
90 		clock_set_target_val(USB_HSIC_CLK_ROOT, target);
91 
92 		/* enable the clock gate */
93 		clock_enable(CCGR_USB_CTRL, 1);
94 		clock_enable(CCGR_USB_HSIC, 1);
95 		clock_enable(CCGR_USB_PHY1, 1);
96 		clock_enable(CCGR_USB_PHY2, 1);
97 	} else {
98 		clock_enable(CCGR_USB_CTRL, 0);
99 		clock_enable(CCGR_USB_HSIC, 0);
100 		clock_enable(CCGR_USB_PHY1, 0);
101 		clock_enable(CCGR_USB_PHY2, 0);
102 	}
103 }
104 
105 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
106 {
107 	u32 reg, div_sel;
108 	u32 num, denom;
109 
110 	/*
111 	 * Alought there are four choices for the bypass src,
112 	 * we choose OSC_24M which is the default set in ROM.
113 	 */
114 	switch (pll) {
115 	case PLL_CORE:
116 		reg = readl(&ccm_anatop->pll_arm);
117 
118 		if (reg & CCM_ANALOG_PLL_ARM_POWERDOWN_MASK)
119 			return 0;
120 
121 		if (reg & CCM_ANALOG_PLL_ARM_BYPASS_MASK)
122 			return MXC_HCLK;
123 
124 		div_sel = (reg & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
125 			   CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT;
126 
127 		return (infreq * div_sel) / 2;
128 
129 	case PLL_SYS:
130 		reg = readl(&ccm_anatop->pll_480);
131 
132 		if (reg & CCM_ANALOG_PLL_480_POWERDOWN_MASK)
133 			return 0;
134 
135 		if (reg & CCM_ANALOG_PLL_480_BYPASS_MASK)
136 			return MXC_HCLK;
137 
138 		if (((reg & CCM_ANALOG_PLL_480_DIV_SELECT_MASK) >>
139 			CCM_ANALOG_PLL_480_DIV_SELECT_SHIFT) == 0)
140 			return 480000000u;
141 		else
142 			return 528000000u;
143 
144 	case PLL_ENET:
145 		reg = readl(&ccm_anatop->pll_enet);
146 
147 		if (reg & CCM_ANALOG_PLL_ENET_POWERDOWN_MASK)
148 			return 0;
149 
150 		if (reg & CCM_ANALOG_PLL_ENET_BYPASS_MASK)
151 			return MXC_HCLK;
152 
153 		return 1000000000u;
154 
155 	case PLL_DDR:
156 		reg = readl(&ccm_anatop->pll_ddr);
157 
158 		if (reg & CCM_ANALOG_PLL_DDR_POWERDOWN_MASK)
159 			return 0;
160 
161 		num = ccm_anatop->pll_ddr_num;
162 		denom = ccm_anatop->pll_ddr_denom;
163 
164 		if (reg & CCM_ANALOG_PLL_DDR_BYPASS_MASK)
165 			return MXC_HCLK;
166 
167 		div_sel = (reg & CCM_ANALOG_PLL_DDR_DIV_SELECT_MASK) >>
168 			   CCM_ANALOG_PLL_DDR_DIV_SELECT_SHIFT;
169 
170 		return infreq * (div_sel + num / denom);
171 
172 	case PLL_USB:
173 		return 480000000u;
174 
175 	default:
176 		printf("Unsupported pll clocks %d\n", pll);
177 		break;
178 	}
179 
180 	return 0;
181 }
182 
183 static u32 mxc_get_pll_sys_derive(int derive)
184 {
185 	u32 freq, div, frac;
186 	u32 reg;
187 
188 	div = 1;
189 	reg = readl(&ccm_anatop->pll_480);
190 	freq = decode_pll(PLL_SYS, MXC_HCLK);
191 
192 	switch (derive) {
193 	case PLL_SYS_MAIN_480M_CLK:
194 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV1_CLKGATE_MASK)
195 			return 0;
196 		else
197 			return freq;
198 	case PLL_SYS_MAIN_240M_CLK:
199 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV2_CLKGATE_MASK)
200 			return 0;
201 		else
202 			return freq / 2;
203 	case PLL_SYS_MAIN_120M_CLK:
204 		if (reg & CCM_ANALOG_PLL_480_MAIN_DIV4_CLKGATE_MASK)
205 			return 0;
206 		else
207 			return freq / 4;
208 	case PLL_SYS_PFD0_392M_CLK:
209 		reg = readl(&ccm_anatop->pfd_480a);
210 		if (reg & CCM_ANALOG_PFD_480A_PFD0_DIV1_CLKGATE_MASK)
211 			return 0;
212 		frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
213 			CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
214 		break;
215 	case PLL_SYS_PFD0_196M_CLK:
216 		if (reg & CCM_ANALOG_PLL_480_PFD0_DIV2_CLKGATE_MASK)
217 			return 0;
218 		reg = readl(&ccm_anatop->pfd_480a);
219 		frac = (reg & CCM_ANALOG_PFD_480A_PFD0_FRAC_MASK) >>
220 			CCM_ANALOG_PFD_480A_PFD0_FRAC_SHIFT;
221 		div = 2;
222 		break;
223 	case PLL_SYS_PFD1_332M_CLK:
224 		reg = readl(&ccm_anatop->pfd_480a);
225 		if (reg & CCM_ANALOG_PFD_480A_PFD1_DIV1_CLKGATE_MASK)
226 			return 0;
227 		frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
228 			CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
229 		break;
230 	case PLL_SYS_PFD1_166M_CLK:
231 		if (reg & CCM_ANALOG_PLL_480_PFD1_DIV2_CLKGATE_MASK)
232 			return 0;
233 		reg = readl(&ccm_anatop->pfd_480a);
234 		frac = (reg & CCM_ANALOG_PFD_480A_PFD1_FRAC_MASK) >>
235 			CCM_ANALOG_PFD_480A_PFD1_FRAC_SHIFT;
236 		div = 2;
237 		break;
238 	case PLL_SYS_PFD2_270M_CLK:
239 		reg = readl(&ccm_anatop->pfd_480a);
240 		if (reg & CCM_ANALOG_PFD_480A_PFD2_DIV1_CLKGATE_MASK)
241 			return 0;
242 		frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
243 			CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
244 		break;
245 	case PLL_SYS_PFD2_135M_CLK:
246 		if (reg & CCM_ANALOG_PLL_480_PFD2_DIV2_CLKGATE_MASK)
247 			return 0;
248 		reg = readl(&ccm_anatop->pfd_480a);
249 		frac = (reg & CCM_ANALOG_PFD_480A_PFD2_FRAC_MASK) >>
250 			CCM_ANALOG_PFD_480A_PFD2_FRAC_SHIFT;
251 		div = 2;
252 		break;
253 	case PLL_SYS_PFD3_CLK:
254 		reg = readl(&ccm_anatop->pfd_480a);
255 		if (reg & CCM_ANALOG_PFD_480A_PFD3_DIV1_CLKGATE_MASK)
256 			return 0;
257 		frac = (reg & CCM_ANALOG_PFD_480A_PFD3_FRAC_MASK) >>
258 			CCM_ANALOG_PFD_480A_PFD3_FRAC_SHIFT;
259 		break;
260 	case PLL_SYS_PFD4_CLK:
261 		reg = readl(&ccm_anatop->pfd_480b);
262 		if (reg & CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK)
263 			return 0;
264 		frac = (reg & CCM_ANALOG_PFD_480B_PFD4_FRAC_MASK) >>
265 			CCM_ANALOG_PFD_480B_PFD4_FRAC_SHIFT;
266 		break;
267 	case PLL_SYS_PFD5_CLK:
268 		reg = readl(&ccm_anatop->pfd_480b);
269 		if (reg & CCM_ANALOG_PFD_480B_PFD5_DIV1_CLKGATE_MASK)
270 			return 0;
271 		frac = (reg & CCM_ANALOG_PFD_480B_PFD5_FRAC_MASK) >>
272 			CCM_ANALOG_PFD_480B_PFD5_FRAC_SHIFT;
273 		break;
274 	case PLL_SYS_PFD6_CLK:
275 		reg = readl(&ccm_anatop->pfd_480b);
276 		if (reg & CCM_ANALOG_PFD_480B_PFD6_DIV1_CLKGATE_MASK)
277 			return 0;
278 		frac = (reg & CCM_ANALOG_PFD_480B_PFD6_FRAC_MASK) >>
279 			CCM_ANALOG_PFD_480B_PFD6_FRAC_SHIFT;
280 		break;
281 	case PLL_SYS_PFD7_CLK:
282 		reg = readl(&ccm_anatop->pfd_480b);
283 		if (reg & CCM_ANALOG_PFD_480B_PFD7_DIV1_CLKGATE_MASK)
284 			return 0;
285 		frac = (reg & CCM_ANALOG_PFD_480B_PFD7_FRAC_MASK) >>
286 			CCM_ANALOG_PFD_480B_PFD7_FRAC_SHIFT;
287 		break;
288 	default:
289 		printf("Error derived pll_sys clock %d\n", derive);
290 		return 0;
291 	}
292 
293 	return ((freq / frac) * 18) / div;
294 }
295 
296 static u32 mxc_get_pll_enet_derive(int derive)
297 {
298 	u32 freq, reg;
299 
300 	freq = decode_pll(PLL_ENET, MXC_HCLK);
301 	reg = readl(&ccm_anatop->pll_enet);
302 
303 	switch (derive) {
304 	case PLL_ENET_MAIN_500M_CLK:
305 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK)
306 			return freq / 2;
307 		break;
308 	case PLL_ENET_MAIN_250M_CLK:
309 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK)
310 			return freq / 4;
311 		break;
312 	case PLL_ENET_MAIN_125M_CLK:
313 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK)
314 			return freq / 8;
315 		break;
316 	case PLL_ENET_MAIN_100M_CLK:
317 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK)
318 			return freq / 10;
319 		break;
320 	case PLL_ENET_MAIN_50M_CLK:
321 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK)
322 			return freq / 20;
323 		break;
324 	case PLL_ENET_MAIN_40M_CLK:
325 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK)
326 			return freq / 25;
327 		break;
328 	case PLL_ENET_MAIN_25M_CLK:
329 		if (reg & CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK)
330 			return freq / 40;
331 		break;
332 	default:
333 		printf("Error derived pll_enet clock %d\n", derive);
334 		break;
335 	}
336 
337 	return 0;
338 }
339 
340 static u32 mxc_get_pll_ddr_derive(int derive)
341 {
342 	u32 freq, reg;
343 
344 	freq = decode_pll(PLL_DDR, MXC_HCLK);
345 	reg = readl(&ccm_anatop->pll_ddr);
346 
347 	switch (derive) {
348 	case PLL_DRAM_MAIN_1066M_CLK:
349 		return freq;
350 	case PLL_DRAM_MAIN_533M_CLK:
351 		if (reg & CCM_ANALOG_PLL_DDR_DIV2_ENABLE_CLK_MASK)
352 			return freq / 2;
353 		break;
354 	default:
355 		printf("Error derived pll_ddr clock %d\n", derive);
356 		break;
357 	}
358 
359 	return 0;
360 }
361 
362 static u32 mxc_get_pll_derive(enum pll_clocks pll, int derive)
363 {
364 	switch (pll) {
365 	case PLL_SYS:
366 		return mxc_get_pll_sys_derive(derive);
367 	case PLL_ENET:
368 		return mxc_get_pll_enet_derive(derive);
369 	case PLL_DDR:
370 		return mxc_get_pll_ddr_derive(derive);
371 	default:
372 		printf("Error pll.\n");
373 		return 0;
374 	}
375 }
376 
377 static u32 get_root_src_clk(enum clk_root_src root_src)
378 {
379 	switch (root_src) {
380 	case OSC_24M_CLK:
381 		return 24000000u;
382 	case PLL_ARM_MAIN_800M_CLK:
383 		return decode_pll(PLL_CORE, MXC_HCLK);
384 
385 	case PLL_SYS_MAIN_480M_CLK:
386 	case PLL_SYS_MAIN_240M_CLK:
387 	case PLL_SYS_MAIN_120M_CLK:
388 	case PLL_SYS_PFD0_392M_CLK:
389 	case PLL_SYS_PFD0_196M_CLK:
390 	case PLL_SYS_PFD1_332M_CLK:
391 	case PLL_SYS_PFD1_166M_CLK:
392 	case PLL_SYS_PFD2_270M_CLK:
393 	case PLL_SYS_PFD2_135M_CLK:
394 	case PLL_SYS_PFD3_CLK:
395 	case PLL_SYS_PFD4_CLK:
396 	case PLL_SYS_PFD5_CLK:
397 	case PLL_SYS_PFD6_CLK:
398 	case PLL_SYS_PFD7_CLK:
399 		return mxc_get_pll_derive(PLL_SYS, root_src);
400 
401 	case PLL_ENET_MAIN_500M_CLK:
402 	case PLL_ENET_MAIN_250M_CLK:
403 	case PLL_ENET_MAIN_125M_CLK:
404 	case PLL_ENET_MAIN_100M_CLK:
405 	case PLL_ENET_MAIN_50M_CLK:
406 	case PLL_ENET_MAIN_40M_CLK:
407 	case PLL_ENET_MAIN_25M_CLK:
408 		return mxc_get_pll_derive(PLL_ENET, root_src);
409 
410 	case PLL_DRAM_MAIN_1066M_CLK:
411 	case PLL_DRAM_MAIN_533M_CLK:
412 		return mxc_get_pll_derive(PLL_DDR, root_src);
413 
414 	case PLL_AUDIO_MAIN_CLK:
415 		return decode_pll(PLL_AUDIO, MXC_HCLK);
416 	case PLL_VIDEO_MAIN_CLK:
417 		return decode_pll(PLL_VIDEO, MXC_HCLK);
418 
419 	case PLL_USB_MAIN_480M_CLK:
420 		return decode_pll(PLL_USB, MXC_HCLK);
421 
422 	case REF_1M_CLK:
423 		return 1000000;
424 	case OSC_32K_CLK:
425 		return MXC_CLK32;
426 
427 	case EXT_CLK_1:
428 	case EXT_CLK_2:
429 	case EXT_CLK_3:
430 	case EXT_CLK_4:
431 		printf("No EXT CLK supported??\n");
432 		break;
433 	};
434 
435 	return 0;
436 }
437 
438 u32 get_root_clk(enum clk_root_index clock_id)
439 {
440 	enum clk_root_src root_src;
441 	u32 post_podf, pre_podf, auto_podf, root_src_clk;
442 	int auto_en;
443 
444 	if (clock_root_enabled(clock_id) <= 0)
445 		return 0;
446 
447 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
448 		return 0;
449 
450 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
451 		return 0;
452 
453 	if (clock_get_autopostdiv(clock_id, &auto_podf, &auto_en) < 0)
454 		return 0;
455 
456 	if (auto_en == 0)
457 		auto_podf = 0;
458 
459 	if (clock_get_src(clock_id, &root_src) < 0)
460 		return 0;
461 
462 	root_src_clk = get_root_src_clk(root_src);
463 
464 	/*
465 	 * bypass clk is ignored.
466 	 */
467 
468 	return root_src_clk / (post_podf + 1) / (pre_podf + 1) /
469 		(auto_podf + 1);
470 }
471 
472 static u32 get_ddrc_clk(void)
473 {
474 	u32 reg, freq;
475 	enum root_post_div post_div;
476 
477 	reg = readl(&ccm_reg->root[DRAM_CLK_ROOT].target_root);
478 	if (reg & CLK_ROOT_MUX_MASK)
479 		/* DRAM_ALT_CLK_ROOT */
480 		freq = get_root_clk(DRAM_ALT_CLK_ROOT);
481 	else
482 		/* PLL_DRAM_MAIN_1066M_CLK */
483 		freq = mxc_get_pll_derive(PLL_DDR, PLL_DRAM_MAIN_1066M_CLK);
484 
485 	post_div = reg & DRAM_CLK_ROOT_POST_DIV_MASK;
486 
487 	return freq / (post_div + 1) / 2;
488 }
489 
490 unsigned int mxc_get_clock(enum mxc_clock clk)
491 {
492 	switch (clk) {
493 	case MXC_ARM_CLK:
494 		return get_root_clk(ARM_A7_CLK_ROOT);
495 	case MXC_AXI_CLK:
496 		return get_root_clk(MAIN_AXI_CLK_ROOT);
497 	case MXC_AHB_CLK:
498 		return get_root_clk(AHB_CLK_ROOT);
499 	case MXC_IPG_CLK:
500 		return get_ipg_clk();
501 	case MXC_I2C_CLK:
502 		return get_root_clk(I2C1_CLK_ROOT);
503 	case MXC_UART_CLK:
504 		return get_root_clk(UART1_CLK_ROOT);
505 	case MXC_CSPI_CLK:
506 		return get_root_clk(ECSPI1_CLK_ROOT);
507 	case MXC_DDR_CLK:
508 		return get_ddrc_clk();
509 	case MXC_ESDHC_CLK:
510 		return get_root_clk(USDHC1_CLK_ROOT);
511 	case MXC_ESDHC2_CLK:
512 		return get_root_clk(USDHC2_CLK_ROOT);
513 	case MXC_ESDHC3_CLK:
514 		return get_root_clk(USDHC3_CLK_ROOT);
515 	default:
516 		printf("Unsupported mxc_clock %d\n", clk);
517 		break;
518 	}
519 
520 	return 0;
521 }
522 
523 #ifdef CONFIG_SYS_I2C_MXC
524 /* i2c_num can be 0 - 3 */
525 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
526 {
527 	u32 target;
528 
529 	if (i2c_num >= 4)
530 		return -EINVAL;
531 
532 	if (enable) {
533 		clock_enable(CCGR_I2C1 + i2c_num, 0);
534 
535 		/* Set i2c root clock to PLL_SYS_MAIN_120M_CLK */
536 
537 		target = CLK_ROOT_ON |
538 			 I2C1_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
539 			 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
540 			 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
541 		clock_set_target_val(I2C1_CLK_ROOT + i2c_num, target);
542 
543 		clock_enable(CCGR_I2C1 + i2c_num, 1);
544 	} else {
545 		clock_enable(CCGR_I2C1 + i2c_num, 0);
546 	}
547 
548 	return 0;
549 }
550 #endif
551 
552 static void init_clk_esdhc(void)
553 {
554 	u32 target;
555 
556 	/* disable the clock gate first */
557 	clock_enable(CCGR_USDHC1, 0);
558 	clock_enable(CCGR_USDHC2, 0);
559 	clock_enable(CCGR_USDHC3, 0);
560 
561 	/* 196: 392/2 */
562 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
563 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
564 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
565 	clock_set_target_val(USDHC1_CLK_ROOT, target);
566 
567 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
568 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
569 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
570 	clock_set_target_val(USDHC2_CLK_ROOT, target);
571 
572 	target = CLK_ROOT_ON | USDHC1_CLK_ROOT_FROM_PLL_SYS_PFD0_392M_CLK |
573 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
574 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
575 	clock_set_target_val(USDHC3_CLK_ROOT, target);
576 
577 	/* enable the clock gate */
578 	clock_enable(CCGR_USDHC1, 1);
579 	clock_enable(CCGR_USDHC2, 1);
580 	clock_enable(CCGR_USDHC3, 1);
581 }
582 
583 static void init_clk_uart(void)
584 {
585 	u32 target;
586 
587 	/* disable the clock gate first */
588 	clock_enable(CCGR_UART1, 0);
589 	clock_enable(CCGR_UART2, 0);
590 	clock_enable(CCGR_UART3, 0);
591 	clock_enable(CCGR_UART4, 0);
592 	clock_enable(CCGR_UART5, 0);
593 	clock_enable(CCGR_UART6, 0);
594 	clock_enable(CCGR_UART7, 0);
595 
596 	/* 24Mhz */
597 	target = CLK_ROOT_ON | UART1_CLK_ROOT_FROM_OSC_24M_CLK |
598 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
599 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
600 	clock_set_target_val(UART1_CLK_ROOT, target);
601 
602 	target = CLK_ROOT_ON | UART2_CLK_ROOT_FROM_OSC_24M_CLK |
603 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
604 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
605 	clock_set_target_val(UART2_CLK_ROOT, target);
606 
607 	target = CLK_ROOT_ON | UART3_CLK_ROOT_FROM_OSC_24M_CLK |
608 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
609 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
610 	clock_set_target_val(UART3_CLK_ROOT, target);
611 
612 	target = CLK_ROOT_ON | UART4_CLK_ROOT_FROM_OSC_24M_CLK |
613 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
614 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
615 	clock_set_target_val(UART4_CLK_ROOT, target);
616 
617 	target = CLK_ROOT_ON | UART5_CLK_ROOT_FROM_OSC_24M_CLK |
618 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
619 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
620 	clock_set_target_val(UART5_CLK_ROOT, target);
621 
622 	target = CLK_ROOT_ON | UART6_CLK_ROOT_FROM_OSC_24M_CLK |
623 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
624 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
625 	clock_set_target_val(UART6_CLK_ROOT, target);
626 
627 	target = CLK_ROOT_ON | UART7_CLK_ROOT_FROM_OSC_24M_CLK |
628 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
629 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
630 	clock_set_target_val(UART7_CLK_ROOT, target);
631 
632 	/* enable the clock gate */
633 	clock_enable(CCGR_UART1, 1);
634 	clock_enable(CCGR_UART2, 1);
635 	clock_enable(CCGR_UART3, 1);
636 	clock_enable(CCGR_UART4, 1);
637 	clock_enable(CCGR_UART5, 1);
638 	clock_enable(CCGR_UART6, 1);
639 	clock_enable(CCGR_UART7, 1);
640 }
641 
642 static void init_clk_weim(void)
643 {
644 	u32 target;
645 
646 	/* disable the clock gate first */
647 	clock_enable(CCGR_WEIM, 0);
648 
649 	/* 120Mhz */
650 	target = CLK_ROOT_ON | EIM_CLK_ROOT_FROM_PLL_SYS_MAIN_120M_CLK |
651 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
652 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
653 	clock_set_target_val(EIM_CLK_ROOT, target);
654 
655 	/* enable the clock gate */
656 	clock_enable(CCGR_WEIM, 1);
657 }
658 
659 static void init_clk_ecspi(void)
660 {
661 	u32 target;
662 
663 	/* disable the clock gate first */
664 	clock_enable(CCGR_ECSPI1, 0);
665 	clock_enable(CCGR_ECSPI2, 0);
666 	clock_enable(CCGR_ECSPI3, 0);
667 	clock_enable(CCGR_ECSPI4, 0);
668 
669 	/* 60Mhz: 240/4 */
670 	target = CLK_ROOT_ON | ECSPI1_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
671 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
672 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
673 	clock_set_target_val(ECSPI1_CLK_ROOT, target);
674 
675 	target = CLK_ROOT_ON | ECSPI2_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
676 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
677 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
678 	clock_set_target_val(ECSPI2_CLK_ROOT, target);
679 
680 	target = CLK_ROOT_ON | ECSPI3_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
681 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
682 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
683 	clock_set_target_val(ECSPI3_CLK_ROOT, target);
684 
685 	target = CLK_ROOT_ON | ECSPI4_CLK_ROOT_FROM_PLL_SYS_MAIN_240M_CLK |
686 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
687 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
688 	clock_set_target_val(ECSPI4_CLK_ROOT, target);
689 
690 	/* enable the clock gate */
691 	clock_enable(CCGR_ECSPI1, 1);
692 	clock_enable(CCGR_ECSPI2, 1);
693 	clock_enable(CCGR_ECSPI3, 1);
694 	clock_enable(CCGR_ECSPI4, 1);
695 }
696 
697 static void init_clk_wdog(void)
698 {
699 	u32 target;
700 
701 	/* disable the clock gate first */
702 	clock_enable(CCGR_WDOG1, 0);
703 	clock_enable(CCGR_WDOG2, 0);
704 	clock_enable(CCGR_WDOG3, 0);
705 	clock_enable(CCGR_WDOG4, 0);
706 
707 	/* 24Mhz */
708 	target = CLK_ROOT_ON | WDOG_CLK_ROOT_FROM_OSC_24M_CLK |
709 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
710 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
711 	clock_set_target_val(WDOG_CLK_ROOT, target);
712 
713 	/* enable the clock gate */
714 	clock_enable(CCGR_WDOG1, 1);
715 	clock_enable(CCGR_WDOG2, 1);
716 	clock_enable(CCGR_WDOG3, 1);
717 	clock_enable(CCGR_WDOG4, 1);
718 }
719 
720 #ifdef CONFIG_MXC_EPDC
721 static void init_clk_epdc(void)
722 {
723 	u32 target;
724 
725 	/* disable the clock gate first */
726 	clock_enable(CCGR_EPDC, 0);
727 
728 	/* 24Mhz */
729 	target = CLK_ROOT_ON | EPDC_PIXEL_CLK_ROOT_FROM_PLL_SYS_MAIN_480M_CLK |
730 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
731 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV12);
732 	clock_set_target_val(EPDC_PIXEL_CLK_ROOT, target);
733 
734 	/* enable the clock gate */
735 	clock_enable(CCGR_EPDC, 1);
736 }
737 #endif
738 
739 static int enable_pll_enet(void)
740 {
741 	u32 reg;
742 	s32 timeout = 100000;
743 
744 	reg = readl(&ccm_anatop->pll_enet);
745 	/* If pll_enet powered up, no need to set it again */
746 	if (reg & ANADIG_PLL_ENET_PWDN_MASK) {
747 		reg &= ~ANADIG_PLL_ENET_PWDN_MASK;
748 		writel(reg, &ccm_anatop->pll_enet);
749 
750 		while (timeout--) {
751 			if (readl(&ccm_anatop->pll_enet) & ANADIG_PLL_LOCK)
752 				break;
753 		}
754 
755 		if (timeout <= 0) {
756 			/* If timeout, we set pwdn for pll_enet. */
757 			reg |= ANADIG_PLL_ENET_PWDN_MASK;
758 			return -ETIME;
759 		}
760 	}
761 
762 	/* Clear bypass */
763 	writel(CCM_ANALOG_PLL_ENET_BYPASS_MASK, &ccm_anatop->pll_enet_clr);
764 
765 	writel((CCM_ANALOG_PLL_ENET_ENABLE_CLK_500MHZ_MASK
766 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_250MHZ_MASK
767 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_125MHZ_MASK
768 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_100MHZ_MASK
769 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_50MHZ_MASK
770 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_40MHZ_MASK
771 		| CCM_ANALOG_PLL_ENET_ENABLE_CLK_25MHZ_MASK),
772 	       &ccm_anatop->pll_enet_set);
773 
774 	return 0;
775 }
776 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
777 	u32 post_div)
778 {
779 	u32 reg = 0;
780 	ulong start;
781 
782 	debug("pll5 div = %d, num = %d, denom = %d\n",
783 		pll_div, pll_num, pll_denom);
784 
785 	/* Power up PLL5 video and disable its output */
786 	writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK |
787 		CCM_ANALOG_PLL_VIDEO_CLR_POWERDOWN_MASK |
788 		CCM_ANALOG_PLL_VIDEO_CLR_BYPASS_MASK |
789 		CCM_ANALOG_PLL_VIDEO_CLR_DIV_SELECT_MASK |
790 		CCM_ANALOG_PLL_VIDEO_CLR_POST_DIV_SEL_MASK |
791 		CCM_ANALOG_PLL_VIDEO_CLR_TEST_DIV_SELECT_MASK,
792 		&ccm_anatop->pll_video_clr);
793 
794 	/* Set div, num and denom */
795 	switch (post_div) {
796 	case 1:
797 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
798 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x1) |
799 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
800 			&ccm_anatop->pll_video_set);
801 		break;
802 	case 2:
803 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
804 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
805 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
806 			&ccm_anatop->pll_video_set);
807 		break;
808 	case 3:
809 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
810 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
811 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x1),
812 			&ccm_anatop->pll_video_set);
813 		break;
814 	case 4:
815 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
816 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x0) |
817 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x3),
818 			&ccm_anatop->pll_video_set);
819 		break;
820 	case 0:
821 	default:
822 		writel(CCM_ANALOG_PLL_VIDEO_SET_DIV_SELECT(pll_div) |
823 			CCM_ANALOG_PLL_VIDEO_SET_TEST_DIV_SELECT(0x2) |
824 			CCM_ANALOG_PLL_VIDEO_SET_POST_DIV_SEL(0x0),
825 			&ccm_anatop->pll_video_set);
826 		break;
827 	}
828 
829 	writel(CCM_ANALOG_PLL_VIDEO_NUM_A(pll_num),
830 		&ccm_anatop->pll_video_num);
831 
832 	writel(CCM_ANALOG_PLL_VIDEO_DENOM_B(pll_denom),
833 		&ccm_anatop->pll_video_denom);
834 
835 	/* Wait PLL5 lock */
836 	start = get_timer(0);	/* Get current timestamp */
837 
838 	do {
839 		reg = readl(&ccm_anatop->pll_video);
840 		if (reg & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) {
841 			/* Enable PLL out */
842 			writel(CCM_ANALOG_PLL_VIDEO_CLR_ENABLE_CLK_MASK,
843 					&ccm_anatop->pll_video_set);
844 			return 0;
845 		}
846 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
847 
848 	printf("Lock PLL5 timeout\n");
849 
850 	return 1;
851 }
852 
853 int set_clk_qspi(void)
854 {
855 	u32 target;
856 
857 	/* disable the clock gate first */
858 	clock_enable(CCGR_QSPI, 0);
859 
860 	/* 49M: 392/2/4 */
861 	target = CLK_ROOT_ON | QSPI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
862 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
863 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
864 	clock_set_target_val(QSPI_CLK_ROOT, target);
865 
866 	/* enable the clock gate */
867 	clock_enable(CCGR_QSPI, 1);
868 
869 	return 0;
870 }
871 
872 int set_clk_nand(void)
873 {
874 	u32 target;
875 
876 	/* disable the clock gate first */
877 	clock_enable(CCGR_RAWNAND, 0);
878 
879 	enable_pll_enet();
880 	/* 100: 500/5 */
881 	target = CLK_ROOT_ON | NAND_CLK_ROOT_FROM_PLL_ENET_MAIN_500M_CLK |
882 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
883 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV5);
884 	clock_set_target_val(NAND_CLK_ROOT, target);
885 
886 	/* enable the clock gate */
887 	clock_enable(CCGR_RAWNAND, 1);
888 
889 	return 0;
890 }
891 
892 void mxs_set_lcdclk(uint32_t base_addr, uint32_t freq)
893 {
894 	u32 hck = MXC_HCLK/1000;
895 	u32 min = hck * 27;
896 	u32 max = hck * 54;
897 	u32 temp, best = 0;
898 	u32 i, j, pred = 1, postd = 1;
899 	u32 pll_div, pll_num, pll_denom, post_div = 0;
900 	u32 target;
901 
902 	debug("mxs_set_lcdclk, freq = %d\n", freq);
903 
904 	clock_enable(CCGR_LCDIF, 0);
905 
906 	temp = (freq * 8 * 8);
907 	if (temp < min) {
908 		for (i = 1; i <= 4; i++) {
909 			if ((temp * (1 << i)) > min) {
910 				post_div = i;
911 				freq = (freq * (1 << i));
912 				break;
913 			}
914 		}
915 
916 		if (5 == i) {
917 			printf("Fail to set rate to %dkhz", freq);
918 			return;
919 		}
920 	}
921 
922 	for (i = 1; i <= 8; i++) {
923 		for (j = 1; j <= 8; j++) {
924 			temp = freq * i * j;
925 			if (temp > max || temp < min)
926 				continue;
927 
928 			if (best == 0 || temp < best) {
929 				best = temp;
930 				pred = i;
931 				postd = j;
932 			}
933 		}
934 	}
935 
936 	if (best == 0) {
937 		printf("Fail to set rate to %dkhz", freq);
938 		return;
939 	}
940 
941 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
942 
943 	pll_div = best / hck;
944 	pll_denom = 1000000;
945 	pll_num = (best - hck * pll_div) * pll_denom / hck;
946 
947 	if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
948 		return;
949 
950 	target = CLK_ROOT_ON | LCDIF_PIXEL_CLK_ROOT_FROM_PLL_VIDEO_MAIN_CLK |
951 		 CLK_ROOT_PRE_DIV((pred - 1)) | CLK_ROOT_POST_DIV((postd - 1));
952 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, target);
953 
954 	clock_enable(CCGR_LCDIF, 1);
955 }
956 
957 #ifdef CONFIG_FEC_MXC
958 int set_clk_enet(enum enet_freq type)
959 {
960 	u32 target;
961 	int ret;
962 	u32 enet1_ref, enet2_ref;
963 
964 	/* disable the clock first */
965 	clock_enable(CCGR_ENET1, 0);
966 	clock_enable(CCGR_ENET2, 0);
967 
968 	switch (type) {
969 	case ENET_125MHZ:
970 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
971 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
972 		break;
973 	case ENET_50MHZ:
974 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
975 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
976 		break;
977 	case ENET_25MHZ:
978 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
979 		enet2_ref = ENET2_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
980 		break;
981 	default:
982 		return -EINVAL;
983 	}
984 
985 	ret = enable_pll_enet();
986 	if (ret != 0)
987 		return ret;
988 
989 	/* set enet axi clock 196M: 392/2 */
990 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_PLL_SYS_PFD4_CLK |
991 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
992 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2);
993 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
994 
995 	target = CLK_ROOT_ON | enet1_ref |
996 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
997 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
998 	clock_set_target_val(ENET1_REF_CLK_ROOT, target);
999 
1000 	target = CLK_ROOT_ON | ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
1001 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1002 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
1003 	clock_set_target_val(ENET1_TIME_CLK_ROOT, target);
1004 
1005 	target = CLK_ROOT_ON | enet2_ref |
1006 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1007 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1008 	clock_set_target_val(ENET2_REF_CLK_ROOT, target);
1009 
1010 	target = CLK_ROOT_ON | ENET2_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
1011 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1012 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
1013 	clock_set_target_val(ENET2_TIME_CLK_ROOT, target);
1014 
1015 #ifdef CONFIG_FEC_MXC_25M_REF_CLK
1016 	target = CLK_ROOT_ON |
1017 		 ENET_PHY_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK |
1018 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
1019 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
1020 	clock_set_target_val(ENET_PHY_REF_CLK_ROOT, target);
1021 #endif
1022 	/* enable clock */
1023 	clock_enable(CCGR_ENET1, 1);
1024 	clock_enable(CCGR_ENET2, 1);
1025 
1026 	return 0;
1027 }
1028 #endif
1029 
1030 /* Configure PLL/PFD freq */
1031 void clock_init(void)
1032 {
1033 /* Rom has enabled PLL_ARM, PLL_DDR, PLL_SYS, PLL_ENET
1034  *   In u-boot, we have to:
1035  *   1. Configure PFD3- PFD7 for freq we needed in u-boot
1036  *   2. Set clock root for peripherals (ip channel) used in u-boot but without set rate
1037  *       interface.  The clocks for these peripherals are enabled after this intialization.
1038  *   3. Other peripherals with set clock rate interface does not be set in this function.
1039  */
1040 	u32 reg;
1041 
1042 	/*
1043 	 * Configure PFD4 to 392M
1044 	 * 480M * 18 / 0x16 = 392M
1045 	 */
1046 	reg = readl(&ccm_anatop->pfd_480b);
1047 
1048 	reg &= ~(ANATOP_PFD480B_PFD4_FRAC_MASK |
1049 		 CCM_ANALOG_PFD_480B_PFD4_DIV1_CLKGATE_MASK);
1050 	reg |= ANATOP_PFD480B_PFD4_FRAC_392M_VAL;
1051 
1052 	writel(reg, &ccm_anatop->pfd_480b);
1053 
1054 	init_clk_esdhc();
1055 	init_clk_uart();
1056 	init_clk_weim();
1057 	init_clk_ecspi();
1058 	init_clk_wdog();
1059 #ifdef CONFIG_MXC_EPDC
1060 	init_clk_epdc();
1061 #endif
1062 
1063 	enable_usboh3_clk(1);
1064 
1065 	clock_enable(CCGR_SNVS, 1);
1066 
1067 #ifdef CONFIG_NAND_MXS
1068 	clock_enable(CCGR_RAWNAND, 1);
1069 #endif
1070 
1071 	if (IS_ENABLED(CONFIG_IMX_RDC)) {
1072 		clock_enable(CCGR_RDC, 1);
1073 		clock_enable(CCGR_SEMA1, 1);
1074 		clock_enable(CCGR_SEMA2, 1);
1075 	}
1076 }
1077 
1078 #ifdef CONFIG_SECURE_BOOT
1079 void hab_caam_clock_enable(unsigned char enable)
1080 {
1081 	if (enable)
1082 		clock_enable(CCGR_CAAM, 1);
1083 	else
1084 		clock_enable(CCGR_CAAM, 0);
1085 }
1086 #endif
1087 
1088 #ifdef CONFIG_MXC_EPDC
1089 void epdc_clock_enable(void)
1090 {
1091 	clock_enable(CCGR_EPDC, 1);
1092 }
1093 void epdc_clock_disable(void)
1094 {
1095 	clock_enable(CCGR_EPDC, 0);
1096 }
1097 #endif
1098 
1099 /*
1100  * Dump some core clockes.
1101  */
1102 int do_mx7_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1103 {
1104 	u32 freq;
1105 	freq = decode_pll(PLL_CORE, MXC_HCLK);
1106 	printf("PLL_CORE    %8d MHz\n", freq / 1000000);
1107 	freq = decode_pll(PLL_SYS, MXC_HCLK);
1108 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
1109 	freq = decode_pll(PLL_ENET, MXC_HCLK);
1110 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
1111 
1112 	printf("\n");
1113 
1114 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1115 	printf("UART       %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1116 #ifdef CONFIG_MXC_SPI
1117 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1118 #endif
1119 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1120 	printf("AXI        %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1121 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1122 	printf("USDHC1     %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1123 	printf("USDHC2     %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1124 	printf("USDHC3     %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1125 
1126 	return 0;
1127 }
1128 
1129 U_BOOT_CMD(
1130 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx7_showclocks,
1131 	"display clocks",
1132 	""
1133 );
1134